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Part I: Introduction to causality theory
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General relativity

In Einstein’s general relativity spacetime
is a differentiable manifold M endowed with a metric

g = gµν(x)dxµdxν

where {xµ} are local coordinates. Here
g is Lorentzian, namely its signature is (−,+,+,+).

Dynamics is determined by the Einstein’s equations

Rµν −
1

2
Rgµν + Λgµν = 8πTµν

where Rµν is the Ricci tensor and Tµν is the stress-energy tensor.
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A closer look at the kinematics of general relativity

At each x ∈M we have a Lorentzian
bilinear form on TxM as in special relativity

gx = −(y0)2 + (y1)2 + (y2)2 + (y3)2.

where yµ are coordinates induced on TxM .

The cone of future timelike vectors is

Ωx = {y : gx(y, y) < 0, y0 > 0}

The set of future lightlike vectors is

∂Ωx = {y : gx(y, y) = 0, y 6= 0}

The set of future causal vectors is the union Cx = Ω̄x. The velocity space of
massive particles/observers is

Hx = {y : gx(y, y) = −1}.

This is the usual hyperboloid.
A spacetime differs from a Lorentzian manifold in that the selection of the future
cone can be done so as to be continuous, i.e. it is time orientable.
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Points on spacetime are called events. We have a distribution of causal cones
x→ Cx, and a distribution of hyperboloids x→ Hx.

A C1 curve x : t 7→ x(t) is

Timelike: if g(ẋ, ẋ) < 0, (massive particles ),

Lightlike: if g(ẋ, ẋ) = 0, (massless particles).

The proper time of a massive particle/observer is τ =
∫
x(t)

√
−g(ẋ, ẋ)dt.

Regensburg - Online, November 12, 2021 Causality theory for closed cone structures . . . 7/69



Spacetime = (conic) causal order + spacetime measure

Simple algebraic lemma

On a vector space of dimension n ≥ 3 two Lorentzian bilinear forms η1, η2 are
proportional if and only if they have the same causal cone C.

C1 = C2 ⇔ ∃a ∈ R : η1 = a2η2.

Since the volume form induced by the metric is
√
−det ηαβ dy0 ∧ · · · ∧ dyn it

scales differently under conformal changes so

Corollary

Two spacetime metrics g1 and g2 coincide if and only if they induce the same
distribution of causal cones x→ Cx and the same volume form
dµ =

√
−det g dx0 ∧ · · · ∧ dxn.
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In other words the spacetime (M, g) of general
relativity is nothing but a

spacetime measure + cone distribution

where the cones are really round: they have
ellipsoidal section according to the affine
structure of the tangent space TxM .

Causality theory for the most part focuses on the cone distribution, namely on
conformal invariant properties.
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Causality theory

Causality theory is the study of the global qualitative properties of the solutions
t 7→ x(t), to the differential inclusion

ẋ(t) ∈ Cx(t),

It focuses on the qualitative behavior of causal curves with a special attention to
causal geodesics. It aims to answer questions such as:
According to general relativity

Can closed timelike curves form? (grandfather paradox)

Can closed causal curves form? (the novelist sends the text of his bestselling
book to her younger self. The book exists but nobody has really written it.)

Do continuous global increasing functions (time functions) exist? (they would
prevent such pathologies)

How much of the spacetime geometry is encoded in the family of such
functions?

Answers to these questions help to clarify other problems such as

Under what conditions geodesic singularities are unavoidable?
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Existence of causal pathologies

Einstein’s equations impose very week constraints on causality.

In 1949 Kurt Gödel found the following
surprising solution: M = R4 and

g =
1

2ω2
[−(dt+ exdz)2 + dx2 + dy2 + 1

2
e2xdz2],

which is a solution for Λ = −ω2 and a
stress-energy tensor Tµν of dust type.
The problem is that through every point
there passes a closed timelike curve.
An observer could go back in time.
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Minkowski spacetime

M = R4, g = −dt2 + dx2 + dy2 + dz2.
In pictures we suppress 1 or 2 space dimensions.
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Non-chronological flat example

A spacetime of topology S1 × R3 which satisfies Einstein’s equations in which
there are closed timelike curves.
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Almost closed causal curves

One can imagine spacetimes in which there are various types of almost causal
curves.

This led to the introduction of some unpleasant hierarchy of stronger causality
conditions.
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Causal and chronological relation

The causal and chronological relations are subsets of M ×M

I = {(p, q) ∈M ×M : there is a timelike curve connecting p to q},
J = {(p, q) ∈M ×M : there is a causal curve connecting p to q, or p = q},

We shall also need the chronological and causal future of an event

I+(p) = {q ∈M : there is a timelike curve connecting p to q},

J+(p) = {q ∈M : there is a causal curve connecting p to q, or p = q},

Timelike curve can be deformed remaining timelike, so the chronological relation I
is open. Moreover Ī = J̄ but J is not closed in general. For instance, remove a
point from Minkowski spacetime, here (p, q) ∈ ∂J .

This lack of closure is at the origin of the many pathologies illustrated previously.
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Stable causality

In 1968 Hawking introduced stable causality.

Definition

A spacetime is stably causal if the cones can be widened while preserving causality.

Notice that by enlarging the causal cones we introduce more causal curves so it is
easier to violate causality.
Opening the cones:

Some properties of stable causality

it implies absence of almost closed causal curves,

it implies existence of time.

A time function is a continuous function that increases over every causal curve
(minus Lyapunov).
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Geroch volume function

Volume functions were introduced by Geroch. They increase but might be
discontinuous.
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Hawking’s average method

Taking an average in stably causal spacetimes solves the problem.
Let gλ be a 1-parameter family of metrics with cones wider than g, µ a unit
measure on M , then

t(p) =

∫ 2

1
µ(I−gλ (p))dλ

is a time function. The converse holds: existence of time ⇔ stable causality. The
time function can be chosen smooth.
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Seifert’s (or stable) causality relation

In 1971 Seifert introduced the stable relation as follows

JS =
⋂
g′>g

Jg′

where “ > ” means“wider than”.

Theorem

A spacetime is stably causal if and only if JS is antisymmetric

(p, q) ∈ JS and (q, p) ∈ JS ⇒ p = q.

The absence of closed causal curves (causality) is equivalent to the antisymmetry
of J .

key property

The Seifert relation is both closed and transitive.
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The K-relation

The K-relation is the smallest closed and transitive relation which contains J ,
thus J ⊂ K ⊂ JS (notion similar to the Auslander prolongation in dynamical
system theory). One could claim that a natural causality condition is the
antisymmetry of K, this is called K-causality.

Main problem

Is JS = K ? If not, is the antisymmetry of JS (stable causality) equivalent to the
antisymmetry of K (K-causality)?

The problem which goes back to Seifert (1971) was revived in 1996 by Sorkin,
Woolgar and Low.

I solved this problem in 2009

Theorem

Stable causality is equivalent to K-causality, and in this case K = JS .

The difficulty was due to the fact that K is defined from abstract properties, so
difficult to work with.
Recently (2018) Patrick Bernard and Stefan Suhr have given a different proof
inspired by Conley theory for dynamical systems.
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Why it is important

For many years it was believed that the most natural causality relation to work
with is the chronological relation I. The reason was that I is at least open, so
topologically nice, while J is not closed.
Moreover, under strong causality the topology of M can be deduced from I,
namely the topology of M is the coarsest topology which makes I open.

My result proved that there is a natural closed relation in (stably causal)
spacetime.
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Part II: Time functions and causality. The topological
approach.
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Closed relation is much better than open relation

The point is to understand what is fundamental not only mathematically but
physically. What survives at the deepest level where the C1 manifold itself might
not make sense?

A spacetime is given by three elements

Topology+(causal) order+measure

The first two ingredients can be unified.

Nachbin’s closed ordered space

A triple (E,≤,T ) given by a topological space (E,T ) and a closed (partial) order
over it.

Nachbin (1965) developed the theory of closed ordered
spaces in analogy with standard topology.
The standard topological theory is recovered for the
ordered space (E,∆,T ) where

∆ = {(p, q) ∈ E × E : p = q}.

is the discrete order. Notice that on a stably causal spacetime
(M,JS ,T ) is precisely this structure because JS is
closed, transitive and a (partial) order.
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Hausdorff condition

The Hausdorff condition is just the condition of closure for the relation ∆

So Hausdorff spaces are the simplest closed ordered spaces.
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Some terminology

Order

An order on a set E is a reflexive and transitive relation R ⊂ E × E on E
which is antisymmetric “x ≤ y and y ≤ x ⇒ x = y” (that is R ∩R−1 = ∆
with R−1 = {(x, y) : (y, x) ∈ R}).

We shall write x ≤ y for (x, y) ∈ R.

Increasing/decreasing hulls

Let S ⊂ E, the increasing and decreasing hulls are

i(S) = {y ∈ E : x ≤ y for some x ∈ S},
d(S) = {y ∈ E : y ≤ x for some x ∈ S}.

Increasing/decreasing

Subsets S for which i(S) = S are called increasing, while subsets for which
d(S) = S are called decreasing.

The complement of an increasing set is decreasing and the other way around.
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Terminology II

Upper and lower topologies

U is the topology generated by the open increasing sets,

L is the topology generated by the open decreasing sets.

A closed ordered space is convex if T = sup(U ,L ).

Isotone functions

A function between two preordered spaces f : E → E′ is isotone if
x ≤ y ⇒ f(x) ≤ f(y).
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A closer look at order separability conditions

Normally ordered space

E is a normally ordered space if it is a closed ordered space and for every pair of
closed increasing set B, and closed decreasing set A such that A∩B = ∅, there are
an open increasing set V and an open decreasing set U such that, A ⊂ U , B ⊂ V ,
U ∩ V = ∅.

Increasing and decreasing are the analog of future and past in relativity theory.
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Normally ordered spaces

Normally ordered space

E is a normally ordered space if it is a closed ordered space and for every pair of
closed increasing set B, and closed decreasing set A such that A∩B = ∅, there are
an open increasing set V and an open decreasing set U such that, A ⊂ U , B ⊂ V ,
U ∩ V = ∅.

Theorem (Nachbin’s extension of Urysohn’s lemma)

The topological ordered space (E,T ,≤) is normally ordered if and only if for any
two disjoint closed subsets A,B ⊂ E, with A decreasing and B increasing, there
exist on E a continuous isotone real-valued function f such that f(x) = 0
(x ∈ A), f(x) = 1 (x ∈ B), and 0 ≤ f(x) ≤ 1 (x ∈ E).

It follows

Order representability

x ≤ y ⇔ ∀f continuous and isotone, f(x) ≤ f(y)
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Completely regularly ordered spaces

Completely regularly ordered space (Tychonoff-ordered space)

E is a completely regularly ordered space if

(i) The topology is the weak (initial) topology of the family of continuous isotone
functions.

(ii) x ≤ y ⇔ ∀f continuous and isotone, f(x) ≤ f(y)

Theorem

Every completely regularly ordered space is convex.

Unification of topology and order

Quasi-Uniform Space (E,U ): A filter of the diagonal ∆, which respects
composition of relations. Then

⋂
U is an order and we have also a topology

obtained symmetrizing U and then proceeding in the usual way.

The quasi-uniformizable closed ordered spaces are precisely the completely
regularly ordered space. They are also the closed ordered spaces that can be
Nachbin compactified.
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The standard separability ladder

Main objective

We want to show that (M,JS ,T ) is completely regularly ordered, namely that we
can recover both topology and order from the time functions.

In standard (non-ordered) topology we can climb the ladder of separability
conditions
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The ordered version: gaps

Main objective

We want to show that (M,JS ,T ) is completely regularly ordered, namely that we
can recover both topology and order from the time functions.

In ordered topology there are gaps

The property we want is isolated.

Regensburg - Online, November 12, 2021 Causality theory for closed cone structures . . . 31/69



The ordered version: circumventing the gaps

How to circumvent the gaps

So we proved

Theorem (M.2013)

(M,JS ,T ) is completely regularly ordered, namely we can recover both topology
and order from the time functions.

Regensburg - Online, November 12, 2021 Causality theory for closed cone structures . . . 32/69



Part III: Causality for cone distributions and low regularity
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Purpose

Now we wish to answer the next questions:

Main problems

(a) How much and in which way does causality theory depend on differentiability
assumptions on the metric?

(b) How much and in which way does causality theory depend on the roundness
of the light cone (Lorentzianity)?

(c) Is it important to study non Lorentzian theories (non round cones) for general
relativity?

The answer to (a) and (b) is that it is possible to weaken considerably the
differentiability assumptions on the metric. How much? C1,1?, Lipschitz? C0?
No, upper semi-continuous.

The answer to (c) is YES, with the non-round theory two important problems

(i) Proof of the Lorentzian version of Connes distance formula,

(ii) Complete characterization of Lorentzian manifolds embeddable in Minkowski.
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What is (apparently) lost decreasing differentiability

[Differentiability assumptions] Results, meaningful objects

C2 This is textbook causality theory where curvature makes sense,

C1,1 Generalized by Kunzinger et al. and myself (2014) with the proof that the
exponential map is a local Lipeomorphism (Lipschitz with inverse Lipschitz),
convex neighborhoods do exist and from here many results of causality theory
follow. Notice that geodesics exist and are unique. The singularity theorems
use the curvature so they require more work but it can be done (work by
Graf, Grant, Kunzinger, Steinbauer, Stojkovic, Vickers).

Lip. Chrusciel and Grant (2012) show that the push up lemma is still true,
I ◦ J ∪ J ◦ I ⊂ I, problems with geodesics.

C0 Fathi and Siconolfi (2011) obtained results on existence of smooth time
functions (even for non-round cones) and stability of global hyperbolicity.
Sämann (2016) has obtained Avez-Seifert theorem and characterizations of
global hyperbolicity. Sbierski (2015) studied C0 inextendibility.

usc Recently Bernard and Suhr (2017) have obtained characterizations of global
hyperbolicity and stable causality using time functions and stability of global
hyperbolicity.
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Our results in this direction

We are able to generalize to the upper semi-continuous case much of causality
theory, namely

limit curve theorems,

definition of all the levels of the causal ladder and its validity,

validity of transverse ladder,

define lightlike and causal geodesics,

Avez-Seifert theorem (geodesic connectedness of globally hyperbolic
spacetimes),

Fermat’s principle,

usual results on domains of dependence, including the fact that horismos and
Cauchy horizons are generated by lightlike geodesics,

Penrose, Hawking, Hawking and Penrose’s singularity theorems (in a
causality sense),

Characterizations of global hyperbolicity or stable causality through time
functions,

stability of global hyperbolicity.

In fact we do not use the roundness of the cone, so these results hold for
Lorentz-Finsler theories.
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Motivation

Why care of low differentiability

(i) PDE studies of Einstein’s equations show that it is useful to consider metrics
of low differentiability (e.g. bounded L2 curvature),

(ii) We don’t want the singularity theorems to signal just a decrease in the
regularity of the metric,

(iii) Physically speaking exploring the mathematical limits of our theory of gravity
might tell us something on the very nature of gravity.

Why care of even upper semi-continuity

(a) It turns out to be the natural assumption for the validity of most results.
Assuming better differentiability properties might obscure part of the theory.
For instance, since the chronological relation can hardly be defined in this
case, it clarifies that such relation is almost irrelevant, what matters is the
causal relation.

(b) Physics presents ourselves with this case: think of light propagation in a
media with a discontinuous refractive index, say at the surface of two different
continua (say air and glass). We have a discontinuous distribution of light
cones (not to be confused with gravity cones). How do we choose the cone at
the interface? We choose the smaller refractive index, or the larger speed of
light, this way the distribution is upper semi-continuous. Why this choice?
Because, the theory works in this case (we get Fermat’s principle).
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Definitions: cone structures

M is a connected, Hausdorff, second countable, paracompact manifold of
dimension n+ 1.

Cone structure (M,C)

A cone structure is a multivalued map x 7→ Cx, where Cx ⊂ TxM\0 is a closed
sharp convex non-empty cone.

Let Sn ⊂ TU , U ⊂M , be the unit sphere bundle induced by a local coordinate
chart. Define Ĉq := Cq ∩ Sn. Since Sn with its canonical distance is a metric

space, we can define a notion of Hausdorff distance d̂H for its closed subsets and a
related topology.
The distribution of cones is continuous (locally Lipschitz) on U if the map q 7→ Ĉq
is continuous (resp. locally Lipschitz).

Example

A time oriented Lorentzian manifold (M, g) has an associated canonical cone
structure given by the distribution of causal cones

Cx = {y ∈ TxM\{0} : g(y, y) ≤ 0, y future directed}.

Proposition

Let (M, g) be a time oriented Lorentzian manifold. If g is continuous (locally
Lipschitz) then x 7→ Cx is continuous (resp. locally Lipschitz).
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Definitions: closed cone structures

Closed cone structure

A closed cone structure (M,C) is a cone structure which is a closed subbundle of
the slit tangent bundle TM\0.

Equivalently, a closed cone structure is an upper semi-continuous cone structure,
namely for every p ∈M and for every open neighborhood N(Ĉp) of Ĉp we can

find a neighborhood N(p) of p such that ∀q ∈ N(p), Ĉq ⊂ N(Ĉp).
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Definitions: proper cone structures

Proper cone

A proper cone is a closed sharp convex cone with non-empty interior.

Physically sharpness means: the speed of light is finite in every direction.

Proper cone structure

A proper cone structure is a closed cone structure in which additionally the cone
bundle is proper, in the sense that (IntTM C)x 6= ∅ for every x.

Here the interior is with respect to the bundle topology. Equivalently, it is proper
if it contains a C0 distribution of proper cones.

(IntC)p is the cone of timelike vectors NOT IntCp but in the C0 case they
coincide.

Given two cones Cp and C′p we write Cp ≤ C′p if Cp ⊂ C′p, and Cp < C′p if
Cp ⊂ (IntC′)p. They correspond to opening partially or strictly the cones.
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Definitions: causal and chronological relations

Causality theory concerns the study of the global qualitative properties of
absolutely continuous solutions to the differential inclusion

ẋ(t) ∈ Cx(t) ,

where x : I →M is called a parametrized continuous causal curve.
For every subset U of M we define the causal relation

J(U) = {(p, q) ∈ U × U : p = q or there is a continuous causal

curve contained in U from p to q}.

For a proper cone structure a timelike curve is a piecewise C1 solution to

ẋ(t) ∈ (IntC)x(t) ,

and the chronological relation is

I(U) = {(p, q) ∈ U×U : there is a timelike curve contained in U from p to q}.
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Some properties

Proposition

Let (M,C) be a proper cone structure, then I is open, transitive and contained in
J.

It is interesting to explore the properties of the relation J̊ := IntJ which will be
used to define the notion of geodesic.

Proposition

The relation J̊ is open, transitive and contained in J. Moreover, in a proper cone

structure I ⊂ J̊, J̊ = J̄ and ∂J̊ = ∂J.
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Local causality properties do not differ

The closed cone structures have local non-imprisoning properties

Proposition

Let (M,C) be a closed cone structure. For every x ∈M we can find a coordinate
open neighborhood U 3 x, and a flat Minkowski metric g on U such that at every
y ∈ U , Cy ⊂ (IntCg)y. Furthermore, for every Riemannian metric h there is a
constant δh(U) such that all continuous causal curves in Ū have h-arc length
smaller than δ.

and local globally hyperbolic neighborhoods exist.

A consequence of the Hopf-Rinow theorem is

Corollary

Let (M,C) be a closed cone structure and let h be a complete Riemannian metric.
A continuous causal curve x : [0, a)→M is future inextendible iff its h-arc length
is infinite.
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Existence results from differential inclusion theory

Theorem

(Zaremba, Marchaud) Let (M,C) be a closed cone structure. Every point p ∈M
is the starting point of an inextendible continuous causal curve. Every continuous
causal curve can be made inextendible through extension.

For a proper cone structure we have also

Theorem

Let (M,C) be a proper cone structure. For every x0 ∈M and timelike vector
y0 ∈ (IntC)x0 , there is a timelike curve passing through x0 with velocity y0.

Under stronger regularity conditions it can be improved as follows

Theorem

Let (M,C) be a locally Lipschitz closed cone structure. For every x0 ∈M and
y0 ∈ Cx0 , there is a C1 causal curve passing through x0 with velocity y0. If the
cone structure is proper and y0 is timelike the curve can be found timelike.
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Identity Ī = J̄ in the locally Lipschitz case

It has been observed by Chrusciel and Grant that in C0 Lorentzian geometry
there can be causal bubbles J+(p)\I+(p) 6= ∅, and that they are absent in the
locally Lipschitz theory.
The same is true for general cone structures, due to the so called relaxation theory.

We recall a key, somehow little known result by Filippov

Theorem

Let U be an open subset of Rn, and let x 7→ Ĉx ⊂ Rn be a Lipschitz multivalued
map defined on U with non-empty compact convex values. Let σ : [0, a]→ U , be a

solution of ẋ ∈ Ĉx(t) with initial condition σ(0) = p ∈ U . For any ε > 0 there

exists a C1 solution γ : [0, a]→ U to ẋ ∈ Ĉx(t) with initial condition γ(0) = p,
such that ‖γ − σ‖ ≤ ε.

Starting from this result the idea is to push in the timelike direction the curve γ
so as to get a C1 timelike approximation to σ. Since every continuous causal curve
is approximated by a timelike curve we have

Theorem

Let (M,C) be a locally Lipschitz proper cone structure and let h be a Riemannian
metric. Every point admits an open neighborhood U with the following property.
Every h-arc length parametrized continuous causal curve in U with starting point
p ∈ U can be uniformly approximated by a C1 timelike solution with the same
starting point, thus I+(p, U) = J+(p, U).
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Identity Ī = J̄ in the locally Lipschitz case

It has been observed by Chrusciel and Grant that in C0 Lorentzian geometry
there can be causal bubbles J+(p)\I+(p) 6= ∅, and that they are absent in the
locally Lipschitz theory.
The same is true for general cone structures, due to the so called relaxation theory.
We recall a key, somehow little known result by Filippov

Theorem

Let U be an open subset of Rn, and let x 7→ Ĉx ⊂ Rn be a Lipschitz multivalued
map defined on U with non-empty compact convex values. Let σ : [0, a]→ U , be a
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Identity I ◦ J ∪ J ◦ I ⊂ I in the locally Lipschitz case

We arrive at a classical result of causality theory.

Theorem

Let (M,C) be a locally Lipschitz proper cone structure. Let γ be a continuous
causal curve obtained joining a continuous causal curve η and a timelike curve σ
(or with order exchanged). Then γ can be deformed in an arbitrarily small
neighborhood O ⊃ γ to give a timelike curve γ̄ connecting the same endpoints of
γ. In particular, J ◦ I ∪ I ◦ J ⊂ I, J̄ = Ī, ∂J = ∂I, I = J̊. For every subset S,
J+(S) = I+(S), ∂J+(S) = ∂I+(S), I+(S) = Int(J+(S)), and time dually.
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Limit curve theorems

Closed cone structures preserve the validity of limit curve theorems.

Theorem

Let (M,C) and (M,Ck), k ≥ 1, be closed cone structures, Ck+1 ≤ Ck, C = ∩kCk,
and let h be a Riemannian metric on M . If the continuous Ck-causal curves
xk : Ik →M parametrized with respect to h-length converge h-uniformly on
compact subsets to x : I →M then x is a continuous C-causal curve.

Lemma (Limit curve lemma)

Let (M,C) and (M,Cn), n ≥ 1, be closed cone structures, Cn+1 ≤ Cn,
C = ∩nCn. Let xn : (−∞,+∞)→M , be a sequence of inextendible continuous
causal curves parametrized with respect to h-arc length, and suppose that p ∈M is
an accumulation point of the sequence xn(0). There is a inextendible continuous
causal curve x : (−∞,+∞)→M , such that x(0) = p and a subsequence xk which
converges h-uniformly on compact subsets to x.

Regensburg - Online, November 12, 2021 Causality theory for closed cone structures . . . 47/69



How to improve from “locally Lipschitz” to “upper semi-continuous”.

The main idea is to prove some result for locally Lipschitz proper cone structure
Ck > C and then get the result applying the limit curve theorem for Ck → C.
This is possible because

Theorem

Let (M,C) be a closed cone structure. Then the family of locally Lipschitz proper
cone structures C′ such that C < C′ is non-empty. Moreover, for every locally
Lipschitz proper structure C̃ > C we can find a countable subfamily of locally
Lipschitz proper cone structures {Ck} such that C < Ck+1 < Ck < C̃, C = ∩kCk.
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Peripheral properties and lightlike geodesics

Definition

A lightlike geodesic is a continuous causal curve which is locally J̊-arelated.

We do not define geodesics with a differential equation since the cone (metric in
the Lorentzian case) is just upper semi-continuous.

An example of result proved with the said strategy. Here the horisoms is
E+(p, U) = J+(p, U)\IntJ+(p, U).

Theorem

Let (M,C) be a closed cone structure. Every point in M has an arbitrarily small
coordinate neighborhood U with the following property. The relation J(U) is
closed and for every p ∈ U and q ∈ E+(p, U)\{p} there is a future lightlike
geodesic joining p and q entirely contained in E+(p, U) (and time dually).
Moreover, if (M,C) is locally Lipschitz every continuous causal curves connecting
p to q is a lightlike geodesic contained in E+(p, U).

Lightlike geodesics might branch, be non unique or might not extend as
inextendible lightlike geodesics. However, they have lightlike tangents wherever
they are differentiable.
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Stable causality

Theorem

Let (M,C) be a closed cone structure. The following properties are equivalent:

(i) Stable causality,

(ii) Existence of a smooth temporal function,

(iii) Existence of a time function,

(iv) K-causality.

Moreover, in this case JS = K = T1 = T2 where

T1 = {(p, q) : t(p) ≤ t(q) for every time function t},
T2 = {(p, q) : t(p) ≤ t(q) for every smooth temporal function t}.

Equivalence between (i) and (ii) was also obtained by Fathi and Siconolfi in the
C0 case and by Bernard and Suhr in the upper semi-continuous case. Our proof is
different, and shall explain some key steps later. Equivalence between (i),(iii) and
(iv) is new.
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Global hyperbolicity: definitions

Definition

A causal diamond is a set of the form J+(p)∩ J−(q) for p, q ∈M . The convex hull
of a set S is J+(S) ∩ J−(S).

The first definition is imported from mathematical relativity, while the second
definition is new (joint work with R. Hounnonkpe).

Definition

A closed cone structure (M,C) is globally hyperbolic if the following equivalent
conditions hold

(α) Non-imprisonment and the causal convex hull operation preserves
boundedness.

(β) Causality and the causal convex hull operation preserves compactness.
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Global hyperbolicity

Let h be a Riemannian metric. A function t is h-steep if for every v ∈ C,
dt(v) ≥ ‖v‖h.

Theorem

Let (M,C) be a closed cone structure and let h be a complete Riemannian metric.
Then the next conditions are equivalent:

(i) global hyperbolicity,

(ii) existence of a Cauchy time function,

(iii) existence of a smooth h-steep Cauchy temporal function,

(iv) existence of a (stable) Cauchy hypersurface.

Finally, under global hyperbolicity M is smoothly diffeomorphic to a product
R× S where the projection to R is a smooth h-steep Cauchy temporal function
(the fibers of the smooth projection to S are not necessarily causal), and every
stable Cauchy hypersurface is smoothly diffeomorphic to S.
Additionally, for a proper cone structure all Cauchy hypersurfaces are
diffeomorphic to S and the fibers of the smooth projection to S are smooth
timelike curves.

The equivalence between (i) and (iii) and the splitting was previously obtained by
Bernard and Suhr with a different proof.
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Causal ladder and transverse ladder

The causal ladder and the transverse ladder for closed cone structures. The arrows
crossing a property use it in the implication.
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Length of vectors (metricity)? It is causality on M × R.

Let (M,C) be a closed cone structure, and let F : C → [0,+∞) be a concave
positive homogeneous function. In general relativity it would be

F (v) =
√
−g(v, v).

Let us introduce the cone structure on M× = M × R defined at P = (p, r) by

C×P = {(y, z) : y ∈ Cp, |z| ≤ F (y)}.

It is indeed easy to check that this is a non-empty convex sharp cone. We say that
the cone structure (M×, C×) is a Lorentz-Finsler space (M,F ).

Main idea: no new theory just study causality on M × R.

Definition

(M,F ) is a closed (proper) Lorentz-Finsler space iff (M×, C×) is a closed (resp.
proper) cone structure. We say that (M,F ) is locally Lipschitz (or C0) if C× is
locally Lipschitz (resp. C0).

Causal geodesics are by definition just projections of C×-lightlike geodesics on
(M×, C×).
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Notable closed Lorentz-Finsler spaces

The next result proves that our approach to the regularity of Lorentz-Finsler
spaces is compatible with the natural definitions coming from Lorentzian geometry.

Theorem

For a time oriented Lorentzian manifold (M, g) the metric g is continuous (locally
Lipschitz) iff C× is continuous (resp. locally Lipschitz).

An interesting large class of closed Lorentz-Finsler spaces is selected by the next
theorem (that explains the terminology Lorentz-Finsler)

Theorem

Let C ⊂ TM\0 be a proper cone structure and let F : C → [0,+∞) be a positive
homogeneous C0 function, such that F−1(0) = ∂C. Suppose that L = −F2/2 is
C1(C) ∩ C2(IntC), that it has Lorentzian vertical Hessian d2

yL , and that
dyL 6= 0 on ∂C. Then F is concave, and (M,F ) is a locally Lipschitz proper
Lorentz-Finsler space (hence both C and C× are locally Lipschitz).

Regensburg - Online, November 12, 2021 Causality theory for closed cone structures . . . 55/69



Notable closed Lorentz-Finsler spaces

The next result proves that our approach to the regularity of Lorentz-Finsler
spaces is compatible with the natural definitions coming from Lorentzian geometry.

Theorem

For a time oriented Lorentzian manifold (M, g) the metric g is continuous (locally
Lipschitz) iff C× is continuous (resp. locally Lipschitz).

An interesting large class of closed Lorentz-Finsler spaces is selected by the next
theorem (that explains the terminology Lorentz-Finsler)

Theorem

Let C ⊂ TM\0 be a proper cone structure and let F : C → [0,+∞) be a positive
homogeneous C0 function, such that F−1(0) = ∂C. Suppose that L = −F2/2 is
C1(C) ∩ C2(IntC), that it has Lorentzian vertical Hessian d2

yL , and that
dyL 6= 0 on ∂C. Then F is concave, and (M,F ) is a locally Lipschitz proper
Lorentz-Finsler space (hence both C and C× are locally Lipschitz).

Regensburg - Online, November 12, 2021 Causality theory for closed cone structures . . . 55/69



Some consequences

Theorem

(Upper semi-continuity of the length functional)
Let (M,F ) and (M,Fn) be closed Lorentz-Finsler spaces. Let xn : [an, bn]→M ,
be continuous Cn-causal curves, parametrized with respect to h-arc length, which
converge uniformly on compact subsets to x : [a, b]→M , an → a, bn → b, where
for every n, Cn+1 ≤ Cn, Fn+1 ≤ Fn|Cn+1

, and C = ∩nCn, limn→∞Fn = F .
Then x is a continuous C-causal curve and

lim sup
n

`n(xn) ≤ `(x).

Theorem

(Generalization of the Avez-Seifert theorem)
Let (M,F ) be a globally hyperbolic closed Lorentz-Finsler space, then ` is
maximized, namely for every (p, q) ∈ J we can find a continuous causal curve
x : [0, 1]→M , p = x(0), q = x(1), such that `(x) = d(p, q).

Notice that it holds under upper semi-continuity of both C and F .
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Example of singularity theorem: Penrose’s theorem

Definition

A future trapped set is a non-empty set S such that E+(S) is compact.

The new key result, which allows us to improve the differentiability assumption on
the cone structure from ‘locally Lipschitz and proper’ to ‘upper semi-continuous’ is

Theorem (Stability of compact trapped sets)

Let (M,C) be a stably causal closed cone structure. Let S be a compact set such
that E+(S) is compact. Then there is a locally Lipschitz proper cone structure

C̃ > C such that for every locally Lipschitz proper cone structure C < Ĉ < C̃,
Ê+(S) is compact.

Theorem (Improved Penrose’s singularity theorem)

Let (M,C) be a globally hyperbolic closed cone structure admitting a non-compact
stable Cauchy hypersurface. Then there are no compact future trapped sets.
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Part IV: The distance formula for Lorentz-Finsler structures
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The distance formula: Connes’ program

We have already shown that the time functions represent topology and order. Can
they be used to represent distance?
Namely we want to investigate if an algebraic approach to spacetime geometry is
viable.

Case study: Gelfand’s approach to phase space in (quantum) mechanics

The classical phase space is the spectrum of the commutative algebra of
observables F , where an element of F is a continuous function f(q, p) on phase
space. Phase space is reconstructed from F identifying each point (p, q) with a
homomorphism through the evaluation map

h(p,q) : F → R(or C), f 7→ f(p, q)

So phase space is recovered from the homomorphisms.

Can a similar approach be followed for spacetime? Is spacetime a sort of spectrum
for some functional space?
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But spacetime has an order structure

In order to follow this program it is necessary to prove that the next ingredients
are recovered

topology,

causal order,

metric

The last item may be too ambitious (for instance I expect it to be difficult to
characterize functional spaces which lead to pseudo-Riemannian geometry instead
of pseudo-Finsler geometry). We replace it with

(Lorentzian) distance

This is basically Connes’ program for the unification of fundamental forces applied
to the spacetime manifold.
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The Riemannian version

Let (M, g) be a complete Riemannian manifold. The distance is defined by

d(p, q) = inf{L(γ) : γ path from p to q}

but it can also be written

Riemannian distance formula

d(p, q) = sup{|f(q)− f(p)| : f ∈ C1(M) such that |∇f | ≤ 1}.

This formula has an algebraic formulation in the context of Connes spectral triples
(points are replaced by states, functions by operators, |∇f | ≤ 1 by the condition
‖[D, f ]‖ ≤ 1 where D is the Dirac operator).

Observation

Connes did not investigate how to recover spacetime with its Lorentzian signature.
He worked in Riemannian geometry instead, and in subsequent work focused on
the interior space (Standard Model).
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F -Steep temporal function

Parfionov and Zapatrin (2000) introduced the concept of F -steep temporal
function.

Definition (F -Steep temporal function)

On the closed Lorentz-Finsler space (M,F ), a function t : M → R is F -steep
temporal if it is C1 and such that for every v ∈ C, dt(v) ≥ F (v).

Steep temporal functions are expected to encode both the causal and the metrical
information on the Lorentz-Finsler space.

They asked to generalize Connes’ (Riemannian) distance formula

d(p, q) = sup
f∈C1(M)

{|f(p)− f(q)| : |f ′| ≤ 1}

to the physical Lorentzian case. The generalization is non-trivial since spacetime
has order.
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Functional Representation

They proposed to prove Eq. (1) below, the Lorentzian generalizations being
fundamental for Connes’ noncommutative program on the unification of forces
(see Connes 1985 book). There were partial answers from Moretti (2003), Franco
(2010), Rennie and Whale (2016), who however could not prove that the
representing function could be taken C1 as proposed by Parfionov and Zapatrin.

Theorem

Let (M,F ) be a globally hyperbolic closed Lorentz-Finsler space and let S be the
family of smooth Cauchy F -steep temporal functions. The family S is non-empty
and it represents

(a) the causal order J, namely (p, q) ∈ J ⇔ f(p) ≤ f(q), ∀f ∈ S ;

(b) the manifold topology, namely for every open set O 3 p we can find f, h ∈ S
in such a way that p ∈ {q : f(q) > 0} ∩ {q : h(q) < 0} ⊂ O;

(c) the distance, in the sense that the distance formula holds true: for every
p, q ∈M , with a+ = max{a, 0},

d(p, q) = inf
{

[f(q)− f(p)]+ : f ∈ S
}
. (1)

We have also versions for causally continuous and stably causal spacetimes.
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Lorentz-Finsler translated into causal structure

(M,F ) is equivalent to a cone structure in M× = M × R

C↓
(x,y)

= {(v, z) ∈ TxM × R : z ≤ F (v)}.

A closed Lorentz-Finsler space is one for which this cone structure is closed (which
is equivalent to x 7→ Cx and x 7→ Fx upper semi-continuous).
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The stable distance

In stably causal spacetimes let D : M ×M → [0,+∞] be a function called stable
distance: for p, q ∈M

D(p, q) = infF ′>F d
′(p, q),

It is upper semi-continuous and satisfies the reverse triangle inequality: (p, q) ∈ JS
and (q, r) ∈ JS implies

D(p, q) +D(q, r) ≤ D(p, r).

We have D = d under global hyperbolicity.
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Stable spacetime

Definition

A closed Lorentz-Finsler space (M,F ) is stable if it is stably causal and D < +∞.

D < +∞ means that d remains finite under small perturbations of the indicatrix.

Theorem

Let (M,F ) be a closed Lorentz-Finsler space and let S be the family of smooth
F -steep time functions. The Lorentz-Finsler space (M,F ) is stable if and only if
S is non-empty. In this case S represents

(a) the order JS , namely (p, q) ∈ JS ⇔ f(p) ≤ f(q), ∀f ∈ S ;

(b) the manifold topology, namely for every open set O 3 p we can find f, h ∈ S
in such a way that p ∈ {q : f(q) > 0} ∩ {q : h(q) < 0} ⊂ O;

(c) the stable distance, in the sense that the distance formula holds true: for
every p, q ∈M

D(p, q) = inf
{

[f(q)− f(p)]+ : f ∈ S
}
.

Regensburg - Online, November 12, 2021 Causality theory for closed cone structures . . . 66/69



Spectral triple formulation

We can now mathematically justify a derivation by Eckstein and Franco (2012)
thus arriving at (see also my joint work with Canarutto)

Theorem

If (M, g) is a n-dimensional spin Lorentzian manifold which is stably causal such
that the Lorentzian distance d is continuous and finite, and if we define:

The algebra A = C1(M,R) with pointwise multiplication,

The Hilbert space H = L2(M,S) of square integrable sections of the spinor
bundle S over M (using a positive definite inner product on the spinor
bundle),

The Dirac operator D = −ieµaγa∇Sµ associated with the spin connection ∇S ,

The fundamental symmetry J = iγ0 where γ0 is the first flat gamma matrix,

The chirality operator χ = ±i
n
2
+1γ0 · · · γn−1,

then for all p, q ∈M , if n is even:

d(p, q) = inff∈A
{

[f(q)− f(p)]+ : ∀ϕ ∈ H, 〈ϕ, J([D, f ] + iχ)ϕ〉 ≤ 0
}
.
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Embeddings

The existence of a steep time function allows one to import Nash embedding
theorem to the Lorentzian framework

Theorem (Müller and Sanchez 2011)

Let (M, g) be a C3 Lorentzian manifold. The next assertion are equivalent

(i) (M, g) admits and isometric embedding in Minkowski spacetime.

(ii) (M, g) is admits a steep time function.

The problem is moved to that of proving the existence of steep time function. So
by our existence theorem we get

Theorem

A C3 Lorentzian spacetime is stable iff it is isometrically embeddable in
Minkowski spacetime.
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Conclusions

We showed that the theory of topological ordered spaces provides a natural
framework for studying rough spacetime geometry while giving meaning to
causality. This approach suggests that closed relations are more useful, at the
fundamental level, than open relations.

We developed causality theory for non-round cone structure showing that
most results are preserved under upper semi-continuity of the cone
distribution.

We showed the usefulness of non-round cone structures for the proof of the
existence of steep temporal functions and hence for the proof of the
Lorentzian generalization of Connes’ distance formula.

Thank you for the attention.
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