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Preliminaries

A new idea for constructing local nets for interacting theories has
been proposed in: Buchholz, D. and Fredenhagen, K., A
C∗-algebraic approach to interacting quantum field theories,
CMP 2020.

Main idea: theory described by an abstract C∗-algebra
generated by a collection of unitaries, with a number of relations.
These unitaries are interpreted as local S-matrices and are
labelled by local functionals.
Let M be a globally hyperbolic spacetime, E → M a vector
bundle and E .

= Γ(M,E), its space of smooth sections.
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Functionals and Lagrangians

The space of local functionals Floc is a subspace of the space of
smooth compactly supported functionals on E consisting of those

that can be written as F (φ) =

∫
M

α(jkx (φ))dµ(x), where α is a

compactly-supported function on the jet bundle.

Here by the support of a functional F we mean:

supp F = {x ∈ M|∀ neighbourhoods U of x ∃ϕ1, ϕ2 ∈ E , supp ϕ2 ⊂ U
such that F (ϕ1 + ϕ2) 6= F (ϕ1)}

A generalized Lagrangian is a map
C∞0 (M) ≡ D 3 f 7→ L(f ) ∈ Floc with supp L(f ) ⊂ supp f and with
L(f + g + f ′) = L(f + g)− L(g) + L(g + f ′) if supp f ∩ supp f ′ = ∅.
We restrict ourselves to generalized Lagrangians that lead to
Green hyperbolic equations of motion.
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Classical Dynamics
Let L be a Lagrangian, ϕ ∈ E . Define δL : D × E → R by

δL(ψ)[ϕ]
.

= L(f )[ϕ+ ψ]− L(f )[ϕ] ,

where ϕ ∈ E , ψ ∈ Ec (compactly supported configuration) and
f ≡ 1 on suppψ (the map δL(ψ)[ϕ] thus defined does not depend
on the particular choice of f ).

The above definition can be turned into a difference quotient and
we can use it to introduce the Euler-Lagrange derivative of L.
The Euler-Lagrange derivative of L is a 1-form on E defined by

〈dL(ϕ), ψ〉 .= lim
t→0

1
t δL(tψ)[ϕ] =

∫
δL(f )

δϕ(x)
ψ(x) , with ψ ∈ Ec and

f ≡ 1 on suppψ.
The field equation is now the following condition on ϕ:

dL(ϕ) ≡ 0 .

We restrict ourselves to generalized Lagrangians that lead to
Green hyperbolic equations of motion (have unique retarded and
advenced Green functions).
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Local S-matrices

Let F1,F2 be local functionals and let F1 ≺ F2 denote the relation:
supp F1 is not to the future of supp F2 (i.e. supp F1 does not intersect
J+(supp F2)). Local S-matrices are unitaries S(F ), where F ∈ Floc,
required to satisfy the following relations:

S1 Identity preserving: S(0) = 1.

S2 Locality: S satisfies the Hammerstein property, i.e. F1 ≺ F2
implies that

S(F1 + F + F2) = S(F1 + F )S(F )−1S(F + F2) ,

where F1,F ,F2 ∈ Floc.
S3 Schwinger-Dyson equation For a fixed Lagrangian L,
S(F )S(δL(ϕ)) = S(Fϕ + δL(ϕ)) = S(δL(ϕ))S(F ), where
Fϕ(ψ)

.
= F (ϕ+ ψ), ϕ,ψ ∈ E .

The C∗-algebra generated by above generators and relations is
denoted by AL.
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Fermionic functionals

A fermionic functional on a real vector space V is a linear form
on the Grassmann algebra ΛV over V .

Equivalently it is a sequence F = (Fn)n∈N0 of alternating n-linear
forms on V with

F (v1 ∧ · · · ∧ vn) = Fn(v1, . . . , vn) , F (1ΛV ) = F0 ∈ R .

The pointwise product of fermionic functionals is defined by

(F ·G)n(v1, . . . , vn)

=
∑
σ∈Sn

sign(σ)
n∑

k=0

1
k!(n−k)! Fk (vσ(1), . . . , vσ(k))Gn−k (vσ(k+1), . . . , vσ(n)) .

By derivative of a fermionic functional we always mean left
derivative.
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Towards the algebra of observables

We want to construct the algebra of observables, extended also
to fermionic operators.

But the relations characterizing this algebra A contain auxiliary
Grassmann parameters whose only purpose is to allow the use
of combinatorial formulas known from the bosonic case.
We thus obtain in a first step subalgebras AG of tensor products
G ⊗ A of Grassmann algebras G with A that are generated by
even elements and the Grassmann algebra itself (understood as
G ⊗ 1A).
The aim is to reconstruct the algebra A from that family of
subalgebras. To this end we equip this family of subalgebras with
the following structure.
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Category theory formulation

Let Grass be the category of finite dimensional real Grassmann
algebras, with homomorphisms as arrows.

Let AlgZ2 be the category of Z2-graded unital associative
algebras, with unital homomorphisms respecting the Z2
graduation as arrows.
Let now R : Grass→ AlgZ2 be the inclusion functor.
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Covariant Grassmann multiplication algebra I

Definition

A covariant Grassmann multiplication algebra is a pair (G, ι)
consisting of a functor G : Grass→ AlgZ2 and a natural embedding
ι : R ⇒ G i.e. a family (ιG)G of injective homomorphisms
ιG : G→ GG with

ιG′ ◦ χ = Gχ ◦ ιG , for homomorphisms χ : G→ G′ .

Kasia Rejzner C∗ -algebraic Fermions 9 / 31
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Covariant Grassmann multiplication algebra I

Definition (continued)

We require the following properties of (G, ι): We require the following
properties of (G, ι):

1 ιG(G) is graded central in GG, in the sense that
ιG(η) a = (−1)dg(η)dg(a) a ιG(η) , η ∈ G, a ∈ GG, where
dg(·) ∈ {0,1} denotes the degree.

2 Let λi ∈ R and χi : G→ G′, i = 1, . . . ,n be homomorphisms

between Grassmann algebras with
n∑

i=1

λiχi = 0. Then:

n∑
i=1

λi Gχi = 0

.

Kasia Rejzner C∗ -algebraic Fermions 10 / 31
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Example

Consider the functor GA with a graded unital algebra A which
maps each Grassmann algebras G to the tensor product
GAG = G ⊗ A with the product

(η1 ⊗ a1) · (η2 ⊗ a2)
.

= (−1)dg(η2)dg(a1) (η1η2)⊗ (a1a2) ,

where η1, η2 ∈ G, a1,a2 ∈ A.

The morphisms χ : G→ G′ are mapped to morphisms
GAχ : G ⊗ A→ G′ ⊗ A by means of

GAχ(η ⊗ a) = χ(η)⊗ a , η ∈ G , a ∈ A .

The natural transformation ι is given by ιG(η) = η ⊗ 1A , η ∈ G.
In the following we simplify the notation by identifying ιG(η) with η
for η ∈ G and 1G ⊗ a with a for a ∈ A, and similarly we write ηa
for η ⊗ a ∈ G ⊗ A.

Kasia Rejzner C∗ -algebraic Fermions 11 / 31
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where η1, η2 ∈ G, a1,a2 ∈ A.
The morphisms χ : G→ G′ are mapped to morphisms
GAχ : G ⊗ A→ G′ ⊗ A by means of

GAχ(η ⊗ a) = χ(η)⊗ a , η ∈ G , a ∈ A .

The natural transformation ι is given by ιG(η) = η ⊗ 1A , η ∈ G.
In the following we simplify the notation by identifying ιG(η) with η
for η ∈ G and 1G ⊗ a with a for a ∈ A, and similarly we write ηa
for η ⊗ a ∈ G ⊗ A.
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Bosonic theory
Fermionic theory

Application to fermionic functionals I
Let V be a real vector space and consider ΛV and its dual, the
algebra of fermionic functionals on V . Let Floc be its subspace of
local functionals.

A fermionic functional induces, for any G, a G-module
homomorphism FG from G ⊗ ΛV to G by

FG(ωη) = F (ω)η = ηF (ω) , ω ∈ ΛV , η ∈ G ,

We identify ηF with the map ω 7→ ηF (ω). The ∧-symbol for the
product in ΛV is usually omitted.
The family (FG)G is a natural transformation F : GΛV =⇒ GR, i.e.:

GRχ ◦ FG = FG′ ◦GΛVχ .
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Bosonic theory
Fermionic theory

Application to fermionic functionals II

F is already fixed if we know the maps FG on all elements of the
form exp

∑
i∈I

viηi with odd elements ηi ∈ G, vi ∈ Λ1(V ) = V and a

finite index set I ∈ Pfinite(N), where FG(1G) = F01G.

In particular we can define shifts in the arguments as needed for
the unitary Dyson-Schwinger equation.

A shifted functional F ~w , with ~w =
∑
j∈J

~w jθj with odd elements θj of

some Grassmann algebra G′ and ~w j ∈ V , J ∈ Pfinite(N), is
defined as a family (F ~w

G )G of G-module maps from G ⊗ ΛV to
G ⊗G′.
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Bosonic theory
Fermionic theory

Application to fermionic functionals III

Explicitly:

F ~w
G
(
exp

∑
i∈I

viηi
)

= FG⊗G′
(
exp (

∑
i∈I

viηi +
∑
j∈J

~w jθj )
)

=
∑
n≥0

∑
i1<...<in

F ~w
n (vi1 , . . . , vin )ηin · · · ηi1 ,

with alternating multilinear G′-valued maps F ~w
n as components.

F ~w
n (v1, . . . , vn) =

∑
k≥0

∑
j1<...<jk∈J

Fk+n(v1, . . . , vn, ~w j1 , . . . , ~w jk ) θjk · · · θj1 .
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Bosonic theory
Fermionic theory

Universality

Reconstruction Theorem
Let G be a covariant Grassmann multiplication algebra as defined
above. Then there exists a graded unital algebra A and a natural
embedding

σ ≡ (σG)G : G =⇒ GA

such that for any other graded unital algebra A′ with a natural
embedding σ′ : G =⇒ GA′ there exists a unique homomorphism
τ : A→ A′ with σ′G = (id⊗ τ) ◦ σG.
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Bosonic theory
Fermionic theory

The algebra of Fermi fields

We choose now V = Γ(M,E) where M is a globally hyperbolic
spacetime and denote by Vc its subspace of compactly
supported sections.

V is interpreted as the space of field configurations.
We construct a covariant Grassmann multiplication algebra
G : Grass→ AlgZ2 , by specifying the algebras AG ≡ GG. These
are generated by invertible elements SG(F ) with F ∈ G ⊗Floc
with the following properties and relations.
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Bosonic theory
Fermionic theory

The algebra of Fermi fields (properties and
relations)

(Parity) SG(F ) is even for even F .

(Naturality) If χ : G→ G′ is a homomorphism of Grassmann
algebras then

SG′ ◦GFlocχ = Gχ ◦ SG .

(Quantization condition) SG(η) = ιG(eiη) for η ∈ G.
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Bosonic theory
Fermionic theory

The algebra of Fermi fields (properties and
relations, continued)

(Causal factorization)

SG(F1 + F2 + F3) = SG(F1 + F2)SG(F2)−1SG(F2 + F3)

for even functionals F1,F2,F3 with supp F1 ∩ J−(supp F3) = ∅
where J− denotes the past of the region in the argument.

(Dynamics) Let ~h =
∑
i∈I

ηi
~hi with odd elements ηi ∈ G, ~hi ∈ Vc

and I ∈ Pfinite(N).Then

SG(F ) = SG(F~h + δ~hL)

where
δ~hL = L(f )

~h − 1G ⊗ L(f )

with f ≡ 1 on supp~h and 1G denotes the unit of G.
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Bosonic theory
Fermionic theory

Comments and further structure

Note that the Quantization condition implies SG(0) = 1AG .

Setting F = 0 in the relation Dynamics, we obtain

SG(δ~hL) = 1AG ,

which is characteristic for the on-shell algebra.
Using the above relations one can, in particular, derive the CAR
relations for the free Dirac field.
As in the general case, we define A as the inductive limit of this
system with injections ιn : An → A, where An ⊂ AΛRn are defined
in the course of the proof of the Reconstruction Theorem.
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Bosonic theory
Fermionic theory

Involution
To define involution, we set v∗ = v on the real vector space V
and for linear maps on ΛV , we set:

A∗(ω) = (−1)dg(A)dg(ω)A(ω∗)∗ , ω ∈ ΛV

For the tensor product G ⊗ A of a Grassmann algebra G with a
graded *-algebra A we set

(η ⊗ a)∗ = (−1)dg(η)dg(a)η∗ ⊗ a∗ , η ∈ G , a ∈ A .

For a covariant Grassmann multiplication algebra G we require
that the algebras GG are *-algebras and the embeddings
ιG : G→ GG are *-homomorphisms.
The algebras AG = GG defined by the axioms above gets
equipped with a *-operation by SG(F )∗ = SG(F ∗)−1.
The subspaces An ⊂ AΛRn are invariant under the *-operation.
The (universal) involution on the inductive limit of these spaces,
denoted by A is induced by

ιn(a)∗
.

= (−1)n(n−1)/2+n(dg(a)+n)ιn(a∗) . (1)
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Bosonic theory
Fermionic theory

Dirac field I
We specialize now to the Dirac field on Minkowski spacetime

The space of field configurations h ∈ V is the space of smooth
sections of the spinor bundle, equipped with a nondegenerate
Lorentz invariant sesquilinear form (u, v) 7→ uv on each fiber.
We choose V = C∞(M,C4) with the Spin(2) ≡ SL(2,C) action
on C4 by the matrix representation

SL(2,C) 3 A 7→
(

A 0
0 (A∗)−1

)
which corresponds to the choice of γ-matrices:

γ0 =

(
0 1
1 0

)
, γi =

(
0 σi
−σi 0

)
, i = 1,2,3

The sesquilinear form is obtained from the standard scalar
product (·, ·) on C4 by

uv = (u, γ0v)

The γ-matrices are then hermitian with respect to the
sesquilinear form.
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SL(2,C) 3 A 7→
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Bosonic theory
Fermionic theory

Dirac field I

For compactly supported sections we define

〈h1,h2〉 =

∫
dx h1(x)h2(x) .

The classical Dirac field ψ is the evaluation functional
ψ(x) : V → C4, ψ(x)[h]

.
= h(x).

The conjugate field ψ maps the configuration into the dual space
ψ(x) : V → (C4)∗, ψ(x)[h1](v)

.
= h1(x)v.

Smeared fields are defined as usual, that is, ψ(s)[h]
.

= 〈s,h〉,
where s ∈ Vc and ψ(s)[h]

.
= 〈h, s〉.

The Dirac Lagrangian L = ψ ∧ /Dψ with the Dirac operator
/D = iγ∂ −m associates to any compactly supported test function
f a 2-form L(f ) on V , namely

L(f )[h1,h2] = 〈fh1, /D(fh2)〉 − 〈fh2, /D(fh1)〉 .
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Bosonic theory
Fermionic theory

Multiplication algebra for the Dirac field

We extend the above introduced functionals to G-valued
functionals.

For η ∈ G, s,h ∈ Vc , we have:

ψ(s)G[hη] = ψ(s)[h]η = 〈s,h〉η

and
ψ(s)G[hη] = ψ(s)[h]η = 〈h, s〉η

We extend the sesquilinear form 〈·, ·〉 to a G ⊗ C-valued map
〈·, ·〉G on (G ⊗ Vc)× (G ⊗ Vc) by

〈ηh,h′η′〉G = η〈h,h′〉η′

for h,h′ ∈ Vc and η, η′ ∈ G.
We also extend the fields ψ and ψ to test sections ηisi ∈ G ⊗ Vc
by ψG(ηs)[hη′] = ηψ(s)[h]η′ = 〈ηs,hη′〉G and similarly for ψG.
In particular we have: ψG(ηs) = ηψG(s), ψG(ηs) = ηψG(s).

Kasia Rejzner C∗ -algebraic Fermions 23 / 31



Bosonic theory
Fermionic theory

Multiplication algebra for the Dirac field

We extend the above introduced functionals to G-valued
functionals.
For η ∈ G, s,h ∈ Vc , we have:

ψ(s)G[hη] = ψ(s)[h]η = 〈s,h〉η

and
ψ(s)G[hη] = ψ(s)[h]η = 〈h, s〉η

We extend the sesquilinear form 〈·, ·〉 to a G ⊗ C-valued map
〈·, ·〉G on (G ⊗ Vc)× (G ⊗ Vc) by

〈ηh,h′η′〉G = η〈h,h′〉η′

for h,h′ ∈ Vc and η, η′ ∈ G.
We also extend the fields ψ and ψ to test sections ηisi ∈ G ⊗ Vc
by ψG(ηs)[hη′] = ηψ(s)[h]η′ = 〈ηs,hη′〉G and similarly for ψG.
In particular we have: ψG(ηs) = ηψG(s), ψG(ηs) = ηψG(s).

Kasia Rejzner C∗ -algebraic Fermions 23 / 31



Bosonic theory
Fermionic theory

Multiplication algebra for the Dirac field

We extend the above introduced functionals to G-valued
functionals.
For η ∈ G, s,h ∈ Vc , we have:

ψ(s)G[hη] = ψ(s)[h]η = 〈s,h〉η

and
ψ(s)G[hη] = ψ(s)[h]η = 〈h, s〉η

We extend the sesquilinear form 〈·, ·〉 to a G ⊗ C-valued map
〈·, ·〉G on (G ⊗ Vc)× (G ⊗ Vc) by

〈ηh,h′η′〉G = η〈h,h′〉η′

for h,h′ ∈ Vc and η, η′ ∈ G.

We also extend the fields ψ and ψ to test sections ηisi ∈ G ⊗ Vc
by ψG(ηs)[hη′] = ηψ(s)[h]η′ = 〈ηs,hη′〉G and similarly for ψG.
In particular we have: ψG(ηs) = ηψG(s), ψG(ηs) = ηψG(s).

Kasia Rejzner C∗ -algebraic Fermions 23 / 31



Bosonic theory
Fermionic theory

Multiplication algebra for the Dirac field

We extend the above introduced functionals to G-valued
functionals.
For η ∈ G, s,h ∈ Vc , we have:

ψ(s)G[hη] = ψ(s)[h]η = 〈s,h〉η

and
ψ(s)G[hη] = ψ(s)[h]η = 〈h, s〉η

We extend the sesquilinear form 〈·, ·〉 to a G ⊗ C-valued map
〈·, ·〉G on (G ⊗ Vc)× (G ⊗ Vc) by

〈ηh,h′η′〉G = η〈h,h′〉η′

for h,h′ ∈ Vc and η, η′ ∈ G.
We also extend the fields ψ and ψ to test sections ηisi ∈ G ⊗ Vc
by ψG(ηs)[hη′] = ηψ(s)[h]η′ = 〈ηs,hη′〉G and similarly for ψG.

In particular we have: ψG(ηs) = ηψG(s), ψG(ηs) = ηψG(s).

Kasia Rejzner C∗ -algebraic Fermions 23 / 31



Bosonic theory
Fermionic theory

Multiplication algebra for the Dirac field

We extend the above introduced functionals to G-valued
functionals.
For η ∈ G, s,h ∈ Vc , we have:

ψ(s)G[hη] = ψ(s)[h]η = 〈s,h〉η

and
ψ(s)G[hη] = ψ(s)[h]η = 〈h, s〉η

We extend the sesquilinear form 〈·, ·〉 to a G ⊗ C-valued map
〈·, ·〉G on (G ⊗ Vc)× (G ⊗ Vc) by

〈ηh,h′η′〉G = η〈h,h′〉η′

for h,h′ ∈ Vc and η, η′ ∈ G.
We also extend the fields ψ and ψ to test sections ηisi ∈ G ⊗ Vc
by ψG(ηs)[hη′] = ηψ(s)[h]η′ = 〈ηs,hη′〉G and similarly for ψG.
In particular we have: ψG(ηs) = ηψG(s), ψG(ηs) = ηψG(s).

Kasia Rejzner C∗ -algebraic Fermions 23 / 31



Bosonic theory
Fermionic theory

Variation of the Lagrangian

The extended Lagrangian L(f )G is a quadratic form on even
elements of G ⊗ Vc .

Let h =
∑

hiηi with hi ∈ V and odd elements ηi ∈ G. Then

L(f )G[eh] =
1
2

L(f )G[hh] =
1
2

∑
L(f )[hi ∧ hj ]ηjηi = 〈fh, /Dfh〉G .

The variation under a shift ~h =
∑

i∈I
~hiθi , with odd elements

θi ∈ G, ~hi ∈ Vc is:

δ~hLG[eh] = δ~hLG[1 + h] = 〈~h, /Dh〉G + 〈h, /D~h〉G + 〈~h, /D~h〉G .

This can be re-written as: δ~hLG = ψG( /D~h)− ψG( /D~h) + 〈~h, /D~h〉G.

Let s ∈ (G ⊗ Vc)even and let DG(s)
.

= ψG(s)− ψG(s) be the
smeared classical “doubled Dirac field” viewed as an element in
(G ⊗Floc)even.
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Bosonic theory
Fermionic theory

Quantum Dirac field I

Proposition

Let s =
n∑

i=1

ηisi with si ∈ Vc and ηi odd elements of G. The S-matrix

SG built with the doubled Dirac field has the expansion

SG
(
DG(s)

)
= 1A +

n∑
k=1

ik

k !

∑
i1<···<ik

ηik . . . ηi1Bk (si1 ∧ · · · ∧ sik ) (2)

with R-multilinear alternating maps Bk : V k
c → A, k = 1, . . . ,n, (the

time ordered products of the doubled Dirac field).
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Bosonic theory
Fermionic theory

Quantum Dirac field II

Next, use f = ηs as the smearing object for D, with s ∈ Vc and η
a generator of G.

The above Proposition implies SG(DG(ηs))∗ = 1− iB1(s)∗η and

SG(DG(ηs)∗)−1 = SG(DG(−ηs))−1 = (1−iηB1(s))−1 = 1+iηB1(s)

Since B1(s) anticommutes with η, it is selfadjoint.
We decompose it in its complex linear and antilinear parts:

B1(s) = Ψ(s)∗ + Ψ(s) , Ψ(s) ∈ A .

We interpret Ψ as the quantized Dirac field
It is an A-valued antilinear functional on Vc .
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Bosonic theory
Fermionic theory

CAR

Theorem
The quantized Dirac field Ψ satisfies the canonical anticommutation
rules over Vc :

{Ψ(s1)∗,Ψ(s2)∗} = {Ψ(s1),Ψ(s2)} = 0 , {Ψ(s1),Ψ(s2)∗} = 〈s2, i /Ss1〉1A ,

where
/S = (iγ∂ + m)∆

with ∆ the commutator function of the scalar theory.
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Bosonic theory
Fermionic theory

C∗-structure (even functionals)

The axioms define a graded unital *-algebra A = A0 ⊕ A1. We
now want to equip it with a C*-norm.

We start with S-matrices S(F ) with even fermionic functionals F
without auxiliary Grassmann variables.
There we can proceed as in the case of a bosonic field.
We look at the group generated by these elements modulo the
relations Causality and the Quantization condition S(c) = eic1 for
constant functionals c and define a state on the group algebra by

ω(U) = 0 for U 6∈ {eic1|c ∈ R} . (3)

The operator norm in the induced GNS representation is a
C*-norm. We then equip the algebra with the maximal C*-norm.
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ω(U) = 0 for U 6∈ {eic1|c ∈ R} . (3)

The operator norm in the induced GNS representation is a
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Bosonic theory
Fermionic theory

C∗-structure (extension) I

We now want to extend this C*-norm.

We cannot expect that it can be extended to the full algebra,
since the presence of the Grassmann variables induces an
expansion of the S-matrices into polynomials of Grassmann
variables whose coefficients cannot be expected to be bounded,
in general.
Instead we use the anticommutation relations which imply that
for ||f ||Vc = 1, with the seminorm

||f ||2Vc
= 〈f , i /Sf 〉 ,

Ψ(f )∗Ψ(f ) is a selfadjoint projection.
Hence for every non-zero C*-seminorm

||Ψ(f )|| = ||f ||Vc
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Bosonic theory
Fermionic theory

C∗-structure (extension) II

We have shown that Ψ(f ) = 0 if ||f ||Vc = 0.

We conclude that the *-algebra generated by Ψ(f ), f ∈ Vc is the
algebra of canonical anticommutation relations.
We consider the sub-*-algebra B of A, generated by the
S-matrices S(F ) with even F as above and the Dirac fields Ψ(f ).

Theorem
The maximal C*-seminorm on B exists and is a C*-norm.
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Thank you very much for your attention!
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