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Bosonic theory

Preliminaries

@ A new idea for constructing local nets for interacting theories has
been proposed in: Buchholz, D. and Fredenhagen, K., A
C*-algebraic approach to interacting quantum field theories,
CMP 2020.
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Bosonic theory

Preliminaries

@ A new idea for constructing local nets for interacting theories has
been proposed in: Buchholz, D. and Fredenhagen, K., A
C*-algebraic approach to interacting quantum field theories,
CMP 2020.

@ Main idea: theory described by an abstract C*-algebra
generated by a collection of unitaries, with a number of relations.

@ These unitaries are interpreted as local S-matrices and are
labelled by local functionals.

@ Let M be a globally hyperbolic spacetime, E — M a vector
bundle and £ = I'(M, E), its space of smooth sections.
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Bosonic theory

Functionals and Lagrangians

@ The space of local functionals 7. is a subspace of the space of
smooth compactly supported functionals on £ consisting of those

that can be written as F(¢) = /a(j)’(‘(qﬁ))du(x), where « is a

M
compactly-supported function on the jet bundle.
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smooth compactly supported functionals on £ consisting of those

that can be written as F(¢) = /a(j)’(‘(qﬁ))du(x), where « is a

M
compactly-supported function on the jet bundle.
@ Here by the support of a functional F we mean:

supp F = {x € M|V neighbourhoods U of x 31, s € &, supp w2 C U
such that F(p1 + 02) # F(p1)}

@ A generalized Lagrangian is a map
Co°(M) =D > f L(f) € Froe With supp L(f) C supp f and with
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Bosonic theory

Functionals and Lagrangians

@ The space of local functionals 7. is a subspace of the space of
smooth compactly supported functionals on £ consisting of those

that can be written as F(¢) = /a(j)’(‘(qﬁ))du(x), where « is a

M
compactly-supported function on the jet bundle.
@ Here by the support of a functional F we mean:

supp F = {x € M|V neighbourhoods U of x 31, s € &, supp w2 C U
such that F(p1 + 02) # F(p1)}

@ A generalized Lagrangian is a map
Co°(M) =D > f— L(f) € Fioc With supp L(f) C supp f and with
L(f+9+f)=L(f+9)—L(g)+ L(g+ ) ifsuppfNsuppf = 2.
@ We restrict ourselves to generalized Lagrangians that lead to
Green hyperbolic equations of motion.
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Bosonic theory

Classical Dynamics

@ Let L be a Lagrangian, ¢ € £. Define 6L: D x £ — R by
SL(¥)[el = L(Nlp +¢] = L(Hlgl

where p € &, ¢ € & (compactly supported configuration) and
f =1 onsuppe (the map dL(¢)[¢] thus defined does not depend
on the particular choice of f).
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SL(Y)[e] = L()lp + ¥] — L(f)¢]
where p € &, ¢ € & (compactly supported configuration) and
f =1 onsuppe (the map dL(¢)[¢] thus defined does not depend
on the particular choice of f).
@ The above definition can be turned into a difference quotient and
we can use it to introduce the Euler-Lagrange derivative of L.
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f =1 onsuppe (the map dL(¢)[¢] thus defined does not depend
on the particular choice of f).

@ The above definition can be turned into a difference quotient and
we can use it to introduce the Euler-Lagrange derivative of L.

@ The Euler-Lagrange derivative of L is a 1-form on £ defined by

L SL(f |
(ALp). ) = fim $oL(t0)) = [ 50 (x), with v < € and
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Classical Dynamics

@ Let L be a Lagrangian, ¢ € £. Define 6L: D x £ — R by
SL(¥)[el = L(Nlp +¢] = L(Hlgl

where p € &, ¢ € & (compactly supported configuration) and
f =1 onsuppe (the map dL(¢)[¢] thus defined does not depend
on the particular choice of f).

@ The above definition can be turned into a difference quotient and
we can use it to introduce the Euler-Lagrange derivative of L.

@ The Euler-Lagrange derivative of L is a 1-form on £ defined by

s SL(f) .
- 1 —
(dL(p),v) = tlll;% F0L(t))[¢] 5o(X) (x), with ¢ € &; and
f=1onsupp.
@ The field equation is now the following condition on ¢:

dL(¢)=0.
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Bosonic theory

Classical Dynamics

@ Let L be a Lagrangian, ¢ € £. Define 6L: D x £ — R by
SL(¥)[el = L(Nlp +¢] = L(Hlgl

where p € &, ¢ € & (compactly supported configuration) and
f =1 onsuppe (the map dL(¢)[¢] thus defined does not depend
on the particular choice of f).

@ The above definition can be turned into a difference quotient and
we can use it to introduce the Euler-Lagrange derivative of L.

@ The Euler-Lagrange derivative of L is a 1-form on £ defined by

(dL(p), ) = lim 1sL(ty)[y] = / SL() ) , with ¢ € & and
f=1on suppq/z
@ The field equation is now the following condition on ¢:
dL() =

@ We restrict ourselves to generalized Lagrangians that lead to
Green hyperbolic equations of motion (have unique retarded and
advenced Green functions).
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Bosonic theory

Local S-matrices

Let F;, F> be local functionals and let F; < F» denote the relation:
supp F7 is not to the future of supp F2 (i.e. supp F; does not intersect
J (supp F2)). Local S-matrices are unitaries S(F), where F € Fi,
required to satisfy the following relations:

Q@ Identity preserving: S(0) = 1.
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Local S-matrices

Let F;, F> be local functionals and let F; < F» denote the relation:
supp F7 is not to the future of supp F2 (i.e. supp F; does not intersect
J (supp F2)). Local S-matrices are unitaries S(F), where F € Fi,
required to satisfy the following relations:

Q@ Identity preserving: S(0) = 1.

@ Locality: S satisfies the Hammerstein property, i.e. F; < F>
implies that

S(Fi + F + F2) = S(Fi + F)S(F)'S(F + F)

where Fi, F, Fo € Fioe.

© Schwinger-Dyson equation For a fixed Lagrangian L,
S(F)S(6L(v)) = S(F? + 6L(p)) = S(0L(¢))S(F), where
F?(¥) = Fle+ ), o, € E.
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Bosonic theory

Local S-matrices

Let F;, F> be local functionals and let F; < F» denote the relation:
supp F7 is not to the future of supp F2 (i.e. supp F; does not intersect
J (supp F2)). Local S-matrices are unitaries S(F), where F € Fi,
required to satisfy the following relations:

Q@ Identity preserving: S(0) = 1.

@ Locality: S satisfies the Hammerstein property, i.e. F; < F>
implies that

S(Fi + F + F2) = S(Fi + F)S(F)'S(F + F)

where Fi, F, Fo € Fioe.

© Schwinger-Dyson equation For a fixed Lagrangian L,
S(F)S(6L(v)) = S(F? + 6L(p)) = S(0L(¢))S(F), where
F?()) = Flp + 1), o, 0 € £.

The C*-algebra generated by above generators and relations is

denoted by ;.
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Fermionic theory

Fermionic functionals

@ A fermionic functional on a real vector space V is a linear form
on the Grassmann algebra AV over V.
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Fermionic functionals

@ A fermionic functional on a real vector space V is a linear form
on the Grassmann algebra AV over V.

@ Equivalently it is a sequence F = (Fy)nen, Of alternating n-linear
forms on V with

F(V1/\.../\Vn):Fn(V17...,Vn), F(1AV):FO€R

@ The pointwise product of fermionic functionals is defined by

(F-G)n(vi,...,vn)

n

= Z sign(o) Z WFk(VU(n, e 7Vo(k))Gn—k(Va(k+1)a cee ,Va(n))-
oeS, k=0

Kasia Rejzner C™ -algebraic Fermions 6/31



Fermionic theory

Fermionic functionals

@ A fermionic functional on a real vector space V is a linear form
on the Grassmann algebra AV over V.

@ Equivalently it is a sequence F = (Fy)nen, Of alternating n-linear
forms on V with

F(V1/\.../\Vn):Fn(V17...7Vn), F(1AV):FO€R

@ The pointwise product of fermionic functionals is defined by

(F-G)n(vi,...,vn)

n

= Z sign(o) Z WFk(VU(n, e 7Vo(k))Gn—k(Va(k+1)a cee ,Va(n))-
oeS, k=0

@ By derivative of a fermionic functional we always mean left
derivative.
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Fermionic theory

Towards the algebra of observables

@ We want to construct the algebra of observables, extended also
to fermionic operators.
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Fermionic theory

Towards the algebra of observables

@ We want to construct the algebra of observables, extended also
to fermionic operators.

@ But the relations characterizing this algebra 2l contain auxiliary
Grassmann parameters whose only purpose is to allow the use
of combinatorial formulas known from the bosonic case.

@ We thus obtain in a first step subalgebras 2[5 of tensor products
G ® 2 of Grassmann algebras G with 2( that are generated by
even elements and the Grassmann algebra itself (understood as
G® 1g).

@ The aim is to reconstruct the algebra 2l from that family of
subalgebras. To this end we equip this family of subalgebras with
the following structure.
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Fermionic theory

Category theory formulation

@ Let &rass be the category of finite dimensional real Grassmann
algebras, with homomorphisms as arrows.
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Fermionic theory

Category theory formulation

@ Let &rass be the category of finite dimensional real Grassmann
algebras, with homomorphisms as arrows.

@ Let g™ be the category of Z,-graded unital associative
algebras, with unital homomorphisms respecting the Z,
graduation as arrows.

@ Let now R : Grass — Alg” be the inclusion functor.
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Fermionic theory

Covariant Grassmann multiplication algebra | & ok

Definition

A covariant Grassmann multiplication algebra is a pair (&, ¢)
consisting of a functor & : Grass — 2Alg’™? and a natural embedding
t: R= &i.e. afamily (vg)g of injective homomorphisms

g : G— 6G with

tgox=0®xoig, forhomomorphismsy:G— G .

G— X Lo

Lq J{LG/

B6G ——— G’
&x
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Fermionic theory

Covariant Grassmann multiplication algebra | & ok

Definition (continued)

We require the following properties of (&, ¢): We require the following
properties of (&,:):
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Fermionic theory

Covariant Grassmann multiplication algebra | & ok

Definition (continued)
We require the following properties of (&, ¢): We require the following
properties of (&,:):

@ .5(G) is graded central in &G, in the sense that

a(n)a= (—1)%M%@ g,5(n), ne G, ac &G, where
dg(-) € {0, 1} denotes the degree.
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Fermionic theory

Covariant Grassmann multiplication algebra | % %k

Definition (continued)

We require the following properties of (&, ¢): We require the following
properties of (&,:):
@ .5(G) is graded central in &G, in the sense that
rg(n)a=(—1)%M%@ g,45(n), ne G, ac &G, where
dg(-) € {0, 1} denotes the degree.
Q Let)\jcRandy;: G— G,i=1,...,nbe homomorphisms

n
between Grassmann algebras with Z Aixi = 0. Then:
(=1

n
D> A6y =0
i=1
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Fermionic theory

@ Consider the functor & with a graded unital algebra 2 which
maps each Grassmann algebras G to the tensor product
%G = G ® 2 with the product

(m @ ar) - (e ® a) = (—1)%%@) (np) @ (ara2) ,

where n1,1m2 € G, ay,a» € 2.
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Fermionic theory

@ Consider the functor & with a graded unital algebra 2 which
maps each Grassmann algebras G to the tensor product
%G = G ® 2 with the product

(m ® ar) - (n2 ® ag) = (—1)%%@) (o) @ (ara2) ,

where ny,m0 € G, aq, ap € 2.

@ The morphisms x : G — G’ are mapped to morphisms
6%y : G A — G ® A by means of

eiy(nwa)=x(nea,ncG, ac.
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maps each Grassmann algebras G to the tensor product
%G = G ® 2 with the product

(m @ ar) - (e ® a) = (—1)%%@) (np) @ (ara2) ,

where n1,1m2 € G, ay,a» € 2.

@ The morphisms x : G — G’ are mapped to morphisms
6%y : G A — G ® A by means of
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Fermionic theory

@ Consider the functor & with a graded unital algebra 2 which
maps each Grassmann algebras G to the tensor product
%G = G ® 2 with the product

(m @ ar) - (e ® a) = (—1)%%@) (np) @ (ara2) ,

where n1,1m2 € G, ay,a» € 2.

@ The morphisms x : G — G’ are mapped to morphisms
6%y : G A — G ® A by means of

eiy(nwa)=x(nea,ncG, ac.

@ The natural transformation ¢ is given by tg(n) =n® 194, n € G.

@ In the following we simplify the notation by identifying cg(n) with n
forn € Gand 15 ® awith afor a € 2, and similarly we write na
fornaec Ge A
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Fermionic theory

Application to fermionic functionals |

@ Let V be a real vector space and consider AV and its dual, the
algebra of fermionic functionals on V. Let F,. be its subspace of
local functionals.
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Application to fermionic functionals |

@ Let V be a real vector space and consider AV and its dual, the
algebra of fermionic functionals on V. Let F,. be its subspace of
local functionals.

@ A fermionic functional induces, for any G, a G-module
homomorphism Fg from G« AV to G by

Fglwn) = Fwn =nF(w), weAV,neqG,

@ We identify nF with the map w — nF(w). The A-symbol for the
product in AV is usually omitted.
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Fermionic theory

Application to fermionic functionals |

@ Let V be a real vector space and consider AV and its dual, the
algebra of fermionic functionals on V. Let F,. be its subspace of
local functionals.

@ A fermionic functional induces, for any G, a G-module
homomorphism Fg from G« AV to G by

Fglwn) = Fwn =nF(w), weAV,neqG,

@ We identify nF with the map w — nF(w). The A-symbol for the
product in AV is usually omitted.
@ The family (Fg)g is a natural transformation 3 : 8"V — &%, i.e.;

6RXOFG:FG/O®AVX.

AV

GoAV — 2 s '@ AV

GIR———— > G'®R
BRy
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Fermionic theory

Application to fermionic functionals Il

@ F is already fixed if we know the maps Fg on all elements of the
form exp Z v'n; with odd elements 7; € G, v e A'(V) = V and a
icl
finite index set I € Ppnie(N), where Fg(1g) = Folg.
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form exp ) ~ v'n; with odd elements 7; € G, v/ € A'(V) = Vand a
iel
finite index set I € Ppnie(N), where Fg(1g) = Folg.
@ In particular we can define shifts in the arguments as needed for
the unitary Dyson-Schwinger equation.
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Fermionic theory

Application to fermionic functionals Il

@ F is already fixed if we know the maps Fg on all elements of the

form exp Z v'n; with odd elements 7; € G, v e A'(V) = V and a
icl

finite index set I € Ppnie(N), where Fg(1g) = Folg.

@ In particular we can define shifts in the arguments as needed for
the unitary Dyson-Schwinger equation.

e A shifted functional F", with w = Z w/6; with odd elements 6; of

jed

some Grassmann algebra G’ and W/ € V, J € Pgpie(N), is
defined as a family (Fg)g of G-module maps from G AV to
G G.

Kasia Rejzner C™ -algebraic Fermions 13/31



Fermionic theory

Application to fermionic functionals Il

@ Explicitly:
F&(expy_v'mi) = Fasa (exp (D vini + Y wy))
i€l i€l JeJ
:Z Z Fr';_‘;(vi17.“,vin)77’.n,,.n/1’
n>0 i <...<ip
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Fermionic theory

Application to fermionic functionals Il

@ Explicitly:
F&(expy_v'mi) = Fasa (exp (D vini + Y wy))
i€l i€l JeJ
:Z Z Fr';_‘;(vi17.“,vin)77’.n,,.n/1’
n>0 i <...<ip

@ with alternating multilinear G’-valued maps F,‘;T’ as components.

F;;T/(V1,...,Vn):z Z Fk+n(V1>~"avnaWj17"'7ij)9/“'9]'1'

k>0ji<...<jked
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Fermionic theory

Universality

Reconstruction Theorem
Let & be a covariant Grassmann multiplication algebra as defined
above. Then there exists a graded unital algebra 2( and a natural

embedding
o= (0g)g: & = &%

such that for any other graded unital algebra 21’ with a natural
embedding ¢’ : & — &% there exists a unique homomorphism
7:A = A withog = (id® 1) 0 0.

Ag = 6G
GoU - G
d® T
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Fermionic theory

The algebra of Fermi fields

@ We choose now V =T (M, E) where M is a globally hyperbolic
spacetime and denote by V, its subspace of compactly
supported sections.

Kasia Rejzner C™ -algebraic Fermions 16/31



Fermionic theory

The algebra of Fermi fields

@ We choose now V =T (M, E) where M is a globally hyperbolic
spacetime and denote by V, its subspace of compactly
supported sections.

@ Vs interpreted as the space of field configurations.

Kasia Rejzner C™ -algebraic Fermions 16/31



Fermionic theory

The algebra of Fermi fields

@ We choose now V =T (M, E) where M is a globally hyperbolic
spacetime and denote by V, its subspace of compactly
supported sections.

@ Vs interpreted as the space of field configurations.

@ We construct a covariant Grassmann multiplication algebra
® : Grass — Alg”™2, by specifying the algebras 2 = &G. These
are generated by invertible elements Sg(F) with F € G @ F.
with the following properties and relations.
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Fermionic theory

The algebra of Fermi fields (properties and

relations) % i

@ (Parity) Si(F) is even for even F.
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Fermionic theory

The algebra of Fermi fields (properties and

relations) % i

@ (Parity) Si(F) is even for even F.

o (Naturality) If y : G — G’ is a homomorphism of Grassmann
algebras then
Sa 0 &7y =By o0 Sg .

Floc
X
G®<gloc _— G/®<gloc

S(,i Js@

Ag ————— > A
G Gy G
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Fermionic theory

The algebra of Fermi fields (properties and

relations) % i

@ (Parity) Si(F) is even for even F.

o (Naturality) If y : G — G’ is a homomorphism of Grassmann
algebras then
Sa 0 &7y =By o0 Sg .

Floc
X
G®<gloc _— G/®<gloc

S(,i Js@

Ag ————— > A
G Gy G

@ (Quantization condition) Ss(1) = 1g(e") forn € G.

Kasia Rejzner C™ -algebraic Fermions 17/31



Fermionic theory

The algebra of Fermi fields (properties and

relations, continued) ¥ s

@ (Causal factorization)
SG(F1 + F2 + F3) = SG(F1 + Fg)Sg(Fg)_1 SG(F2 + F3)

for even functionals Fy, F2, F3 with supp F1 N J_(supp F3) = &
where J_ denotes the past of the region in the argument.
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Fermionic theory

The algebra of Fermi fields (properties and

relations, continued) &

@ (Causal factorization)
SG(F1 + F2 + F3) = SG(F1 + Fg)Sg(Fg)_1 SG(F2 + F3)

for even functionals Fy, F2, F3 with supp F1 N J_(supp F3) = &
where J_ denotes the past of the region in the argument.
@ (Dynamics) Let h = Zn,ﬂ" with odd elements n; € G, i € V,

iel

and / € Ppnie(N).Then
Sa(F) = Sa(F + ;L)

where .
5L = L(f)" =15 L(f)

with f = 1 on supp h and 14 denotes the unit of G.
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Fermionic theory

Comments and further structure

@ Note that the Quantization condition implies Sg(0) = 14.
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Fermionic theory

Comments and further structure

@ Note that the Quantization condition implies Sg(0) = 14.
@ Setting F = 0 in the relation Dynamics, we obtain

Sa(d5L) = 1a,

which is characteristic for the on-shell algebra.

@ Using the above relations one can, in particular, derive the CAR
relations for the free Dirac field.

@ As in the general case, we define 2( as the inductive limit of this
system with injections ¢, : A" — A, where 21" C 2z~ are defined
in the course of the proof of the Reconstruction Theorem.
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Fermionic theory

Involution

@ To define involution, we set v* = v on the real vector space V
and for linear maps on AV, we set:

A (w) = (—1)AE@ AW | we AV
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@ To define involution, we set v* = v on the real vector space V
and for linear maps on AV, we set:

A (w) = (—1)AE@ AW | we AV
@ For the tensor product G ® 2 of a Grassmann algebra G with a
graded *-algebra 2 we set
(nea) = (-1)emeE@p gz neG, acd.

@ For a covariant Grassmann multiplication algebra & we require
that the algebras &G are *-algebras and the embeddings
tg: G — @G are *-homomorphisms.
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Fermionic theory

Involution

@ To define involution, we set v* = v on the real vector space V
and for linear maps on AV, we set:

A (w) = (—1)AE@ AW | we AV

@ For the tensor product G ® 2 of a Grassmann algebra G with a
graded *-algebra 2 we set

(nea) = (-1)emeE@p gz neG, acd.

@ For a covariant Grassmann multiplication algebra & we require
that the algebras &G are *-algebras and the embeddings
tg: G — @G are *-homomorphisms.

@ The algebras 25 = 6 G defined by the axioms above gets
equipped with a *-operation by Sg(F)" = Sg(F*) .

@ The subspaces 21" C 2(\rn are invariant under the *-operation.

@ The (universal) involution on the inductive limit of these spaces,
denoted by 2l is induced by

Ln(a)* - (_1)n(n—1)/2+n(dg(a)+n)bn(a*) . (1)
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Fermionic theory

Dirac field |

@ We specialize now to the Dirac field on Minkowski spacetime
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@ We specialize now to the Dirac field on Minkowski spacetime

@ The space of field configurations h € V is the space of smooth
sections of the spinor bundle, equipped with a nondegenerate
Lorentz invariant sesquilinear form (u, v) — uv on each fiber.
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@ We specialize now to the Dirac field on Minkowski spacetime

@ The space of field configurations h € V is the space of smooth
sections of the spinor bundle, equipped with a nondegenerate
Lorentz invariant sesquilinear form (u, v) — uv on each fiber.

@ We choose V = C* (M, C*) with the Spin(2) = SL(2, C) action
on C* by the matrix representation

SL(2,C) > A < '3 (A*O),1 >
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Dirac field |

@ We specialize now to the Dirac field on Minkowski spacetime
@ The space of field configurations h € V is the space of smooth
sections of the spinor bundle, equipped with a nondegenerate
Lorentz invariant sesquilinear form (u, v) — uv on each fiber.
@ We choose V = C* (M, C*) with the Spin(2) = SL(2, C) action
on C* by the matrix representation
A 0
SL(2,C)> A~ < 0 (A" >
@ which corresponds to the choice of y-matrices:

(0 1 o 0 o .
’YO—<1 0),’}/,—(0_1' 0),/—1,2,3
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Dirac field |

@ We specialize now to the Dirac field on Minkowski spacetime
@ The space of field configurations h € V is the space of smooth

sections of the spinor bundle, equipped with a nondegenerate

Lorentz invariant sesquilinear form (u, v) — uv on each fiber.
@ We choose V = C* (M, C*) with the Spin(2) = SL(2, C) action

on C* by the matrix representation

A 0
SL(2,C)> A~ < 0 (A" >

@ which corresponds to the choice of y-matrices:
0 1 0 o .
’70:<1 0)’71':(0—’. 0’) 7I:1,2,3

@ The sesquilinear form is obtained from the standard scalar
product (-,-) on C* by

uv = (U, "YOV)
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@ We specialize now to the Dirac field on Minkowski spacetime

@ The space of field configurations h € V is the space of smooth
sections of the spinor bundle, equipped with a nondegenerate
Lorentz invariant sesquilinear form (u, v) — uv on each fiber.

@ We choose V = C* (M, C*) with the Spin(2) = SL(2, C) action
on C* by the matrix representation

A
SL(2,C)> A~ < 0 (A*O),1 >
@ which corresponds to the choice of y-matrices:
0 1 0 j .
’70:<1 0)’71':(0—’. 00’)’,:1,273
@ The sesquilinear form is obtained from the standard scalar
product (-,-) on C* by
uv = (U, "YOV)

@ The ~v-matrices are then hermitian with respect to the
sesquilinear form.
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Fermionic theory

Dirac field |

@ For compactly supported sections we define

<h1,h2> = /dehg(X) .
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@ The classical Dirac field v is the evaluation functional
P(X): V= C4 o(x)[h] = h(x).
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@ For compactly supported sections we define

<h1,h2> = /dehg(X) .

@ The classical Dirac field v is the evaluation functional
P(X): V= C4 o(x)[h] = h(x).

@ The conjugate field 1> maps the configuration into the dual space
P(x) 1 V= (CH*, p(x)[m](v) = b (x)v.
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@ For compactly supported sections we define

<h1,h2> = /dehg(X) .

@ The classical Dirac field v is the evaluation functional
P(X): V= C4 o(x)[h] = h(x).

@ The conjugate field 1> maps the configuration into the dual space
D(x) V= (CH, 90)[M(v) = b (x)v.

@ Smeared fields are defined as usual, that is, «(s)[h] = (s, h),
where s € V; and /(s)[h] = (h, s).
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Dirac field |

@ For compactly supported sections we define

<h1,h2> = /dehg(X) .

@ The classical Dirac field v is the evaluation functional
P(X): V= C4 o(x)[h] = h(x).

@ The conjugate field 1> maps the configuration into the dual space
D(x) 2 V= (CH, 90)[m](v) = hi(x)v.

@ Smeared fields are defined as usual, that is, v/(s)[h] = (s, h),
where s € V; and /(s)[h] = (h, s).

@ The Dirac Lagrangian L = «» A [Dv with the Dirac operator
D = iv0 — m associates to any compactly supported test function
f a 2-form L(f) on V, namely

L(f)[h1, he] = (fhy, D(fha)) — (fhe, D(fh)) .
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Fermionic theory

Multiplication algebra for the Dirac field

@ We extend the above introduced functionals to G-valued
functionals.

Kasia Rejzner C™ -algebraic Fermions 23/31



Fermionic theory

Multiplication algebra for the Dirac field

@ We extend the above introduced functionals to G-valued
functionals.

@ Forn e G, s, he V,, we have:

¥(8)alhn] = (s)lhln = (s, hyn

and - -
¥(s)alhn] = ¢(s)[hln = (h, s)n
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Multiplication algebra for the Dirac field

@ We extend the above introduced functionals to G-valued
functionals.

@ Forn e G, s, he V,, we have:

¥(8)alhn] = (s)lhln = (s, hyn

and B -
P(s)alhn] = (s)lhln = (h,s)n
@ We extend the sesquilinear form (-, ) to a G ® C-valued map
(neon(Ge Vo) x (G Ve) by

(nh,h'n")g =n(h, A" )n
forh,W € V. andn,n € G.
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Fermionic theory

Multiplication algebra for the Dirac field

@ We extend the above introduced functionals to G-valued
functionals.

@ Forn e G, s, he V,, we have:

U(s)alhm] = ¢(s)lhln = (s, h)n
and B -
P(s)alhn] = (s)lhln = (h,s)n
@ We extend the sesquilinear form (-, ) to a G ® C-valued map
(neon(Ge Vo) x (G Ve) by
<77h7 h/77/>G = n<h7 hl>7]/

forh,h' € Vo and 0,7’ € G.

@ We also extend the fields ¢ and 7 to test sections 7;s’ € Go Ve
by va(ns)[hn'] = nu(s)[hly" = (ns, hy') ¢ and similarly for .
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Fermionic theory

Multiplication algebra for the Dirac field

@ We extend the above introduced functionals to G-valued
functionals.

@ Forn e G, s, he V,, we have:

U(s)alhm] = ¢(s)lhln = (s, h)n
and B -
P(s)alhn] = (s)lhln = (h,s)n
@ We extend the sesquilinear form (-, ) to a G ® C-valued map
(neon(Ge Vo) x (G Ve) by
<77h7 h/77/>G = n<h7 hl>7]/

forh,h' € Vo and 0,7’ € G.

@ We also extend the fields ¢ and 7 to test sections 7;s’ € Go Ve
by va(ns)[hn'] = nu(s)[hly" = (ns, hy') ¢ and similarly for .

@ In particular we have: ¥g(ns) = nva(S), ¥a(ns) = na(s).
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Fermionic theory

Variation of the Lagrangian

@ The extended Lagrangian L(f)g is a quadratic form on even
elements of G® V.
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Variation of the Lagrangian

@ The extended Lagrangian L(f)g is a quadratic form on even
elements of G® V.

o Leth= Z H'n; with A" € V and odd elements 7; € G. Then

L(f)g[e" = %L(f)G[hh] = % S LON A Py = (fh, Dih)g .
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Fermionic theory

Variation of the Lagrangian

@ The extended Lagrangian L(f)g is a quadratic form on even
elements of G® V.

o Leth= Z H'n; with A" € V and odd elements 7; € G. Then

Lmeﬂ:%uﬂdMﬂ:%E:MMHAHmm:<mwmm.

@ The variation under a shift h = Ziel 5’9,-, with odd elements
0 € G, hHeV,is:

§5Lale" = dzLa[1 + ] = (h, Dh)g + (h, Ph)g + (h, Dh)g .
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Fermionic theory

Variation of the Lagrangian

@ The extended Lagrangian L(f)g is a quadratic form on even
elements of G® V.

o Leth= Z H'n; with A" € V and odd elements 7; € G. Then

1 1 ; :
L(f)G[e”] = 5L(f)G[hh] =3 Z L(f)[W A W]njni = (fh, Dfh)g .
@ The variation under a shift h = Ziel 5’9,-, with odd elements
0 € G, hHeV,is:
d5Lale" = d5La[1 + h] = (h, Dh)g + (h, Dh)g + (h, Dh)g .

—

o This can be re-written as: ¢ ;L — :a(Dh) — ' g(DR) + (h, Dh) .
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Fermionic theory

Variation of the Lagrangian

@ The extended Lagrangian L(f)g is a quadratic form on even
elements of G® V.

o Leth= Z H'n; with A" € V and odd elements 7; € G. Then

Lmeﬂ:%uﬂdMﬂ:%E:MMHAHmm:<mwmm.

@ The variation under a shift h = Ziel 5’9,-, with odd elements
0 € G, hHeV,is:

§5Lale" = dzLa[1 + ] = (h, Dh)g + (h, Ph)g + (h, Dh)g .

o This can be re-written as: ¢ ;L — :a(Dh) — ' g(DR) + (h, Dh) .

@ Let s € (G® Vi)even @and let D () = 1g(s) — 1 5(s) be the
smeared classical “doubled Dirac field” viewed as an element in
(G X -/—'ioc )even-
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Fermionic theory

Quantum Dirac field |

Let s = Z n;s' with s’ € V, and n; odd elements of G. The S-matrix

Sg built W|th the doubled Dirac field has the expansion

Sa(Da sz S i miBs A ASY) (@)
: I1< <Ik
with R-multilinear alternating maps By : VX — 2, k =1,...,n, (the

time ordered products of the doubled D|rac field).
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Fermionic theory

Quantum Dirac field Il

@ Next, use f = ns as the smearing object for ©, with s € V. and
a generator of G.
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@ Next, use f = ns as the smearing object for ©, with s € V. and
a generator of G.

@ The above Proposition implies Sg(Dg(ns))” = 1 — iBi(s)"n and

Sa(Da(ns)*) " = Sa(Da(-ns)) ™" = (1-inBi(s)) ™" = 1+inBi(s)
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Quantum Dirac field Il

@ Next, use f = ns as the smearing object for ©, with s € V. and
a generator of G.

@ The above Proposition implies Sg(Dg(ns))” = 1 — iBi(s)"n and
Sc(Dc(18)") ™" = Sa(Da(-18)) " = (1-inBi(s)) ™" = 1+inBi(s)

@ Since By (s) anticommutes with 7, it is selfadjoint.
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Sc(Dc(18)") ™" = Sa(Da(-18)) " = (1-inBi(s)) ™" = 1+inBi(s)

@ Since By (s) anticommutes with 7, it is selfadjoint.
@ We decompose it in its complex linear and antilinear parts:

Bi(s) =W(s)" +V(s), V(s)e.
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Sc(Dc(18)") ™" = Sa(Da(-18)) " = (1-inBi(s)) ™" = 1+inBi(s)

@ Since By (s) anticommutes with 7, it is selfadjoint.
@ We decompose it in its complex linear and antilinear parts:

Bi(s) =W(s)" +V(s), V(s)e.

@ We interpret V as the quantized Dirac field
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Fermionic theory

Quantum Dirac field Il

@ Next, use f = ns as the smearing object for ©, with s € V. and
a generator of G.

@ The above Proposition implies Sg(Dg(ns))” = 1 — iBi(s)"n and
Sc(Dc(18)") ™" = Sa(Da(-18)) " = (1-inBi(s)) ™" = 1+inBi(s)

@ Since By (s) anticommutes with 7, it is selfadjoint.
@ We decompose it in its complex linear and antilinear parts:

Bi(s) =W(s)" +V(s), V(s)e.

@ We interpret V as the quantized Dirac field
@ lItis an 2-valued antilinear functional on V..
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Fermionic theory

Theorem

The quantized Dirac field V satisfies the canonical anticommutation
rules over V;:

{W(s)", w(s?)} = {W(s), ¥(s?)} =0, {W(s"), W(s?)"} = (s?,iBs") 1q,

where
8 = (ind + m)A

with A the commutator function of the scalar theory.
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Fermionic theory

C*-structure (even functionals)

@ The axioms define a graded unital *-algebra 20 = 2y & 24;. We
now want to equip it with a C*-norm.

Kasia Rejzner C™ -algebraic Fermions 28/31



Fermionic theory

C*-structure (even functionals)

@ The axioms define a graded unital *-algebra 20 = 2y & 24;. We
now want to equip it with a C*-norm.

@ We start with S-matrices S(F) with even fermionic functionals F
without auxiliary Grassmann variables.
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C*-structure (even functionals)

@ The axioms define a graded unital *-algebra 20 = 2y & 24;. We
now want to equip it with a C*-norm.

@ We start with S-matrices S(F) with even fermionic functionals F
without auxiliary Grassmann variables.

@ There we can proceed as in the case of a bosonic field.

@ We look at the group generated by these elements modulo the
relations Causality and the Quantization condition S(c) = €1 for
constant functionals ¢ and define a state on the group algebra by

w(U) =0for U & {€°1|c e R} . (3)
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Fermionic theory

C*-structure (even functionals)

@ The axioms define a graded unital *-algebra 20 = 2y & 24;. We
now want to equip it with a C*-norm.

@ We start with S-matrices S(F) with even fermionic functionals F
without auxiliary Grassmann variables.

@ There we can proceed as in the case of a bosonic field.

@ We look at the group generated by these elements modulo the
relations Causality and the Quantization condition S(c) = €1 for
constant functionals ¢ and define a state on the group algebra by

w(U) =0for U & {€°1|c e R} . (3)

@ The operator norm in the induced GNS representation is a
C*-norm. We then equip the algebra with the maximal C*-norm.
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Fermionic theory

C*-structure (extension) |

@ We now want to extend this C*-norm.
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C*-structure (extension) |

@ We now want to extend this C*-norm.

@ We cannot expect that it can be extended to the full algebra,
since the presence of the Grassmann variables induces an
expansion of the S-matrices into polynomials of Grassmann
variables whose coefficients cannot be expected to be bounded,
in general.
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@ We now want to extend this C*-norm.

@ We cannot expect that it can be extended to the full algebra,
since the presence of the Grassmann variables induces an
expansion of the S-matrices into polynomials of Grassmann
variables whose coefficients cannot be expected to be bounded,
in general.

@ Instead we use the anticommutation relations which imply that
for ||f||v, = 1, with the seminorm

1%, = (F,i8f) ,

V(f)*V(f) is a selfadjoint projection.
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Fermionic theory

C*-structure (extension) |

@ We now want to extend this C*-norm.

@ We cannot expect that it can be extended to the full algebra,
since the presence of the Grassmann variables induces an
expansion of the S-matrices into polynomials of Grassmann
variables whose coefficients cannot be expected to be bounded,
in general.

@ Instead we use the anticommutation relations which imply that
for ||f||v, = 1, with the seminorm

1%, = (F,i8f) ,

V(f)*V(f) is a selfadjoint projection.
@ Hence for every non-zero C*-seminorm

VO = Il v,
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Fermionic theory

C*-structure (extension) I

@ We have shown that W(f) = 0 if ||f||y, = 0.

Kasia Rejzner C™ -algebraic Fermions 30/31



Fermionic theory

C*-structure (extension) I

@ We have shown that W(f) = 0 if ||f||y, = 0.

@ We conclude that the *-algebra generated by V(f), f € V. is the
algebra of canonical anticommutation relations.
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C*-structure (extension) I

@ We have shown that W(f) = 0 if ||f||y, = 0.

@ We conclude that the *-algebra generated by V(f), f € V. is the
algebra of canonical anticommutation relations.

@ We consider the sub-*-algebra 95 of 2, generated by the
S-matrices S(F) with even F as above and the Dirac fields W(f).
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Fermionic theory

C*-structure (extension) I

@ We have shown that W(f) = 0 if ||f||y, = 0.

@ We conclude that the *-algebra generated by V(f), f € V. is the
algebra of canonical anticommutation relations.

@ We consider the sub-*-algebra 95 of 2, generated by the
S-matrices S(F) with even F as above and the Dirac fields W(f).

The maximal C*-seminorm on B exists and is a C*-norm.
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Thank you very much for your attention!

Kasia Rejzner C™ -algebraic Fermions 31/31



	Bosonic theory
	Fermionic theory
	Appendix

