

*C**-algebraic formulation of interacting quantum field theory applied to Fermions

Kasia Rejzner¹

University of York

"Regensburg," 23.07.2021

¹joint work with Romeo Brunetti, Michael Dütsch and Klaus Fredenhagen, [arXiv:2103.05740] Bosonic theory Fermionic theory

Outline of the talk

• A new idea for constructing local nets for interacting theories has been proposed in: Buchholz, D. and Fredenhagen, K., *A C***-algebraic approach to interacting quantum field theories*, CMP 2020.

Preliminaries

- A new idea for constructing local nets for interacting theories has been proposed in: Buchholz, D. and Fredenhagen, K., *A C***-algebraic approach to interacting quantum field theories*, CMP 2020.
- Main idea: theory described by an abstract *C**-algebra generated by a collection of unitaries, with a number of relations.

Preliminaries

- A new idea for constructing local nets for interacting theories has been proposed in: Buchholz, D. and Fredenhagen, K., *A C***-algebraic approach to interacting quantum field theories*, CMP 2020.
- Main idea: theory described by an abstract *C**-algebra generated by a collection of unitaries, with a number of relations.
- These unitaries are interpreted as local S-matrices and are labelled by local functionals.

Preliminaries

- A new idea for constructing local nets for interacting theories has been proposed in: Buchholz, D. and Fredenhagen, K., *A C***-algebraic approach to interacting quantum field theories*, CMP 2020.
- Main idea: theory described by an abstract *C**-algebra generated by a collection of unitaries, with a number of relations.
- These unitaries are interpreted as local S-matrices and are labelled by local functionals.
- Let *M* be a globally hyperbolic spacetime, *E* → *M* a vector bundle and *E* ≐ Γ(*M*, *E*), its space of smooth sections.

• The space of local functionals \mathcal{F}_{loc} is a subspace of the space of smooth compactly supported functionals on \mathcal{E} consisting of those that can be written as $F(\phi) = \int_{M} \alpha(j_x^k(\phi)) d\mu(x)$, where α is a compactly-supported function on the jet bundle.

- The space of local functionals \mathcal{F}_{loc} is a subspace of the space of smooth compactly supported functionals on \mathcal{E} consisting of those that can be written as $F(\phi) = \int_{M} \alpha(j_x^k(\phi)) d\mu(x)$, where α is a compactly-supported function on the jet bundle.
- Here by the support of a functional *F* we mean:

supp $F = \{x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists \varphi_1, \varphi_2 \in \mathcal{E}, \text{supp } \varphi_2 \subset U$ such that $F(\varphi_1 + \varphi_2) \neq F(\varphi_1)\}$

• The space of local functionals \mathcal{F}_{loc} is a subspace of the space of smooth compactly supported functionals on \mathcal{E} consisting of those that can be written as $F(\phi) = \int_{M} \alpha(j_x^k(\phi)) d\mu(x)$, where α is a compactly-supported function on the jet bundle.

• Here by the support of a functional *F* we mean:

supp $F = \{x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists \varphi_1, \varphi_2 \in \mathcal{E}, \text{supp } \varphi_2 \subset U$ such that $F(\varphi_1 + \varphi_2) \neq F(\varphi_1)\}$

• A generalized Lagrangian is a map $C_0^{\infty}(M) \equiv \mathcal{D} \ni f \mapsto L(f) \in \mathcal{F}_{\text{loc}}$ with $\operatorname{supp} L(f) \subset \operatorname{supp} f$ and with L(f+g+f') = L(f+g) - L(g) + L(g+f') if $\operatorname{supp} f \cap \operatorname{supp} f' = \emptyset$.

• The space of local functionals \mathcal{F}_{loc} is a subspace of the space of smooth compactly supported functionals on \mathcal{E} consisting of those that can be written as $F(\phi) = \int_{M} \alpha(j_x^k(\phi)) d\mu(x)$, where α is a compactly-supported function on the jet bundle.

• Here by the support of a functional *F* we mean:

supp $F = \{x \in M | \forall \text{ neighbourhoods } U \text{ of } x \exists \varphi_1, \varphi_2 \in \mathcal{E}, \text{supp } \varphi_2 \subset U$ such that $F(\varphi_1 + \varphi_2) \neq F(\varphi_1)\}$

• A generalized Lagrangian is a map $C_0^{\infty}(M) \equiv \mathcal{D} \ni f \mapsto L(f) \in \mathcal{F}_{\text{loc}}$ with $\operatorname{supp} L(f) \subset \operatorname{supp} f$ and with L(f+g+f') = L(f+g) - L(g) + L(g+f') if $\operatorname{supp} f \cap \operatorname{supp} f' = \emptyset$.

• We restrict ourselves to generalized Lagrangians that lead to Green hyperbolic equations of motion.

• Let *L* be a Lagrangian, $\varphi \in \mathcal{E}$. Define $\delta L : \mathcal{D} \times \mathcal{E} \to \mathbb{R}$ by

 $\delta L(\psi)[\varphi] \doteq L(f)[\varphi + \psi] - L(f)[\varphi],$

where $\varphi \in \mathcal{E}$, $\psi \in \mathcal{E}_c$ (compactly supported configuration) and $f \equiv 1$ on supp ψ (the map $\delta L(\psi)[\varphi]$ thus defined does not depend on the particular choice of *f*).

• Let *L* be a Lagrangian, $\varphi \in \mathcal{E}$. Define $\delta L : \mathcal{D} \times \mathcal{E} \to \mathbb{R}$ by

 $\delta L(\psi)[\varphi] \doteq L(f)[\varphi + \psi] - L(f)[\varphi],$

where $\varphi \in \mathcal{E}$, $\psi \in \mathcal{E}_c$ (compactly supported configuration) and $f \equiv 1$ on supp ψ (the map $\delta L(\psi)[\varphi]$ thus defined does not depend on the particular choice of *f*).

• The above definition can be turned into a difference quotient and we can use it to introduce the Euler-Lagrange derivative of *L*.

• Let *L* be a Lagrangian, $\varphi \in \mathcal{E}$. Define $\delta L : \mathcal{D} \times \mathcal{E} \to \mathbb{R}$ by

 $\delta L(\psi)[\varphi] \doteq L(f)[\varphi + \psi] - L(f)[\varphi],$

where $\varphi \in \mathcal{E}$, $\psi \in \mathcal{E}_c$ (compactly supported configuration) and $f \equiv 1$ on supp ψ (the map $\delta L(\psi)[\varphi]$ thus defined does not depend on the particular choice of *f*).

- The above definition can be turned into a difference quotient and we can use it to introduce the Euler-Lagrange derivative of *L*.
- The Euler-Lagrange derivative of L is a 1-form on \mathcal{E} defined by

$$\langle dL(\varphi), \psi \rangle \doteq \lim_{t \to 0} \frac{1}{t} \delta L(t\psi)[\varphi] = \int \frac{\delta L(f)}{\delta \varphi(x)} \psi(x)$$
, with $\psi \in \mathcal{E}_c$ and $f \equiv 1$ on supp ψ .

• Let *L* be a Lagrangian, $\varphi \in \mathcal{E}$. Define $\delta L : \mathcal{D} \times \mathcal{E} \to \mathbb{R}$ by

 $\delta L(\psi)[\varphi] \doteq L(f)[\varphi + \psi] - L(f)[\varphi],$

where $\varphi \in \mathcal{E}$, $\psi \in \mathcal{E}_c$ (compactly supported configuration) and $f \equiv 1$ on supp ψ (the map $\delta L(\psi)[\varphi]$ thus defined does not depend on the particular choice of *f*).

- The above definition can be turned into a difference quotient and we can use it to introduce the Euler-Lagrange derivative of *L*.
- The Euler-Lagrange derivative of L is a 1-form on \mathcal{E} defined by

$$\langle dL(\varphi), \psi \rangle \doteq \lim_{t \to 0} \frac{1}{t} \delta L(t\psi)[\varphi] = \int \frac{\delta L(f)}{\delta \varphi(x)} \psi(x)$$
, with $\psi \in \mathcal{E}_c$ and $f \equiv 1$ on supp ψ .

• The field equation is now the following condition on φ :

$$dL(\varphi) \equiv 0$$
 .

• Let *L* be a Lagrangian, $\varphi \in \mathcal{E}$. Define $\delta L : \mathcal{D} \times \mathcal{E} \to \mathbb{R}$ by

 $\delta L(\psi)[\varphi] \doteq L(f)[\varphi + \psi] - L(f)[\varphi],$

where $\varphi \in \mathcal{E}$, $\psi \in \mathcal{E}_c$ (compactly supported configuration) and $f \equiv 1$ on supp ψ (the map $\delta L(\psi)[\varphi]$ thus defined does not depend on the particular choice of *f*).

- The above definition can be turned into a difference quotient and we can use it to introduce the Euler-Lagrange derivative of *L*.
- The Euler-Lagrange derivative of L is a 1-form on \mathcal{E} defined by

$$\langle dL(\varphi), \psi \rangle \doteq \lim_{t \to 0} \frac{1}{t} \delta L(t\psi)[\varphi] = \int \frac{\delta L(t)}{\delta \varphi(x)} \psi(x)$$
, with $\psi \in \mathcal{E}_c$ and $f \equiv 1$ on supp ψ .

• The field equation is now the following condition on φ :

$$dL(\varphi) \equiv 0$$
 .

• We restrict ourselves to generalized Lagrangians that lead to Green hyperbolic equations of motion (have unique retarded and advenced Green functions).

Let F_1, F_2 be local functionals and let $F_1 \prec F_2$ denote the relation: supp F_1 is not to the future of supp F_2 (i.e. supp F_1 does not intersect $J^+(\text{supp } F_2)$). Local S-matrices are unitaries S(F), where $F \in \mathcal{F}_{\text{loc}}$, required to satisfy the following relations:

1 Identity preserving: S(0) = 1.

Let F_1 , F_2 be local functionals and let $F_1 \prec F_2$ denote the relation: supp F_1 is not to the future of supp F_2 (i.e. supp F_1 does not intersect $J^+(\text{supp } F_2)$). Local S-matrices are unitaries S(F), where $F \in \mathcal{F}_{\text{loc}}$, required to satisfy the following relations:

- **1 Identity preserving**: S(0) = 1.
- Solution Locality: S satisfies the Hammerstein property, i.e. $F_1 \prec F_2$ implies that

$$\mathcal{S}(F_1 + F + F_2) = \mathcal{S}(F_1 + F)\mathcal{S}(F)^{-1}\mathcal{S}(F + F_2),$$

where $F_1, F, F_2 \in \mathcal{F}_{loc}$.

Let F_1 , F_2 be local functionals and let $F_1 \prec F_2$ denote the relation: supp F_1 is not to the future of supp F_2 (i.e. supp F_1 does not intersect $J^+(\text{supp } F_2)$). Local S-matrices are unitaries S(F), where $F \in \mathcal{F}_{\text{loc}}$, required to satisfy the following relations:

- **1 Identity preserving**: S(0) = 1.
- Solution Locality: S satisfies the Hammerstein property, i.e. $F_1 \prec F_2$ implies that

$$\mathcal{S}(F_1 + F + F_2) = \mathcal{S}(F_1 + F)\mathcal{S}(F)^{-1}\mathcal{S}(F + F_2),$$

where $F_1, F, F_2 \in \mathcal{F}_{loc}$.

Schwinger-Dyson equation For a fixed Lagrangian *L*, $\mathcal{S}(F)\mathcal{S}(\delta L(\varphi)) = \mathcal{S}(F^{\varphi} + \delta L(\varphi)) = \mathcal{S}(\delta L(\varphi))\mathcal{S}(F)$, where $F^{\varphi}(\psi) \doteq F(\varphi + \psi), \varphi, \psi \in \mathcal{E}$.

Let F_1 , F_2 be local functionals and let $F_1 \prec F_2$ denote the relation: supp F_1 is not to the future of supp F_2 (i.e. supp F_1 does not intersect $J^+(\text{supp } F_2)$). Local S-matrices are unitaries S(F), where $F \in \mathcal{F}_{\text{loc}}$, required to satisfy the following relations:

- **1 Identity preserving**: S(0) = 1.
- Solution Locality: S satisfies the Hammerstein property, i.e. $F_1 \prec F_2$ implies that

$$\mathcal{S}(F_1+F+F_2)=\mathcal{S}(F_1+F)\mathcal{S}(F)^{-1}\mathcal{S}(F+F_2)\,,$$

where $F_1, F, F_2 \in \mathcal{F}_{loc}$.

Schwinger-Dyson equation For a fixed Lagrangian *L*, $\mathcal{S}(F)\mathcal{S}(\delta L(\varphi)) = \mathcal{S}(F^{\varphi} + \delta L(\varphi)) = \mathcal{S}(\delta L(\varphi))\mathcal{S}(F)$, where $F^{\varphi}(\psi) \doteq F(\varphi + \psi), \varphi, \psi \in \mathcal{E}$.

The C*-algebra generated by above generators and relations is denoted by \mathfrak{A}_L .

• A fermionic functional on a real vector space V is a linear form on the Grassmann algebra ΛV over V.

- A fermionic functional on a real vector space V is a linear form on the Grassmann algebra ΛV over V.
- Equivalently it is a sequence *F* = (*F_n*)_{*n*∈ℕ₀} of alternating *n*-linear forms on *V* with

$$F(\mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_n) = F_n(\mathbf{v}_1, \ldots, \mathbf{v}_n), \quad F(\mathbf{1}_{\Lambda V}) = F_0 \in \mathbb{R}.$$

- A fermionic functional on a real vector space V is a linear form on the Grassmann algebra ΛV over V.
- Equivalently it is a sequence *F* = (*F_n*)_{*n*∈ℕ₀} of alternating *n*-linear forms on *V* with

$$F(\mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_n) = F_n(\mathbf{v}_1, \dots, \mathbf{v}_n), \quad F(\mathbf{1}_{\Lambda V}) = F_0 \in \mathbb{R}.$$

• The pointwise product of fermionic functionals is defined by

$$(F \cdot G)_n(\mathbf{v}_1, \dots, \mathbf{v}_n)$$

= $\sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \sum_{k=0}^n \frac{1}{k!(n-k)!} F_k(\mathbf{v}_{\sigma(1)}, \dots, \mathbf{v}_{\sigma(k)}) G_{n-k}(\mathbf{v}_{\sigma(k+1)}, \dots, \mathbf{v}_{\sigma(n)}).$

- A fermionic functional on a real vector space V is a linear form on the Grassmann algebra ΛV over V.
- Equivalently it is a sequence *F* = (*F_n*)_{*n*∈ℕ₀} of alternating *n*-linear forms on *V* with

$$F(\mathbf{v}_1 \wedge \cdots \wedge \mathbf{v}_n) = F_n(\mathbf{v}_1, \dots, \mathbf{v}_n), \quad F(\mathbf{1}_{\Lambda V}) = F_0 \in \mathbb{R}.$$

• The pointwise product of fermionic functionals is defined by

$$(F \cdot G)_n(\mathbf{v}_1, \dots, \mathbf{v}_n)$$

= $\sum_{\sigma \in S_n} \operatorname{sign}(\sigma) \sum_{k=0}^n \frac{1}{k!(n-k)!} F_k(\mathbf{v}_{\sigma(1)}, \dots, \mathbf{v}_{\sigma(k)}) G_{n-k}(\mathbf{v}_{\sigma(k+1)}, \dots, \mathbf{v}_{\sigma(n)}).$

 By derivative of a fermionic functional we always mean left derivative.

• We want to construct the algebra of observables, extended also to fermionic operators.

- We want to construct the algebra of observables, extended also to fermionic operators.
- But the relations characterizing this algebra *α* contain auxiliary Grassmann parameters whose only purpose is to allow the use of combinatorial formulas known from the bosonic case.

- We want to construct the algebra of observables, extended also to fermionic operators.
- But the relations characterizing this algebra *α* contain auxiliary Grassmann parameters whose only purpose is to allow the use of combinatorial formulas known from the bosonic case.
- We thus obtain in a first step subalgebras \mathfrak{A}_G of tensor products $G \otimes \mathfrak{A}$ of Grassmann algebras G with \mathfrak{A} that are generated by even elements and the Grassmann algebra itself (understood as $G \otimes \mathfrak{1}_{\mathfrak{A}}$).

- We want to construct the algebra of observables, extended also to fermionic operators.
- But the relations characterizing this algebra *α* contain auxiliary Grassmann parameters whose only purpose is to allow the use of combinatorial formulas known from the bosonic case.
- We thus obtain in a first step subalgebras \mathfrak{A}_G of tensor products $G \otimes \mathfrak{A}$ of Grassmann algebras G with \mathfrak{A} that are generated by even elements and the Grassmann algebra itself (understood as $G \otimes \mathfrak{1}_{\mathfrak{A}}$).
- The aim is to reconstruct the algebra \mathfrak{A} from that family of subalgebras. To this end we equip this family of subalgebras with the following structure.

Category theory formulation

• Let Orass be the category of finite dimensional real Grassmann algebras, with homomorphisms as arrows.

Category theory formulation

- Let Orass be the category of finite dimensional real Grassmann algebras, with homomorphisms as arrows.
- Let 𝔄𝔅𝔅^{ℤ₂} be the category of ℤ₂-graded unital associative algebras, with unital homomorphisms respecting the ℤ₂ graduation as arrows.

Category theory formulation

- Let Otass be the category of finite dimensional real Grassmann algebras, with homomorphisms as arrows.
- Let 𝔄[𝔅]^ℤ² be the category of ℤ₂-graded unital associative algebras, with unital homomorphisms respecting the ℤ₂ graduation as arrows.
- Let now $R:\mathfrak{Grass}\to\mathfrak{Alg}^{\mathbb{Z}_2}$ be the inclusion functor.

Definition

A covariant Grassmann multiplication algebra is a pair (\mathfrak{G}, ι) consisting of a functor $\mathfrak{G} : \mathfrak{Grass} \to \mathfrak{Alg}^{\mathbb{Z}_2}$ and a natural embedding $\iota : R \Rightarrow \mathfrak{G}$ i.e. a family $(\iota_G)_G$ of injective homomorphisms $\iota_G : G \to \mathfrak{G}G$ with

 $\iota_{{\cal G}'}\circ\chi={\mathfrak G}\chi\circ\iota_{{\cal G}}\ ,\quad \text{ for homomorphisms }\chi:{\cal G}\to{\cal G}'\ .$

Definition (continued)

We require the following properties of (\mathfrak{G}, ι) : We require the following properties of (\mathfrak{G}, ι) :

Definition (continued)

We require the following properties of (\mathfrak{G}, ι) : We require the following properties of (\mathfrak{G}, ι) :

• $\iota_G(G)$ is graded central in $\mathfrak{G}G$, in the sense that $\iota_G(\eta) a = (-1)^{\operatorname{dg}(\eta)\operatorname{dg}(a)} a \iota_G(\eta), \ \eta \in G, \ a \in \mathfrak{G}G$, where $\operatorname{dg}(\cdot) \in \{0, 1\}$ denotes the degree.

Definition (continued)

We require the following properties of (\mathfrak{G}, ι) : We require the following properties of (\mathfrak{G}, ι) :

- $\iota_G(G)$ is graded central in $\mathfrak{G}G$, in the sense that $\iota_G(\eta) a = (-1)^{\operatorname{dg}(\eta)\operatorname{dg}(a)} a \iota_G(\eta), \ \eta \in G, \ a \in \mathfrak{G}G$, where $\operatorname{dg}(\cdot) \in \{0, 1\}$ denotes the degree.
- ② Let $\lambda_i \in \mathbb{R}$ and $\chi_i : G \to G'$, *i* = 1, ..., *n* be homomorphisms between Grassmann algebras with $\sum_{i=1}^{n} \lambda_i \chi_i = 0$. Then:

$$\sum_{i=1}^n \lambda_i \mathfrak{G}\chi_i = \mathbf{0}$$

Example

Consider the functor 𝔅^𝔅 with a graded unital algebra 𝔅 which maps each Grassmann algebras *G* to the tensor product 𝔅^𝔅 *G* = *G* ⊗ 𝔅 with the product

$$(\eta_1 \otimes a_1) \cdot (\eta_2 \otimes a_2) \doteq (-1)^{\operatorname{dg}(\eta_2)\operatorname{dg}(a_1)} (\eta_1 \eta_2) \otimes (a_1 a_2),$$

where $\eta_1, \eta_2 \in G, \ a_1, a_2 \in \mathfrak{A}$.

Example

Consider the functor 𝔅^𝔅 with a graded unital algebra 𝔅 which maps each Grassmann algebras *G* to the tensor product 𝔅^𝔅 *G* = *G* ⊗ 𝔅 with the product

$$(\eta_1 \otimes a_1) \cdot (\eta_2 \otimes a_2) \doteq (-1)^{\operatorname{dg}(\eta_2)\operatorname{dg}(a_1)} (\eta_1 \eta_2) \otimes (a_1 a_2),$$

where $\eta_1, \eta_2 \in G, \ a_1, a_2 \in \mathfrak{A}$.

• The morphisms $\chi: G \to G'$ are mapped to morphisms $\mathfrak{G}^{\mathfrak{A}}\chi: G \otimes \mathfrak{A} \to G' \otimes \mathfrak{A}$ by means of

$$\mathfrak{G}^{\mathfrak{A}}\chi(\eta\otimes a)=\chi(\eta)\otimes a\,,\;\eta\in G\,,\;a\in\mathfrak{A}$$
 .
Example

Consider the functor 𝔅^𝔅 with a graded unital algebra 𝔅 which maps each Grassmann algebras *G* to the tensor product 𝔅^𝔅 *G* = *G* ⊗ 𝔅 with the product

$$(\eta_1 \otimes a_1) \cdot (\eta_2 \otimes a_2) \doteq (-1)^{\operatorname{dg}(\eta_2)\operatorname{dg}(a_1)} (\eta_1 \eta_2) \otimes (a_1 a_2),$$

where $\eta_1, \eta_2 \in G, \ a_1, a_2 \in \mathfrak{A}$.

• The morphisms $\chi : G \to G'$ are mapped to morphisms $\mathfrak{G}^{\mathfrak{A}}\chi : G \otimes \mathfrak{A} \to G' \otimes \mathfrak{A}$ by means of

$$\mathfrak{G}^{\mathfrak{A}}\chi(\eta\otimes a)=\chi(\eta)\otimes a\,,\;\eta\in G\,,\;a\in\mathfrak{A}$$
 .

• The natural transformation ι is given by $\iota_{G}(\eta) = \eta \otimes 1_{\mathfrak{A}}, \ \eta \in G$.

Example

Consider the functor 𝔅^𝔅 with a graded unital algebra 𝔅 which maps each Grassmann algebras *G* to the tensor product 𝔅^𝔅 *G* = *G* ⊗ 𝔅 with the product

$$(\eta_1 \otimes a_1) \cdot (\eta_2 \otimes a_2) \doteq (-1)^{\operatorname{dg}(\eta_2)\operatorname{dg}(a_1)} (\eta_1 \eta_2) \otimes (a_1 a_2),$$

where $\eta_1, \eta_2 \in G, \ a_1, a_2 \in \mathfrak{A}$.

• The morphisms $\chi : G \to G'$ are mapped to morphisms $\mathfrak{G}^{\mathfrak{A}}\chi : G \otimes \mathfrak{A} \to G' \otimes \mathfrak{A}$ by means of

$$\mathfrak{G}^{\mathfrak{A}}\chi(\eta\otimes a)=\chi(\eta)\otimes a\,,\;\eta\in G\,,\;a\in\mathfrak{A}$$
 .

- The natural transformation ι is given by $\iota_{G}(\eta) = \eta \otimes \mathbf{1}_{\mathfrak{A}}, \ \eta \in G$.
- In the following we simplify the notation by identifying *ι*_G(η) with η for η ∈ G and 1_G ⊗ a with a for a ∈ 𝔄, and similarly we write ηa for η ⊗ a ∈ G ⊗ 𝔄.

 Let V be a real vector space and consider ΛV and its dual, the algebra of fermionic functionals on V. Let F_{loc} be its subspace of local functionals.

- Let V be a real vector space and consider ΛV and its dual, the algebra of fermionic functionals on V. Let F_{loc} be its subspace of local functionals.
- A fermionic functional induces, for any *G*, a *G*-module homomorphism *F_G* from *G* ⊗ ∧*V* to *G* by

$$F_G(\omega\eta) = F(\omega)\eta = \eta F(\omega)$$
, $\omega \in \Lambda V, \eta \in G$,

- Let V be a real vector space and consider ΛV and its dual, the algebra of fermionic functionals on V. Let F_{loc} be its subspace of local functionals.
- A fermionic functional induces, for any *G*, a *G*-module homomorphism *F_G* from *G* ⊗ ∧*V* to *G* by

$$F_G(\omega\eta) = F(\omega)\eta = \eta F(\omega)$$
, $\omega \in \Lambda V, \eta \in G$,

We identify ηF with the map ω ↦ ηF(ω). The ∧-symbol for the product in ∧V is usually omitted.

- Let V be a real vector space and consider ΛV and its dual, the algebra of fermionic functionals on V. Let F_{loc} be its subspace of local functionals.
- A fermionic functional induces, for any *G*, a *G*-module homomorphism *F_G* from *G* ⊗ ∧ *V* to *G* by

$$F_G(\omega\eta) = F(\omega)\eta = \eta F(\omega)$$
, $\omega \in \Lambda V, \eta \in G$,

- We identify ηF with the map ω ↦ ηF(ω). The ∧-symbol for the product in ∧V is usually omitted.
- The family $(F_G)_G$ is a natural transformation $\mathfrak{F} : \mathfrak{G}^{\wedge V} \Longrightarrow \mathfrak{G}^{\mathbb{R}}$, i.e.:

$$\mathfrak{G}^{\mathbb{R}}\chi\circ F_{G}=F_{G'}\circ\mathfrak{G}^{\wedge V}\chi$$
.

• *F* is already fixed if we know the maps F_G on all elements of the form $\exp \sum_{i \in I} v^i \eta_i$ with odd elements $\eta_i \in G$, $v^i \in \Lambda^1(V) = V$ and a finite index set $I \in \mathcal{P}_{\text{finite}}(\mathbb{N})$, where $F_G(1_G) = F_0 1_G$.

- *F* is already fixed if we know the maps F_G on all elements of the form $\exp \sum_{i \in I} v^i \eta_i$ with odd elements $\eta_i \in G$, $v^i \in \Lambda^1(V) = V$ and a finite index set $I \in \mathcal{P}_{\text{finite}}(\mathbb{N})$, where $F_G(1_G) = F_0 1_G$.
- In particular we can define shifts in the arguments as needed for the unitary Dyson-Schwinger equation.

- *F* is already fixed if we know the maps *F_G* on all elements of the form exp ∑_{i∈I} vⁱη_i with odd elements η_i ∈ *G*, vⁱ ∈ Λ¹(*V*) = *V* and a finite index set *I* ∈ *P*_{finite}(ℕ), where *F_G*(1_{*G*}) = *F*₀1_{*G*}.
- In particular we can define shifts in the arguments as needed for the unitary Dyson-Schwinger equation.
- A shifted functional $F^{\vec{w}}$, with $\vec{w} = \sum_{j \in J} \vec{w}^j \theta_j$ with odd elements θ_j of some Grassmann algebra G' and $\vec{w}^j \in V$, $J \in \mathcal{P}_{\text{finite}}(\mathbb{N})$, is defined as a family $(F_G^{\vec{w}})_G$ of *G*-module maps from $G \otimes \Lambda V$ to $G \otimes G'$.

• Explicitly:

$$\begin{split} \mathcal{F}_{G}^{\vec{w}}(\exp\sum_{i\in I}\mathbf{v}^{i}\eta_{i}) &= \mathcal{F}_{G\otimes G'}(\exp\left(\sum_{i\in I}\mathbf{v}^{i}\eta_{i} + \sum_{j\in J}\vec{w}^{j}\theta_{j}\right))\\ &= \sum_{n\geq 0}\sum_{i_{1}<\ldots< i_{n}}\mathcal{F}_{n}^{\vec{w}}(\mathbf{v}^{i_{1}},\ldots,\mathbf{v}^{i_{n}})\eta_{i_{n}}\cdots\eta_{i_{1}}\;, \end{split}$$

• Explicitly:

$$\begin{split} \mathcal{F}_{G}^{\vec{w}} \left(\exp \sum_{i \in I} \mathbf{v}^{i} \eta_{i} \right) &= \mathcal{F}_{G \otimes G'} \left(\exp \left(\sum_{i \in I} \mathbf{v}^{i} \eta_{i} + \sum_{j \in J} \vec{w}^{j} \theta_{j} \right) \right) \\ &= \sum_{n \geq 0} \sum_{i_{1} < \ldots < i_{n}} \mathcal{F}_{n}^{\vec{w}} (\mathbf{v}^{i_{1}}, \ldots, \mathbf{v}^{i_{n}}) \eta_{i_{n}} \cdots \eta_{i_{1}} \;, \end{split}$$

• with alternating multilinear G'-valued maps $F_n^{\vec{w}}$ as components.

$$F_n^{\vec{w}}(\mathbf{v}^1,\ldots,\mathbf{v}^n) = \sum_{k\geq 0} \sum_{j_1<\ldots< j_k\in J} F_{k+n}(\mathbf{v}^1,\ldots,\mathbf{v}^n,\vec{w}^{j_1},\ldots,\vec{w}^{j_k}) \theta_{j_k}\cdots\theta_{j_1}.$$

Reconstruction Theorem

Let \mathfrak{G} be a covariant Grassmann multiplication algebra as defined above. Then there exists a graded unital algebra \mathfrak{A} and a natural embedding

$$\sigma \equiv (\sigma_G)_G : \mathfrak{G} \Longrightarrow \mathfrak{G}^{\mathfrak{A}}$$

such that for any other graded unital algebra \mathfrak{A}' with a natural embedding $\sigma' : \mathfrak{G} \Longrightarrow \mathfrak{G}^{\mathfrak{A}'}$ there exists a unique homomorphism $\tau : \mathfrak{A} \to \mathfrak{A}'$ with $\sigma'_G = (\mathrm{id} \otimes \tau) \circ \sigma_G$.

The algebra of Fermi fields

• We choose now $V = \Gamma(M, E)$ where *M* is a globally hyperbolic spacetime and denote by V_c its subspace of compactly supported sections.

The algebra of Fermi fields

- We choose now $V = \Gamma(M, E)$ where *M* is a globally hyperbolic spacetime and denote by V_c its subspace of compactly supported sections.
- *V* is interpreted as the space of field configurations.

The algebra of Fermi fields

- We choose now $V = \Gamma(M, E)$ where *M* is a globally hyperbolic spacetime and denote by V_c its subspace of compactly supported sections.
- *V* is interpreted as the space of field configurations.
- We construct a covariant Grassmann multiplication algebra $\mathfrak{G} : \mathfrak{Grass} \to \mathfrak{Alg}^{\mathbb{Z}_2}$, by specifying the algebras $\mathfrak{A}_G \equiv \mathfrak{G}_G$. These are generated by invertible elements $S_G(F)$ with $F \in G \otimes \mathcal{F}_{loc}$ with the following properties and relations.

The algebra of Fermi fields (properties and relations)

• (Parity) $S_G(F)$ is even for even F.

S of Vork

The algebra of Fermi fields (properties and relations)

- (Parity) $S_G(F)$ is even for even F.
- (Naturality) If χ : G → G' is a homomorphism of Grassmann algebras then

$$S_{G'} \circ \mathfrak{G}^{\mathcal{F}_{\mathrm{loc}}} \chi = \mathfrak{G} \chi \circ S_G$$
.

The algebra of Fermi fields (properties and relations)

- (Parity) $S_G(F)$ is even for even F.
- (Naturality) If χ : G → G' is a homomorphism of Grassmann algebras then

$$S_{G'} \circ \mathfrak{G}^{\mathcal{F}_{\mathrm{loc}}} \chi = \mathfrak{G} \chi \circ S_G$$
.

• (Quantization condition) $S_G(\eta) = \iota_G(e^{i\eta})$ for $\eta \in G$.

The algebra of Fermi fields (properties and relations, continued)

(Causal factorization)

$$S_G(F_1 + F_2 + F_3) = S_G(F_1 + F_2)S_G(F_2)^{-1}S_G(F_2 + F_3)$$

for even functionals F_1 , F_2 , F_3 with supp $F_1 \cap J_-(\text{supp } F_3) = \emptyset$ where J_- denotes the past of the region in the argument.

The algebra of Fermi fields (properties and relations, continued)

• (Causal factorization)

$$S_G(F_1 + F_2 + F_3) = S_G(F_1 + F_2)S_G(F_2)^{-1}S_G(F_2 + F_3)$$

for even functionals F_1 , F_2 , F_3 with supp $F_1 \cap J_-(\text{supp } F_3) = \emptyset$ where J_- denotes the past of the region in the argument.

• (Dynamics) Let $\vec{h} = \sum_{i \in I} \eta_i \vec{h}^i$ with odd elements $\eta_i \in G$, $\vec{h}^i \in V_c$ and $I \in \mathcal{P}_{\text{finite}}(\mathbb{N})$. Then

$$S_G(F) = S_G(F^{\vec{h}} + \delta_{\vec{h}}L)$$

where

$$\delta_{\vec{h}}L = L(f)^{\vec{h}} - \mathbf{1}_G \otimes L(f)$$

with $f \equiv 1$ on supp \vec{h} and $\mathbf{1}_G$ denotes the unit of G.

• Note that the **Quantization** condition implies $S_G(0) = 1_{\mathfrak{A}_G}$.

- Note that the **Quantization** condition implies $S_G(0) = 1_{\mathfrak{A}_G}$.
- Setting F = 0 in the relation **Dynamics**, we obtain

$$S_G(\delta_{\vec{h}}L) = \mathbf{1}_{\mathfrak{A}_G},$$

which is characteristic for the on-shell algebra.

- Note that the **Quantization** condition implies $S_G(0) = 1_{\mathfrak{A}_G}$.
- Setting F = 0 in the relation **Dynamics**, we obtain

$$S_G(\delta_{\vec{h}}L) = \mathbf{1}_{\mathfrak{A}_G},$$

which is characteristic for the *on-shell* algebra.

• Using the above relations one can, in particular, derive the CAR relations for the free Dirac field.

- Note that the **Quantization** condition implies $S_G(0) = 1_{\mathfrak{A}_G}$.
- Setting F = 0 in the relation **Dynamics**, we obtain

$$S_G(\delta_{\vec{h}}L) = \mathbf{1}_{\mathfrak{A}_G},$$

which is characteristic for the on-shell algebra.

- Using the above relations one can, in particular, derive the CAR relations for the free Dirac field.
- As in the general case, we define 𝔅 as the inductive limit of this system with injections ι_n : 𝔅ⁿ → 𝔅, where 𝔅ⁿ ⊂ 𝔅_{Λℝⁿ} are defined in the course of the proof of the Reconstruction Theorem.

 To define involution, we set v^{*} = v on the real vector space V and for linear maps on ΛV, we set:

$$oldsymbol{A}^*(\omega) = (-1)^{\mathrm{dg}(oldsymbol{A})\mathrm{dg}(\omega)}oldsymbol{A}(\omega^*)^* \;,\; \omega\in \Lambda V$$

 To define involution, we set v^{*} = v on the real vector space V and for linear maps on ΛV, we set:

$$oldsymbol{A}^*(\omega) = (-1)^{\mathrm{dg}(oldsymbol{A})\mathrm{dg}(\omega)}oldsymbol{A}(\omega^*)^* \;,\; \omega\in \Lambda V$$

For the tensor product G ⊗ 𝔅 of a Grassmann algebra G with a graded *-algebra 𝔅 we set

$$(\eta \otimes a)^* = (-1)^{\mathrm{dg}(\eta)\mathrm{dg}(a)}\eta^* \otimes a^* \ , \ \eta \in G \ , \ a \in \mathfrak{A} \ .$$

 To define involution, we set v^{*} = v on the real vector space V and for linear maps on ΛV, we set:

$$oldsymbol{A}^*(\omega) = (-1)^{\mathrm{dg}(oldsymbol{A})\mathrm{dg}(\omega)}oldsymbol{A}(\omega^*)^* \;,\; \omega\in \Lambda V$$

• For the tensor product $G \otimes \mathfrak{A}$ of a Grassmann algebra G with a graded *-algebra \mathfrak{A} we set

$$(\eta\otimes a)^*=(-1)^{\mathrm{dg}(\eta)\mathrm{dg}(a)}\eta^*\otimes a^*\ ,\ \eta\in G\ ,\ a\in\mathfrak{A}$$
 .

For a covariant Grassmann multiplication algebra & we require that the algebras & G are *-algebras and the embeddings
 *ι*_G : G → & G are *-homomorphisms.

 To define involution, we set v^{*} = v on the real vector space V and for linear maps on ΛV, we set:

$$oldsymbol{A}^*(\omega) = (-1)^{\mathrm{dg}(oldsymbol{A})\mathrm{dg}(\omega)}oldsymbol{A}(\omega^*)^* \;,\; \omega\in \Lambda V$$

• For the tensor product $G \otimes \mathfrak{A}$ of a Grassmann algebra G with a graded *-algebra \mathfrak{A} we set

$$(\eta\otimes a)^*=(-1)^{\mathrm{dg}(\eta)\mathrm{dg}(a)}\eta^*\otimes a^*\ ,\ \eta\in G\ ,\ a\in\mathfrak{A}$$
 .

- For a covariant Grassmann multiplication algebra & we require that the algebras & G are *-algebras and the embeddings
 *ι*_G : G → & G are *-homomorphisms.
- The algebras $\mathfrak{A}_G = \mathfrak{G}G$ defined by the axioms above gets equipped with a *-operation by $S_G(F)^* = S_G(F^*)^{-1}$.

 To define involution, we set v^{*} = v on the real vector space V and for linear maps on ΛV, we set:

$$oldsymbol{A}^*(\omega) = (-1)^{\mathrm{dg}(oldsymbol{A})\mathrm{dg}(\omega)}oldsymbol{A}(\omega^*)^* \;,\; \omega\in \Lambda V$$

• For the tensor product $G \otimes \mathfrak{A}$ of a Grassmann algebra G with a graded *-algebra \mathfrak{A} we set

$$(\eta\otimes a)^*=(-1)^{\mathrm{dg}(\eta)\mathrm{dg}(a)}\eta^*\otimes a^*\ ,\ \eta\in G\ ,\ a\in\mathfrak{A}$$
 .

- For a covariant Grassmann multiplication algebra & we require that the algebras & G are *-algebras and the embeddings
 *ι*_G : G → & G are *-homomorphisms.
- The algebras $\mathfrak{A}_G = \mathfrak{G}G$ defined by the axioms above gets equipped with a *-operation by $S_G(F)^* = S_G(F^*)^{-1}$.
- The subspaces $\mathfrak{A}^n \subset \mathfrak{A}_{\Lambda\mathbb{R}^n}$ are invariant under the *-operation.

 To define involution, we set v^{*} = v on the real vector space V and for linear maps on ΛV, we set:

$$oldsymbol{A}^*(\omega) = (-1)^{\mathrm{dg}(\mathcal{A})\mathrm{dg}(\omega)}oldsymbol{A}(\omega^*)^* \;,\; \omega\in\Lambda V$$

• For the tensor product $G \otimes \mathfrak{A}$ of a Grassmann algebra G with a graded *-algebra \mathfrak{A} we set

$$(\eta\otimes a)^*=(-1)^{\mathrm{dg}(\eta)\mathrm{dg}(a)}\eta^*\otimes a^*\ ,\ \eta\in G\ ,\ a\in\mathfrak{A}$$
 .

- For a covariant Grassmann multiplication algebra & we require that the algebras & G are *-algebras and the embeddings
 *ι*_G : G → & G are *-homomorphisms.
- The algebras $\mathfrak{A}_G = \mathfrak{G}G$ defined by the axioms above gets equipped with a *-operation by $S_G(F)^* = S_G(F^*)^{-1}$.
- The subspaces $\mathfrak{A}^n \subset \mathfrak{A}_{\mathbb{AR}^n}$ are invariant under the *-operation.
- The (universal) involution on the inductive limit of these spaces, denoted by \mathfrak{A} is induced by

$$\iota_n(a)^* \doteq (-1)^{n(n-1)/2 + n(\deg(a) + n)} \iota_n(a^*) .$$
 (1)

• We specialize now to the Dirac field on Minkowski spacetime

- We specialize now to the Dirac field on Minkowski spacetime
- The space of field configurations *h* ∈ *V* is the space of smooth sections of the spinor bundle, equipped with a nondegenerate Lorentz invariant sesquilinear form (*u*, v) → *ū*v on each fiber.

Dirac field I

- We specialize now to the Dirac field on Minkowski spacetime
- The space of field configurations *h* ∈ *V* is the space of smooth sections of the spinor bundle, equipped with a nondegenerate Lorentz invariant sesquilinear form (*u*, v) → *ū*v on each fiber.
- We choose V = C[∞](M, C⁴) with the Spin(2) ≡ SL(2, C) action on C⁴ by the matrix representation

$$SL(2,\mathbb{C})
i A \mapsto \left(\begin{array}{cc} A & 0 \\ 0 & (A^*)^{-1} \end{array} \right)$$

- We specialize now to the Dirac field on Minkowski spacetime
- The space of field configurations *h* ∈ *V* is the space of smooth sections of the spinor bundle, equipped with a nondegenerate Lorentz invariant sesquilinear form (*u*, v) → *ū*v on each fiber.
- We choose V = C[∞](M, C⁴) with the Spin(2) ≡ SL(2, C) action on C⁴ by the matrix representation

$$\operatorname{SL}(2,\mathbb{C}) \ni A \mapsto \left(egin{array}{cc} A & 0 \\ 0 & (A^*)^{-1} \end{array}
ight)$$

• which corresponds to the choice of γ-matrices:

$$\gamma_0 = \left(egin{array}{cc} 0 & 1 \ 1 & 0 \end{array}
ight), \, \gamma_i = \left(egin{array}{cc} 0 & \sigma_i \ -\sigma_i & 0 \end{array}
ight) \,, \, \, i=1,2,3$$

- We specialize now to the Dirac field on Minkowski spacetime
- The space of field configurations *h* ∈ *V* is the space of smooth sections of the spinor bundle, equipped with a nondegenerate Lorentz invariant sesquilinear form (*u*, v) → *ū*v on each fiber.
- We choose V = C[∞](M, C⁴) with the Spin(2) ≡ SL(2, C) action on C⁴ by the matrix representation

$$\operatorname{SL}(2,\mathbb{C}) \ni A \mapsto \left(egin{array}{cc} A & 0 \\ 0 & (A^*)^{-1} \end{array}
ight)$$

• which corresponds to the choice of γ -matrices:

$$\gamma_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \gamma_i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix}, i = 1, 2, 3$$

• The sesquilinear form is obtained from the standard scalar product (\cdot, \cdot) on \mathbb{C}^4 by

$$\overline{u}\mathbf{v}=(u,\gamma_0\mathbf{v})$$

- We specialize now to the Dirac field on Minkowski spacetime
- The space of field configurations *h* ∈ *V* is the space of smooth sections of the spinor bundle, equipped with a nondegenerate Lorentz invariant sesquilinear form (*u*, v) → *ū*v on each fiber.
- We choose V = C[∞](M, C⁴) with the Spin(2) ≡ SL(2, C) action on C⁴ by the matrix representation

$$\operatorname{SL}(2,\mathbb{C}) \ni A \mapsto \left(egin{array}{cc} A & 0 \\ 0 & (A^*)^{-1} \end{array}
ight)$$

which corresponds to the choice of γ-matrices:

$$\gamma_0 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \gamma_i = \begin{pmatrix} 0 & \sigma_i \\ -\sigma_i & 0 \end{pmatrix}, i = 1, 2, 3$$

• The sesquilinear form is obtained from the standard scalar product (\cdot, \cdot) on \mathbb{C}^4 by

$$\overline{u}\mathbf{v} = (u, \gamma_0 \mathbf{v})$$

 The γ-matrices are then hermitian with respect to the sesquilinear form.

• For compactly supported sections we define

$$\langle h_1,h_2
angle = \int dx\,\overline{h_1(x)}h_2(x)\;.$$

• For compactly supported sections we define

$$\langle h_1,h_2
angle=\int dx\,\overline{h_1(x)}h_2(x)\;.$$

• The classical Dirac field ψ is the evaluation functional $\psi(x) : V \to \mathbb{C}^4, \psi(x)[h] \doteq h(x).$

For compactly supported sections we define

$$\langle h_1,h_2
angle = \int dx\,\overline{h_1(x)}h_2(x)\;.$$

- The classical Dirac field ψ is the evaluation functional $\psi(x) : V \to \mathbb{C}^4, \psi(x)[h] \doteq h(x).$
- The conjugate field $\overline{\psi}$ maps the configuration into the dual space $\overline{\psi}(x) : V \to (\mathbb{C}^4)^*, \overline{\psi}(x)[h_1](v) \doteq \overline{h_1(x)}v.$

For compactly supported sections we define

$$\langle h_1,h_2\rangle = \int dx\,\overline{h_1(x)}h_2(x)\;.$$

- The classical Dirac field ψ is the evaluation functional $\psi(x) : V \to \mathbb{C}^4, \psi(x)[h] \doteq h(x).$
- The conjugate field $\overline{\psi}$ maps the configuration into the dual space $\overline{\psi}(x) : V \to (\mathbb{C}^4)^*, \overline{\psi}(x)[h_1](v) \doteq \overline{h_1(x)}v.$
- Smeared fields are defined as usual, that is, ψ(s)[h] ≐ ⟨s, h⟩, where s ∈ V_c and ψ(s)[h] ≐ ⟨h, s⟩.

For compactly supported sections we define

$$\langle h_1,h_2\rangle = \int dx\,\overline{h_1(x)}h_2(x)\;.$$

- The classical Dirac field ψ is the evaluation functional $\psi(x) : V \to \mathbb{C}^4, \psi(x)[h] \doteq h(x).$
- The conjugate field $\overline{\psi}$ maps the configuration into the dual space $\overline{\psi}(x) : V \to (\mathbb{C}^4)^*, \overline{\psi}(x)[h_1](v) \doteq \overline{h_1(x)}v.$
- Smeared fields are defined as usual, that is, ψ(s)[h] ≐ ⟨s, h⟩, where s ∈ V_c and ψ(s)[h] ≐ ⟨h, s⟩.
- The Dirac Lagrangian $L = \overline{\psi} \land D \psi$ with the Dirac operator $D = i\gamma \partial m$ associates to any compactly supported test function f a 2-form L(f) on V, namely

$$L(f)[h_1,h_2] = \langle fh_1, \not D(fh_2) \rangle - \langle fh_2, \not D(fh_1) \rangle .$$

of York

Multiplication algebra for the Dirac field

• We extend the above introduced functionals to *G*-valued functionals.

- We extend the above introduced functionals to *G*-valued functionals.
- For $\eta \in G$, $s, h \in V_c$, we have:

$$\psi(\boldsymbol{s})_{\boldsymbol{G}}[\boldsymbol{h}\boldsymbol{\eta}] = \psi(\boldsymbol{s})[\boldsymbol{h}]\boldsymbol{\eta} = \langle \boldsymbol{s}, \boldsymbol{h} \rangle \boldsymbol{\eta}$$

and

$$\overline{\psi}(\boldsymbol{s})_{\boldsymbol{G}}[\boldsymbol{h}\boldsymbol{\eta}] = \overline{\psi}(\boldsymbol{s})[\boldsymbol{h}]\boldsymbol{\eta} = \langle \boldsymbol{h}, \boldsymbol{s} \rangle \boldsymbol{\eta}$$

- We extend the above introduced functionals to *G*-valued functionals.
- For $\eta \in G$, $s, h \in V_c$, we have:

$$\psi(\boldsymbol{s})_{\boldsymbol{G}}[\boldsymbol{h}\boldsymbol{\eta}] = \psi(\boldsymbol{s})[\boldsymbol{h}]\boldsymbol{\eta} = \langle \boldsymbol{s}, \boldsymbol{h} \rangle \boldsymbol{\eta}$$

and

$$\overline{\psi}(\boldsymbol{s})_{\boldsymbol{G}}[\boldsymbol{h}\eta] = \overline{\psi}(\boldsymbol{s})[\boldsymbol{h}]\eta = \langle \boldsymbol{h}, \boldsymbol{s} \rangle \eta$$

• We extend the sesquilinear form $\langle \cdot, \cdot \rangle$ to a $G \otimes \mathbb{C}$ -valued map $\langle \cdot, \cdot \rangle_G$ on $(G \otimes V_c) \times (G \otimes V_c)$ by

$$\langle \eta h, h' \eta' \rangle_{G} = \eta \langle h, h' \rangle \eta'$$

for $h, h' \in V_c$ and $\eta, \eta' \in G$.

• For $\eta \in G$, $s, h \in V_c$, we have:

$$\psi(\boldsymbol{s})_{\boldsymbol{G}}[\boldsymbol{h}\boldsymbol{\eta}] = \psi(\boldsymbol{s})[\boldsymbol{h}]\boldsymbol{\eta} = \langle \boldsymbol{s}, \boldsymbol{h} \rangle \boldsymbol{\eta}$$

and

$$\overline{\psi}(\boldsymbol{s})_{\boldsymbol{G}}[\boldsymbol{h}\eta] = \overline{\psi}(\boldsymbol{s})[\boldsymbol{h}]\eta = \langle \boldsymbol{h}, \boldsymbol{s} \rangle \eta$$

• We extend the sesquilinear form $\langle \cdot, \cdot \rangle$ to a $G \otimes \mathbb{C}$ -valued map $\langle \cdot, \cdot \rangle_G$ on $(G \otimes V_c) \times (G \otimes V_c)$ by

$$\langle \eta h, h' \eta' \rangle_{G} = \eta \langle h, h' \rangle \eta'$$

for $h, h' \in V_c$ and $\eta, \eta' \in G$.

We also extend the fields ψ and ψ to test sections η_isⁱ ∈ G ⊗ V_c by ψ_G(ηs)[hηⁱ] = ηψ(s)[h]ηⁱ = ⟨ηs, hηⁱ⟩_G and similarly for ψ_G.

• For $\eta \in G$, $s, h \in V_c$, we have:

$$\psi(\mathbf{s})_{\mathbf{G}}[h\eta] = \psi(\mathbf{s})[h]\eta = \langle \mathbf{s}, h \rangle \eta$$

and

$$\overline{\psi}(\boldsymbol{s})_{\boldsymbol{G}}[\boldsymbol{h}\eta] = \overline{\psi}(\boldsymbol{s})[\boldsymbol{h}]\eta = \langle \boldsymbol{h}, \boldsymbol{s} \rangle \eta$$

• We extend the sesquilinear form $\langle \cdot, \cdot \rangle$ to a $G \otimes \mathbb{C}$ -valued map $\langle \cdot, \cdot \rangle_G$ on $(G \otimes V_c) \times (G \otimes V_c)$ by

$$\langle \eta h, h' \eta' \rangle_{G} = \eta \langle h, h' \rangle \eta'$$

for $h, h' \in V_c$ and $\eta, \eta' \in G$.

- We also extend the fields ψ and ψ to test sections η_isⁱ ∈ G ⊗ V_c by ψ_G(ηs)[hη'] = ηψ(s)[h]η' = ⟨ηs, hη'⟩_G and similarly for ψ_G.
- In particular we have: $\psi_G(\eta s) = \eta \psi_G(s), \ \overline{\psi}_G(\eta s) = \eta \overline{\psi}_G(s).$

Bosonic theory Fermionic theory

Variation of the Lagrangian

The extended Lagrangian *L*(*f*)_{*G*} is a quadratic form on even elements of *G* ⊗ *V_c*.

 The extended Lagrangian *L*(*f*)_G is a quadratic form on even elements of *G* ⊗ *V_c*.

• Let $h = \sum h^i \eta_i$ with $h^i \in V$ and odd elements $\eta_i \in G$. Then

$$L(f)_G[e^h] = rac{1}{2}L(f)_G[hh] = rac{1}{2}\sum L(f)[h^i \wedge h^j]\eta_j\eta_i = \langle fh, D h \rangle_G$$

- The extended Lagrangian $L(f)_G$ is a quadratic form on even elements of $G \otimes V_c$.
- Let $h = \sum h^i \eta_i$ with $h^i \in V$ and odd elements $\eta_i \in G$. Then

$$L(f)_G[e^h] = rac{1}{2}L(f)_G[hh] = rac{1}{2}\sum L(f)[h^i \wedge h^j]\eta_j\eta_i = \langle fh, D fh \rangle_G.$$

• The variation under a shift $\vec{h} = \sum_{i \in I} \vec{h}^i \theta_i$, with odd elements $\theta_i \in G$, $\vec{h}^i \in V_c$ is:

$$\delta_{\vec{h}} \mathcal{L}_{G}[\boldsymbol{e}^{\boldsymbol{h}}] = \delta_{\vec{h}} \mathcal{L}_{G}[\boldsymbol{1} + \boldsymbol{h}] = \langle \vec{h}, \not \!\!D \boldsymbol{h} \rangle_{G} + \langle \boldsymbol{h}, \not \!\!D \vec{h} \rangle_{G} + \langle \vec{h}, \not \!\!D \vec{h} \rangle_{G} \,.$$

- The extended Lagrangian $L(f)_G$ is a quadratic form on even elements of $G \otimes V_c$.
- Let $h = \sum h^i \eta_i$ with $h^i \in V$ and odd elements $\eta_i \in G$. Then

$$L(f)_G[e^h] = rac{1}{2}L(f)_G[hh] = rac{1}{2}\sum L(f)[h^i \wedge h^j]\eta_j\eta_i = \langle fh, D fh \rangle_G.$$

• The variation under a shift $\vec{h} = \sum_{i \in I} \vec{h}^i \theta_i$, with odd elements $\theta_i \in G$, $\vec{h}^i \in V_c$ is:

$$\delta_{\vec{h}} \mathcal{L}_{G}[\boldsymbol{e}^{\boldsymbol{h}}] = \delta_{\vec{h}} \mathcal{L}_{G}[\boldsymbol{1} + \boldsymbol{h}] = \langle \vec{h}, \boldsymbol{D} \boldsymbol{h} \rangle_{G} + \langle \boldsymbol{h}, \boldsymbol{D} \vec{h} \rangle_{G} + \langle \vec{h}, \boldsymbol{D} \vec{h} \rangle_{G} \,.$$

• This can be re-written as: $\delta_{\vec{h}}L_G = \psi_G(\not{\!\!D}\vec{h}) - \overline{\psi}_G(\not{\!\!D}\vec{h}) + \langle \vec{h}, \not{\!\!D}\vec{h} \rangle_G$.

- The extended Lagrangian $L(f)_G$ is a quadratic form on even elements of $G \otimes V_c$.
- Let $h = \sum h^i \eta_i$ with $h^i \in V$ and odd elements $\eta_i \in G$. Then

$$L(f)_G[e^h] = rac{1}{2}L(f)_G[hh] = rac{1}{2}\sum L(f)[h^i \wedge h^j]\eta_j\eta_i = \langle fh, D\!\!/ fh \rangle_G.$$

• The variation under a shift $\vec{h} = \sum_{i \in I} \vec{h}^i \theta_i$, with odd elements $\theta_i \in G$, $\vec{h}^i \in V_c$ is:

$$\delta_{\vec{h}} \mathcal{L}_{G}[\boldsymbol{e}^{\boldsymbol{h}}] = \delta_{\vec{h}} \mathcal{L}_{G}[\boldsymbol{1} + \boldsymbol{h}] = \langle \vec{\boldsymbol{h}}, \boldsymbol{\not} \boldsymbol{b} \boldsymbol{h} \rangle_{G} + \langle \boldsymbol{h}, \boldsymbol{\not} \boldsymbol{b} \vec{\boldsymbol{h}} \rangle_{G} + \langle \vec{\boldsymbol{h}}, \boldsymbol{\not} \boldsymbol{b} \vec{\boldsymbol{h}} \rangle_{G} \,.$$

- This can be re-written as: $\delta_{\vec{h}}L_G = \psi_G(\not D \vec{h}) \overline{\psi}_G(\not D \vec{h}) + \langle \vec{h}, \not D \vec{h} \rangle_G$.
- Let s ∈ (G ⊗ V_c)_{even} and let D_G(s) ≐ ψ_G(s) − ψ_G(s) be the smeared *classical* "doubled Dirac field" viewed as an element in (G ⊗ F_{loc})_{even}.

Proposition

Let
$$s = \sum_{i=1}^{n} \eta_i s^i$$
 with $s^i \in V_c$ and η_i odd elements of G . The S-matrix S_G built with the doubled Dirac field has the expansion

$$S_G(\mathfrak{D}_G(s)) = \mathbf{1}_{\mathfrak{A}} + \sum_{k=1}^n \frac{i^k}{k!} \sum_{i_1 < \cdots < i_k} \eta_{i_k} \dots \eta_{i_1} B_k(s^{i_1} \wedge \cdots \wedge s^{i_k}) \quad (2)$$

with \mathbb{R} -multilinear alternating maps $B_k : V_c^k \to \mathfrak{A}, k = 1, ..., n$, (the time ordered products of the doubled Dirac field).

Next, use *f* = η*s* as the smearing object for D, with *s* ∈ *V_c* and η a generator of *G*.

- Next, use *f* = η*s* as the smearing object for D, with *s* ∈ *V_c* and η a generator of *G*.
- The above Proposition implies $S_G(\mathfrak{D}_G(\eta s))^* = 1 iB_1(s)^*\eta$ and

$$S_G(\mathfrak{D}_G(\eta s)^*)^{-1} = S_G(\mathfrak{D}_G(-\eta s))^{-1} = (1 - i\eta B_1(s))^{-1} = 1 + i\eta B_1(s)$$

- Next, use *f* = η*s* as the smearing object for D, with *s* ∈ *V_c* and η a generator of *G*.
- The above Proposition implies $S_G(\mathfrak{D}_G(\eta s))^* = 1 iB_1(s)^*\eta$ and

$$S_G(\mathfrak{D}_G(\eta s)^*)^{-1} = S_G(\mathfrak{D}_G(-\eta s))^{-1} = (1 - i\eta B_1(s))^{-1} = 1 + i\eta B_1(s)$$

• Since $B_1(s)$ anticommutes with η , it is selfadjoint.

- Next, use *f* = η*s* as the smearing object for D, with *s* ∈ *V_c* and η a generator of *G*.
- The above Proposition implies $S_G(\mathfrak{D}_G(\eta s))^* = 1 iB_1(s)^*\eta$ and

$$S_G(\mathfrak{D}_G(\eta s)^*)^{-1} = S_G(\mathfrak{D}_G(-\eta s))^{-1} = (1 - i\eta B_1(s))^{-1} = 1 + i\eta B_1(s)$$

- Since $B_1(s)$ anticommutes with η , it is selfadjoint.
- We decompose it in its complex linear and antilinear parts:

$$B_1(s) = \Psi(s)^* + \Psi(s) \;, \quad \Psi(s) \in \mathfrak{A} \;.$$

- Next, use *f* = η*s* as the smearing object for D, with *s* ∈ *V_c* and η a generator of *G*.
- The above Proposition implies $S_G(\mathfrak{D}_G(\eta s))^* = 1 iB_1(s)^*\eta$ and

$$S_G(\mathfrak{D}_G(\eta s)^*)^{-1} = S_G(\mathfrak{D}_G(-\eta s))^{-1} = (1 - i\eta B_1(s))^{-1} = 1 + i\eta B_1(s)$$

- Since $B_1(s)$ anticommutes with η , it is selfadjoint.
- We decompose it in its complex linear and antilinear parts:

$$B_1(s) = \Psi(s)^* + \Psi(s) \;, \quad \Psi(s) \in \mathfrak{A} \;.$$

• We interpret Ψ as the *quantized* Dirac field

- Next, use *f* = η*s* as the smearing object for D, with *s* ∈ *V_c* and η a generator of *G*.
- The above Proposition implies $S_G(\mathfrak{D}_G(\eta s))^* = 1 iB_1(s)^*\eta$ and

$$S_G(\mathfrak{D}_G(\eta s)^*)^{-1} = S_G(\mathfrak{D}_G(-\eta s))^{-1} = (1 - i\eta B_1(s))^{-1} = 1 + i\eta B_1(s)$$

- Since $B_1(s)$ anticommutes with η , it is selfadjoint.
- We decompose it in its complex linear and antilinear parts:

$$B_1(s) = \Psi(s)^* + \Psi(s) \;, \quad \Psi(s) \in \mathfrak{A} \;.$$

- We interpret Ψ as the *quantized* Dirac field
- It is an \mathfrak{A} -valued *antilinear* functional on V_c .

Theorem

The quantized Dirac field Ψ satisfies the canonical anticommutation rules over V_c :

$$\{\Psi(s^1)^*, \Psi(s^2)^*\} = \{\Psi(s^1), \Psi(s^2)\} = 0 \ , \ \{\Psi(s^1), \Psi(s^2)^*\} = \langle s^2, i \$ s^1 \rangle 1_{\mathfrak{A}} \ ,$$

where

$$\mathbf{\$} = (i\gamma\partial + m)\Delta$$

with Δ the commutator function of the scalar theory.

C*-structure (even functionals)

• The axioms define a graded unital *-algebra $\mathfrak{A} = \mathfrak{A}_0 \oplus \mathfrak{A}_1$. We now want to equip it with a C*-norm.

C^* -structure (even functionals)

- The axioms define a graded unital *-algebra $\mathfrak{A} = \mathfrak{A}_0 \oplus \mathfrak{A}_1$. We now want to equip it with a C*-norm.
- We start with S-matrices *S*(*F*) with even fermionic functionals *F* without auxiliary Grassmann variables.

C^* -structure (even functionals)

- The axioms define a graded unital *-algebra $\mathfrak{A} = \mathfrak{A}_0 \oplus \mathfrak{A}_1$. We now want to equip it with a C*-norm.
- We start with S-matrices *S*(*F*) with even fermionic functionals *F* without auxiliary Grassmann variables.
- There we can proceed as in the case of a bosonic field.

C^{*}-structure (even functionals)

- The axioms define a graded unital *-algebra $\mathfrak{A} = \mathfrak{A}_0 \oplus \mathfrak{A}_1$. We now want to equip it with a C*-norm.
- We start with S-matrices *S*(*F*) with even fermionic functionals *F* without auxiliary Grassmann variables.
- There we can proceed as in the case of a bosonic field.
- We look at the group generated by these elements modulo the relations Causality and the Quantization condition $S(c) = e^{ic}1$ for constant functionals *c* and define a state on the group algebra by

$$\omega(U) = 0 \text{ for } U \notin \{ e^{ic} 1 | c \in \mathbb{R} \} .$$
(3)

C^{*}-structure (even functionals)

- The axioms define a graded unital *-algebra $\mathfrak{A} = \mathfrak{A}_0 \oplus \mathfrak{A}_1$. We now want to equip it with a C*-norm.
- We start with S-matrices *S*(*F*) with even fermionic functionals *F* without auxiliary Grassmann variables.
- There we can proceed as in the case of a bosonic field.
- We look at the group generated by these elements modulo the relations Causality and the Quantization condition $S(c) = e^{ic}1$ for constant functionals *c* and define a state on the group algebra by

$$\omega(U) = 0 \text{ for } U \notin \{ e^{ic} 1 | c \in \mathbb{R} \} .$$
(3)

• The operator norm in the induced GNS representation is a C*-norm. We then equip the algebra with the maximal C*-norm.

• We now want to extend this C*-norm.

- We now want to extend this C*-norm.
- We cannot expect that it can be extended to the full algebra, since the presence of the Grassmann variables induces an expansion of the S-matrices into polynomials of Grassmann variables whose coefficients cannot be expected to be bounded, in general.

- We now want to extend this C*-norm.
- We cannot expect that it can be extended to the full algebra, since the presence of the Grassmann variables induces an expansion of the S-matrices into polynomials of Grassmann variables whose coefficients cannot be expected to be bounded, in general.
- Instead we use the anticommutation relations which imply that for $||f||_{V_c} = 1$, with the seminorm

$$||f||_{V_c}^2 = \langle f, i \$ f \rangle ,$$

 $\Psi(f)^*\Psi(f)$ is a selfadjoint projection.

- We now want to extend this C*-norm.
- We cannot expect that it can be extended to the full algebra, since the presence of the Grassmann variables induces an expansion of the S-matrices into polynomials of Grassmann variables whose coefficients cannot be expected to be bounded, in general.
- Instead we use the anticommutation relations which imply that for $||f||_{V_c} = 1$, with the seminorm

 $||f||_{V_c}^2 = \langle f, i \$ f \rangle ,$

 $\Psi(f)^*\Psi(f)$ is a selfadjoint projection.

• Hence for every non-zero C*-seminorm

 $||\Psi(f)|| = ||f||_{V_c}$

• We have shown that $\Psi(f) = 0$ if $||f||_{V_c} = 0$.

- We have shown that $\Psi(f) = 0$ if $||f||_{V_c} = 0$.
- We conclude that the *-algebra generated by Ψ(*f*), *f* ∈ *V_c* is the algebra of canonical anticommutation relations.

- We have shown that $\Psi(f) = 0$ if $||f||_{V_c} = 0$.
- We conclude that the *-algebra generated by Ψ(*f*), *f* ∈ *V_c* is the algebra of canonical anticommutation relations.
- We consider the sub-*-algebra 𝔅 of 𝔅, generated by the S-matrices S(F) with even F as above and the Dirac fields Ψ(f).

- We have shown that $\Psi(f) = 0$ if $||f||_{V_c} = 0$.
- We conclude that the *-algebra generated by Ψ(*f*), *f* ∈ *V_c* is the algebra of canonical anticommutation relations.
- We consider the sub-*-algebra B of A, generated by the S-matrices S(F) with even F as above and the Dirac fields Ψ(f).

Theorem

The maximal C*-seminorm on \mathfrak{B} exists and is a C*-norm.

Thank you very much for your attention!