Uhlenbeck Compactness and Optimal Regularity in Lorentzian Geometry and for Yang-Mills Gauge Theories

Moritz Reintjes
City University of Hong Kong (as of August 202I) University of Konstanz (current)

Mathematical Physics Seminar
University Regensburg
16 July 202 I

Funding: DFG - German Research Foundation, (2019-202I);
FCT/Portugal and CAMGSD, Instituto Superior Técnico, (2017-2018).
Collaborator: Blake Temple (University of California, Davis)

A little background on Shock Waves:

-Shock waves (discontinuities) are typical phenomena in fluid dynamics:

- For the Einstein equations with a fluid source $T^{\mu \nu}$ (Cosmology; Stars)

$$
\begin{aligned}
R^{\mu \nu}-\frac{1}{2} g^{\mu \nu} R & =8 \pi T^{\mu \nu} \\
\nabla_{\nu} T^{\mu \nu} & =0
\end{aligned}
$$

shock waves form when flow is compressive enough.

Motivation from General Relativity:

- In coordinates where the Einstein equations are solvable, regularity issues often arise. (Singularity at Schwarzschild radius.)
- Shock wave solutions of Einstein eqn's are such [Israel, I966]: Their metric tensors are only Lipschitz and appear singular.
Can one remove these singularities in the metric tensor?

Motivation from General Relativity:

- In coordinates where the Einstein equations are solvable, regularity issues often arise. (Singularity at Schwarzschild radius.)
- Shock wave solutions of Einstein eqn's are such [lsrael, I966]: Their metric tensors are only Lipschitz and appear singular.

Can one remove these singularities in the metric tensor?

- Yes, ... across a single shock surface. [Israel, I 966]
- Yes, ... across two intersecting shock surfaces. [R., 20|4]

By coordinate transformation to "optimal metric regularity".

Motivation from General Relativity:

- In coordinates where the Einstein equations are solvable, regularity issues often arise. (Singularity at Schwarzschild radius.)
- Shock wave solutions of Einstein eqn's are such [lsrael, I966]: Their metric tensors are only Lipschitz and appear singular.
Can one remove these singularities in the metric tensor?
- Yes, ... across a single shock surface. [Israel, I 966]
- Yes, ... across two intersecting shock surfaces. [R., 20|4]

By coordinate transformation to "optimal metric regularity".

- The question remained open for general shock wave solutions.
- E.g.: Glimm scheme based shock solutions of Einstein-Euler eqn's. [Groah \& Temple (2004)]

Motivation from General Relativity:

- In coordinates where the Einstein equations are solvable, regularity issues often arise. (Singularity at Schwarzschild radius.)
- Shock wave solutions of Einstein eqn's are such [lsrael, I966]: Their metric tensors are only Lipschitz and appear singular.

Can one remove these singularities in the metric tensor?

Corollary: [R. \& Temple, Dec. 2019.]
These singularities are removable by a coordinate transformation.

Motivation from General Relativity:

- In coordinates where the Einstein equations are solvable, regularity issues often arise. (Singularity at Schwarzschild radius.)
- Shock wave solutions of Einstein eqn's are such [lsrael, I966]: Their metric tensors are only Lipschitz and appear singular.

Can one remove these singularities in the metric tensor?

Thm I: ("Optimal Regularity") [R. \& Temple, Dec. 2019]

Any affine L^{∞} connection Γ with L^{∞} Riemann curvature can be smoothed to $W^{1, p}$ (any $p<\infty$) by coordinate transformation.

Corollary: [R. \& Temple, Dec. 20I 9.]

These singularities are removable by a coordinate transformation.

Preview of results:

Thm I: ("Optimal Regularity") [R. \& Temple, Dec. 2019]
Any affine L^{∞} connection Γ with L^{∞} Riemann curvature can be smoothed to $W^{1, p}$ (any $p<\infty$) by coordinate transformation.

Thm 2: [R. \& Temple, Dec. 20I9.]

Uhlenbeck compactness in Lorentzian geometry (affine connections).

Preview of results:

Thm I: ("Optimal Regularity") [R. \& Temple, Dec. 2019]
Any affine L^{∞} connection Γ with L^{∞} Riemann curvature can be smoothed to $W^{1, p}$ (any $p<\infty$) by coordinate transformation.

Thm 2: [R. \& Temple, Dec. 2019.]

Uhlenbeck compactness in Lorentzian geometry (affine connections).

Thm 3: [R. \& Temple, May 202I]
The results of Thm's I \& 2 extend from tangent bundles to vector bundles, with compact and non-compact gauge groups. (Yang-Mills gauge theories of Particle Physics.)

Optimal Regularity

The setting:

- Connection components: $\Gamma \equiv \Gamma_{i j}^{k} \quad(k, i, j=1, \ldots, n)$

$$
\text { E.g.: } \quad \Gamma_{i j}^{k}=g^{k l}\left(\partial_{i} g_{j l}+\partial_{j} g_{i l}-\partial_{l} g_{i j}\right) \quad \text { for a metric } g_{i j} .
$$

- Their Riemann curvature: $\operatorname{Riem}(\Gamma)=\operatorname{Curl}(\Gamma)+[\Gamma, \Gamma]$

Both defined on an open \& bounded set $\Omega \subset \mathbb{R}^{n}$.

The problem of optimal regularity is local.

- The set $\Omega \subset \mathbb{R}^{n}$ represents a chart (x, U) on a manifold, $\Omega=x(U)$.

Optimal regularity and coordinate transformations:

Optimal regularity and coordinate transformations:

$\operatorname{Riem}(\Gamma) \sim \operatorname{Curl}(\Gamma)$

"Optimal Regularity"

Optimal regularity and coordinate transformations:

"Optimal Regularity"
"Non-optimal Regularity"

$$
\Gamma \rightarrow \Gamma+\partial\left(\frac{\partial x}{\partial y}\right)
$$

$\operatorname{Riem}(\Gamma) \rightarrow \frac{\partial x}{\partial y} \cdot \operatorname{Riem}(\Gamma)$

Optimal regularity and coordinate transformations:

Question: $\exists x \rightarrow y$?

Optimal regularity and coordinate transformations:

Optimal regularity and coordinate transformations:

E.g.: Shock wave solutions of EinsteinEuler eqn's have non-optimal regularity.

Optimal regularity and coordinate transformations:

$\operatorname{Riem}(\Gamma) \sim$ fluid $\in L^{\infty}$, required for shock discontinuities.

Function spaces:

$$
\begin{aligned}
W^{1, \infty} & =C^{0,1}=\text { Lipschitz continuous } \\
L^{\infty} & =\text { bounded, but discontinuous }
\end{aligned}
$$

Our optimal regularity result:

Thm I is based on a novel system of elliptic PDE's.
\rightarrow Elliptic regularity theory requires spaces $W^{1, p}, p<\infty$.

Our optimal regularity result:

Thm I is based on a novel system of elliptic PDE's.
\rightarrow Elliptic regularity theory requires spaces $W^{m, p}, p<\infty$.

Our optimal regularity result:

Thm I: (R. \& Temple, Dec. 2019.)
Let $\Gamma \in L^{\infty}$ with $\operatorname{Riem}(\Gamma) \in L^{\infty}$ in x-coordinates. Let $p \in(n, \infty)$.
Then there exists a coordinate transformation $x \rightarrow y$ with Jacobian
$J \in W^{1,2 p}$, such that $\Gamma \in W^{1, p}$ (optimal regularity) in y-coordinates.

Thm I: (R. \& Temple, Dec. 2019.)

Let $\Gamma \in L^{\infty}$ with $\operatorname{Riem}(\Gamma) \in L^{\infty}$ in x-coordinates. Let $p \in(n, \infty)$.
Then there exists a coordinate transformation $x \rightarrow y$ with Jacobian
$J \in W^{1,2 p}$, such that $\Gamma \in W^{1, p}$ (optimal regularity) in y-coordinates.

Corollary: (First application to General Relativity)

Singularities in Lorentzian metrics of GR shock wave solutions are removable, because Γ in y-coord's is Hölder continuous.
\rightarrow Geodesic curves exist. (Particle trajectories)
\rightarrow Locally inertial coordinates exist. (Newtonian limit)
Remark:

- Higher regularities $(m \geq 1, p>n): \Gamma, \operatorname{Riem}(\Gamma) \in W^{m, p} \longrightarrow \Gamma \in W^{m+1, p}$
- Proof of Thm I is based on the Regularity Transformation (RT-)equations, a novel system of PDE's, elliptic regardless of metric (signature).

A glimpse at the RT-equations

The "Regularity Transformation (RT-)equations":

$$
\left\{\begin{array}{l}
\Delta \tilde{\Gamma}=\delta d \Gamma-\delta\left(d J^{-1} \wedge d J\right)+d\left(J^{-1} A\right) \\
\Delta J=\delta(J \Gamma)-\langle d J ; \tilde{\Gamma}\rangle-A \\
d \vec{A}=\overrightarrow{\operatorname{div}}(d J \wedge \Gamma)+\overrightarrow{\operatorname{div}}(J d \Gamma)-d(\overrightarrow{\langle d J ; \tilde{\Gamma}\rangle)} \\
\delta \vec{A}=v
\end{array}\right.
$$

- Γ denotes components of non-optimal connection (in x coord's), which we want to smooth to optimal regularity.
- Unknowns: $(J, \tilde{\Gamma}, A)$ are matrix-valued differential forms.
- J is Jacobian of coord. transformation to optimal regularity.
- $\tilde{\Gamma}$ is a tensor related to connection of optimal regularity.
- A is an auxiliary field required to induce integrability for J.

The "Regularity Transformation (RT-)equations":

$$
\left\{\begin{array}{l}
\Delta \tilde{\Gamma}=\delta d \Gamma-\delta\left(d J^{-1} \wedge d J\right)+d\left(J^{-1} A\right) \\
\Delta J=\delta(J \Gamma)-\langle d J ; \tilde{\Gamma}\rangle-A \\
d \vec{A}=\overrightarrow{\operatorname{div}}(d J \wedge \Gamma)+\overrightarrow{\operatorname{div}}(J d \Gamma)-d(\langle d J ; \tilde{\Gamma}\rangle) \\
\delta \vec{A}=v
\end{array}\right.
$$

- The RT-equations are elliptic PDE's on spacetime:
- Δ is the Euclidean Laplacian in \mathbb{R}^{n} (in x-coordinates).
- d exterior derivative; δ co-derivative
- $d \delta+\delta d=\Delta$ implies \vec{A}-equations are elliptic.
- The RT-equations are based on a "Cartan Calculus" for matrix valued differential forms, w.r.t. the Euclidean metric in x-coordinates.

$$
\begin{aligned}
& \left\{\begin{array}{l}
\Delta \tilde{\Gamma}=\delta d \Gamma-\delta\left(d J^{-1} \wedge d J\right)+d\left(J^{-1} A\right), \\
\Delta J=\delta(J \Gamma)-\langle d J ; \tilde{\Gamma}\rangle-A, \\
d \vec{A}=\overrightarrow{\operatorname{div}}(d J \wedge \Gamma)+\overrightarrow{\operatorname{div}}(J d \Gamma)-d(\overrightarrow{\langle d J ; \tilde{\Gamma}\rangle}), \\
\delta \vec{A}=v,
\end{array}\right. \\
& \text { with } d \vec{J}=0 \text { on } \partial \Omega \text { (boundary data) }
\end{aligned}
$$

Thm 0: [R. \& Temple, Dec. 2019]

Assume Γ, $\operatorname{Riem}(\Gamma) \in L^{\infty}$ in x-coordinates.
If $(J, \tilde{\Gamma}, A) \in W^{1,2 p} \times W^{1, p} \times L^{2 p}$ solves the RT-eqn (with $J^{-1} \in W^{1,2 p}$), then J is the Jacobian of a coordinate transformation $x \rightarrow y$ such that $\Gamma \in W^{1, p}$ in y-coordinates. (Equivalence holds)

- Thm 0 + Existence Theory \Longrightarrow Thm I (optimal regularity).
- Equivalence: RT-eqn's are derived from the connection transformation law alone, via the Riemann-flat condition [R. \& Temple 2017].
- Metric signature plays no role for optimal regularity!

Optimal regularity and "harmonic coordinates":

- Riemannian geometry: [DeTurck \& Kazdan, '8I]

In harmonic coordinates:

\rightarrow Optimal regularity by elliptic regularity theory.

Optimal regularity and "harmonic coordinates":

- Riemannian geometry: [DeTurck \& Kazdan, '8I]

In harmonic coordinates:

\rightarrow Optimal regularity by elliptic regularity theory.

- Lorentzian geometry: (Problematic!)

In harmonic coordinates:

\rightarrow No elliptic regularity theory can be applied...
Partial results were obtained in modified coord's. [Anderson 2002]

Uhlenbeck Compactness

Thm I: (R. \& Temple, Dec. 2019) ("Optimal Regularity") Let $p \in(n, \infty)$. Assume that in x -coordinates

$$
\|\Gamma\|_{L^{\infty}}+\|\operatorname{Riem}(\Gamma)\|_{L^{\infty}} \leq M
$$

Then there exists coordinates y such that the transformed connection has optimal regularity, $\Gamma_{y} \in W^{1, p}$, and satisfies

$\left\|\Gamma_{y}\right\|_{W^{1, p}} \leq C(M)$

where $C(M)>0$ depends only on Ω, n, p and $M>0$.

Norms are taken component-wise in fixed x-coordinates.

$$
\begin{gathered}
\text { E.g.: } \quad\|\Gamma\|_{L^{p}} \equiv \sum_{k, i, j}\left\|\Gamma_{i j}^{k}\right\|_{L^{p}}=\sum_{k, i, j}\left(\int_{\Omega}\left|\Gamma_{i j}^{k}\right|^{p} d x\right)^{\frac{1}{p}} \\
\|\Gamma\|_{W^{1, p}} \equiv\|\Gamma\|_{L^{p}}+\|D \Gamma\|_{L^{p}}
\end{gathered}
$$

Thm I: (R. \& Temple, Dec. 2019) ("Optimal Regularity") Let $p \in(n, \infty)$. Assume that in x -coordinates

$$
\|\Gamma\|_{L^{\infty}}+\|\operatorname{Riem}(\Gamma)\|_{L^{\infty}} \leq M
$$

Then there exists coordinates y such that the transformed connection has optimal regularity, $\Gamma_{y} \in W^{1, p}$, and satisfies

$\left\|\Gamma_{y}\right\|_{W^{1, p}} \leq C(M)$

where $C(M)>0$ depends only on Ω, n, p and $M>0$.
Thm 2: (R. \& Temple, Dec. 2019) ("Uhlenbeck compactness") Let $\left(\Gamma_{i}\right)_{i \in \mathbb{N}}$ be a sequence of L^{∞} connections in x-coordinates. Assume: $\left\|\Gamma_{i}\right\|_{L^{\infty}}+\left\|\operatorname{Riem}\left(\Gamma_{i}\right)\right\|_{L^{\infty}} \leq M$.
Then for each Γ_{i} there exists coordinates y_{i} such that the transformed connection has optimal regularity, $\Gamma_{y_{i}} \in W^{1, p}$, and

$$
\left\|\Gamma_{y_{i}}\right\|_{W^{1, p}} \leq C(M)
$$

Thus, we have compactness: A subsequence $\Gamma_{y_{j}}$ converges weakly in $W^{1, p}$ and strongly in L^{p}.

Thm 2: (R. \& Temple, Dec. 2019) ("Uhlenbeck compactness") Let $\left(\Gamma_{i}\right)_{i \in \mathbb{N}}$ be a sequence of L^{∞} connections in x-coordinates.
Assume: $\left\|\Gamma_{i}\right\|_{L^{\infty}}+\left\|\operatorname{Riem}\left(\Gamma_{i}\right)\right\|_{L^{\infty}} \leq M$.
Then for each Γ_{i} there exists coordinates y_{i} such that the transformed connection has optimal regularity, $\Gamma_{y_{i}} \in W^{1, p}$, and

$$
\left\|\Gamma_{y_{i}}\right\|_{W^{1, p}} \leq C(M)
$$

Thus, we have compactness: A subsequence $\Gamma_{y_{j}}$ converges weakly in $W^{1, p}$ and strongly in L^{p}.

- Thm 2 only requires uniform bound on $\operatorname{Riem}\left(\Gamma_{i}\right)$, not all derivatives.
-The convergence is regular enough to pass limits through products!
Corollary: Let $\left(g_{i}\right)_{i \in \mathbb{N}}$ in $C^{0,1}$ with uniform curvature-type bound. Assume $g_{i} \longrightarrow g$ weakly in $W^{1, p}$ and $\operatorname{Ric}\left(g_{i}\right) \longrightarrow 0$ weakly in L^{p}. Then, $\operatorname{Ric}(g)=0$, i.e. g solves the vacuum Einstein equations.

Thm 2: (R. \& Temple, Dec. 2019) ("Uhlenbeck compactness") Let $\left(\Gamma_{i}\right)_{i \in \mathbb{N}}$ be a sequence of L^{∞} connections in x-coordinates.
Assume: $\left\|\Gamma_{i}\right\|_{L^{\infty}}+\left\|\operatorname{Riem}\left(\Gamma_{i}\right)\right\|_{L^{\infty}} \leq M$.
Then for each Γ_{i} there exists coordinates y_{i} such that the transformed connection has optimal regularity, $\Gamma_{y_{i}} \in W^{1, p}$, and

$$
\left\|\Gamma_{y_{i}}\right\|_{W^{1, p}} \leq C(M)
$$

Thus, we have compactness: A subsequence $\Gamma_{y_{j}}$ converges weakly in $W^{1, p}$ and strongly in L^{p}.

Thm 2 extends Uhlenbeck compactness to Lorentzian geometry!
Uhlenbeck Compactness in Riemannian Geometry:
[K. Uhlenbeck, '82] (Abel Prize 2019, Steele Prize 2007)

- Assumes only a uniform curvature bound, but $\Gamma_{i} \in W^{1, p}$.
- Applies to vector bundles over Riemannian manifolds.
- Thm 2 applies to tangent bundles of arbitrary manifolds, including Lorentzian manifolds.

Uhlenbeck Compactness and

Optimal Regularity for
Yang-Mills Gauge Theories

The setting:

- Vector bundle: $V \mathscr{M}=\mathbb{R}^{N} \times \Omega \quad$ (trivialisation taken w.l.o.g.)
- Gauge group: $S O(r, s) \equiv\left\{U \in \mathbb{R}^{N \times N} \mid U^{T} \eta U=\eta \& \operatorname{det}(U)=1\right\}$
- Connection on VM: $\mathbf{A}: \Omega \longrightarrow \operatorname{so}(r, s)$ for $\operatorname{so}(r, s) \equiv\left\{X^{T} \eta+\eta X=0 \& \operatorname{tr}(X)=0\right\}$, Lie algebra of $S O(r, s)$.

The setting:

- Vector bundle: $\quad V \mathscr{M}=\mathbb{R}^{N} \times \Omega \quad$ (trivialisation taken w.l.o.g.)
- Gauge group: $\quad S O(r, s) \equiv\left\{U \in \mathbb{R}^{N \times N} \mid U^{T} \eta U=\eta \& \operatorname{det}(U)=1\right\}$
- Connection on $V \mathscr{M}: \quad \mathbf{A}: \Omega \longrightarrow s o(r, s)$ for $s o(r, s) \equiv\left\{X^{T} \eta+\eta X=0 \& \operatorname{tr}(X)=0\right\}$, Lie algebra of $S O(r, s)$.

Remark:

- We discard (w.l.o.g.) the affine connection on the base manifold and work with Euclidean metric as auxiliary Riemannian structure.
Covariant derivative $D \equiv \partial+\not \subset+\mathbf{A}$.
- Method extends to $U(r, s)$ and $S U(r, s)$, as well as more general Lie groups (work in progress).

The setting:

- Vector bundle: $V \mathscr{M}=\mathbb{R}^{N} \times \Omega \quad$ (trivialisation taken w.l.o.g.)
- Gauge group: $\quad S O(r, s) \equiv\left\{U \in \mathbb{R}^{N \times N} \mid U^{T} \eta U=\eta \& \operatorname{det}(U)=1\right\}$

$$
\text { for } r+s=N \text { and } \eta \equiv \operatorname{diag}(\underbrace{-1, \ldots,-1, \underbrace{1, \ldots, 1}_{s}) \text {. } . \text {. }{ }^{1, \ldots} .}_{r}
$$

- Connection on $V \mathscr{M}: \quad \mathbf{A}: \Omega \longrightarrow \operatorname{so}(r, s)$ for $s o(r, s) \equiv\left\{X^{T} \eta+\eta X=0 \& \operatorname{tr}(X)=0\right\}$, Lie algebra of $S O(r, s)$.
- Under a gauge transformation $U: \Omega \longrightarrow S O(r, s)$, a connection transforms by $\mathbf{A}_{\mathrm{a}}=U^{-1} d U+U^{-1} \mathbf{A}_{\mathrm{b}} U$, where $\mathrm{b}=U \cdot \mathrm{a}$, (change of basis a to b ; "gauge" $=$ basis).

Statement of Results:

Assumption: $\mathbf{A}_{\mathrm{a}} \in L^{p}(\Omega) \& d \mathbf{A}_{\mathbf{a}} \in L^{p}(\Omega), \quad(p>n)$. (non-optimal)

Thm I: [R. \& Temple, 202I]

There exists a gauge transformation $U \in W^{1, p}(\Omega, S O(r, s))$
to a gauge (basis) $\mathbf{b}=U \cdot \mathbf{a}$ such that $\mathbf{A}_{\mathbf{b}} \in W^{1, \frac{p}{2}}(\Omega)$ with

$$
\left\|\mathbf{A}_{\mathbf{b}}\right\|_{W^{1, \frac{p}{2}}}+\|U\|_{W^{1}, p} \leq C(M) .
$$

where $M>0$ is such that
$\left\|\mathbf{A}_{\mathbf{a}}\right\|_{L^{p}}+\left\|d \mathbf{A}_{\mathbf{a}}\right\|_{L^{p}}<M$

Remark:
Thm I extends the optimal regularity result of DeTurck \& Kazdan ['8I] from Riemannian metrics to connections on vector bundles (over Lorentzian manifolds).

Thm I: [R. \& Temple, 202I]

There exists a gauge transformation $U \in W^{1, p}(\Omega, S O(r, s))$
to a gauge (basis) $\mathrm{b}=U \cdot \mathrm{a}$ such that $\mathbf{A}_{\mathrm{b}} \in W^{1, \frac{p}{2}}(\Omega)$ and

$$
\left\|\mathbf{A}_{\mathrm{b}}\right\|_{W^{1 \cdot \frac{p}{2}}}+\|U\|_{W^{1} \cdot p} \leq C(M) .
$$

By extra derivative, applying

the Banach-Alaoglu Thm.

Thm 2: ("Uhlenbeck compactness") [R. \& Temple, 202I]
Assume a sequence of connections \mathbf{A}_{i} in a (fixed) gauge "a" satisfies $\left\|\mathbf{A}_{i}\right\|_{L^{p}}+\left\|d \mathbf{A}_{i}\right\|_{L^{p}}<M$. Then there exist gauge transformations U_{i} in $S O(r, s)$ to gauges $\mathrm{b}_{i}=U_{i} \cdot \mathrm{a}$ such that

$$
\left\|\mathbf{A}_{\mathbf{b}_{i}}\right\|_{W^{1, \frac{p}{2}}}+\left\|U_{i}\right\|_{W^{1, p}} \leq C(M) .
$$

Thus, a subsequence of $\mathbf{A}_{\mathrm{b}_{i}}$ converges weakly in $W^{1, \frac{p}{2}}$ to some \mathbf{A}_{b}, (where b is the weak $W^{1, p}$-limit of $\mathrm{b}_{i}=U_{i} \cdot \mathrm{a}$).

Thm 2: ("Uhlenbeck compactness") [R. \& Temple, 202 I]
Assume a sequence of connections \mathbf{A}_{i} in a (fixed) gauge "a" satisfies $\left\|\mathbf{A}_{i}\right\|_{L^{p}}+\left\|d \mathbf{A}_{i}\right\|_{L^{p}}<M$. Then there exist gauge transformations U_{i} in $S O(r, s)$ to gauges $\mathrm{b}_{i}=U_{i} \cdot \mathrm{a}$ such that

$$
\left\|\mathbf{A}_{\mathrm{b}_{i}}\right\|_{W^{1 \cdot \frac{p}{2}}}+\left\|U_{i}\right\|_{W^{1, p}} \leq C(M) .
$$

Thus, a subsequence of $\mathbf{A}_{\mathbf{b}_{i}}$ converges weakly in $W^{1, \frac{p}{2}}$ to some \mathbf{A}_{b}, (where b is the weak $W^{1, p}$-limit of $\mathrm{b}_{i}=U_{i} \cdot \mathrm{a}$).

Remarks:

- Thm 2 extends Uhlenbeck's theorem ['82] from compact to noncompact groups $S O(r, s)$ and Lorentzian geometry. (Assuming a uniform bound on $\left\|\mathbf{A}_{i}\right\|_{L^{p}}$ instead of $\mathbf{A}_{i} \in W^{1, p}$ without a bound...)
- Thm's I \& 2 are based on the "RT-equations associated to vector bundles".

The RT-equations associated to vector bundles:

$$
\begin{align*}
& \Delta \tilde{\mathbf{A}}=\delta d \mathbf{A}-\delta\left(d U^{-1} \wedge d U\right) \tag{I}\\
& \Delta U=U \delta \mathbf{A}-\left(U^{T} \eta\right)^{-1}\left\langle d U^{T} ; \eta d U\right\rangle \tag{2}
\end{align*}
$$

Unknowns: $\quad U$ in $S O(r, s) \quad$ (regularising gauge transformation)

$$
\tilde{\mathbf{A}} \equiv U^{-1} \mathbf{A}_{\mathbf{b}} U \quad\left(\mathbf{A}_{\mathrm{b}} \text { is connection of optimal regularity }\right)
$$

Remarks:

- The RT-equations are elliptic. (Δ is Euclidean Laplacian in \mathbb{R}^{n}.)
- The equations for U and $\tilde{\mathbf{A}}$ are already decoupled.
- Solving RT-equation (2) with Dirichlet data $U \in S O(r, s)$ on $\partial \Omega$ yields regularising gauge transformation $U \in W^{1, p}(\Omega, S O(r, s))$.
- RT-equation (I) gives regularity boost. (No need to solve!)

Derivation of the RT-equations:

- Start with connection transformation law to optimal regularity

$$
\text { (in } \mathrm{b}=U \cdot \mathrm{a} \text {): }
$$

$$
\mathbf{A}_{\mathrm{a}}=U^{-1} d U+U^{-1} \mathbf{A}_{\mathrm{b}} U
$$

Assume:
$\mathbf{A}_{\mathbf{a}} \in L^{p} \& d \mathbf{A}_{\mathbf{a}} \in L^{p}$ (non-optimal)

Assume:

$$
\begin{aligned}
& \mathbf{A}_{\mathrm{b}} \in W^{1, \frac{p}{2}} \\
& \text { (optimal) }
\end{aligned}
$$

Derivation of the RT-equations:

- Start with connection transformation law to optimal regularity

$$
\begin{aligned}
& \text { (in } \mathrm{b}=U \cdot \mathrm{a}): \\
& \mathbf{A}_{\mathbf{a}}=U^{-1} d U+U^{-1} \mathbf{A}_{\mathrm{b}} U \\
& \mathbf{A} \equiv \mathbf{A}_{\mathrm{a}} \downarrow \tilde{\mathbf{A}} \equiv U^{-1} \mathbf{A}_{\mathrm{b}} U \\
& \mathbf{A}=U^{-1} d U+\tilde{\mathbf{A}}
\end{aligned}
$$

Take exterior derivative $d!$
$d \tilde{\mathbf{A}}=d \mathbf{A}-d U^{-1} \wedge d U$
$\Delta U=U(\delta \mathbf{A}-\delta \tilde{\mathbf{A}})+\langle d U ; \mathbf{A}-\tilde{\mathbf{A}}\rangle$

Derivation of the RT-equations:

- Start with connection transformation law to optimal regularity

$$
\begin{aligned}
& (\text { in } \mathrm{b}=U \cdot \mathrm{a}): \\
& \mathbf{A}_{\mathrm{a}}=U^{-1} d U+U^{-1} \mathbf{A}_{\mathrm{b}} U \\
& \mathbf{A} \equiv \mathbf{A}_{\mathrm{a}} \downarrow \tilde{\mathbf{A}} \equiv U^{-1} \mathbf{A}_{\mathrm{b}} U \\
& \mathbf{A}=U^{-1} d U+\tilde{\mathbf{A}}
\end{aligned}
$$

Take exterior derivative $d!$
$d \tilde{\mathbf{A}}=d \mathbf{A}-d U^{-1} \wedge d U$
$\Delta U=U(\delta \mathbf{A}-\delta \tilde{\mathbf{A}})+\langle d U ; \mathbf{A}-\tilde{\mathbf{A}}\rangle$

- Introduce the matrix function $\alpha \in L^{p}(\Omega)$ by

$$
\delta \tilde{\mathbf{A}}=U^{-1} \alpha
$$

and treat α as a free parameter.

Derivation of the RT-equations:

- Start with connection transformation law to optimal regularity

$$
\begin{aligned}
& \text { (in } \mathrm{b}=U \cdot \mathrm{a}): \\
& \mathbf{A}_{\mathbf{a}}=U^{-1} d U+U^{-1} \mathbf{A}_{\mathrm{b}} U \\
& \mathbf{A} \equiv \mathbf{A}_{\mathbf{a}} \downarrow \tilde{\mathbf{A}} \equiv U^{-1} \mathbf{A}_{\mathrm{b}} U \\
& \mathbf{A}=U^{-1} d U+\tilde{\mathbf{A}}
\end{aligned}
$$

Take exterior derivative $d!$

$$
d \tilde{\mathbf{A}}=d \mathbf{A}-d U^{-1} \wedge d U
$$

$$
\Delta U=U(\delta \mathbf{A}-\delta \tilde{\mathbf{A}})+\langle d U ; \mathbf{A}-\tilde{\mathbf{A}}\rangle
$$

| Take co-derivative δ !
Add d of $\delta \tilde{\mathbf{A}}=U^{-1} \alpha$!
Use $\Delta=d \delta+\delta d$!

$$
\Delta \tilde{\mathbf{A}}=\delta d \mathbf{A}-\delta\left(d U^{-1} \wedge d U\right)+d\left(U^{-1} \alpha\right) \quad \Delta U=U \delta \mathbf{A}+\langle d U ; \mathbf{A}-\tilde{\mathbf{A}}\rangle-\alpha
$$

- Next: Use $U \in S O(r, s)$ to determine α !

$\Delta \tilde{\mathbf{A}}=\delta d \mathbf{A}-\delta\left(d U^{-1} \wedge d U\right)+d\left(U^{-1} \alpha\right) \quad \Delta U=U \delta \mathbf{A}+\langle d U ; \mathbf{A}-\tilde{\mathbf{A}}\rangle-\alpha$

- Next: Use $U \in S O(r, s)$ to determine α ! (Omit $\operatorname{det}(U)=1$!)

Define: $\quad w \equiv U^{T} \eta U-\eta$
Observe: $U \in S O(r, s) \Longleftrightarrow\left\{\begin{array}{l}\Delta w=0 \\ \left.w\right|_{\partial \Omega}=0\end{array}\right.$

$$
\Delta \tilde{\mathbf{A}}=\delta d \mathbf{A}-\delta\left(d U^{-1} \wedge d U\right)+d\left(U^{-1} \alpha\right) \quad \Delta U=U \delta \mathbf{A}+\langle d U ; \mathbf{A}-\tilde{\mathbf{A}}\rangle-\alpha
$$

$$
\Delta \tilde{\mathbf{A}}=\delta d \mathbf{A}-\delta\left(d U^{-1} \wedge d U\right)+d\left(U^{-1} \alpha\right) \quad \Delta U=U \delta \mathbf{A}+\langle d U ; \mathbf{A}-\tilde{\mathbf{A}}\rangle-\alpha
$$

- Next: Use $U \in S O(r, s)$ to determine α ! (Omit $\operatorname{det}(U)=1$!)

Define: $\quad w \equiv U^{T} \eta U-\eta$
Observe: $U \in S O(r, s) \quad \Longleftrightarrow \quad w=0 \quad \Longleftrightarrow\left\{\begin{array}{l}\Delta w=0 \\ \left.w\right|_{\partial \Omega}=0\end{array}\right.$

Substitute red equation

$$
\Longrightarrow \quad \alpha \equiv\left(U^{T} \eta\right)^{-1}\left\langle d U^{T} ; \eta d U\right\rangle+\langle d U ; \mathbf{A}-\tilde{\mathbf{A}}\rangle
$$

Cancellation: $(\delta \mathbf{A})^{T} \cdot U^{T} \eta U+U^{T} \eta U \cdot \delta \mathbf{A}=0$
by interplay of Lie algebra with Lie group
This is crucial for regularity to close!

$$
\Delta \tilde{\mathbf{A}}=\delta d \mathbf{A}-\delta\left(d U^{-1} \wedge d U\right)+d\left(U^{-1} \alpha\right) \quad \Delta U=U \delta \mathbf{A}+\langle d U ; \mathbf{A}-\tilde{\mathbf{A}}\rangle-\alpha
$$

- Next: Use $U \in S O(r, s)$ to determine α ! (Omit $\operatorname{det}(U)=1$!)

Define: $\quad w \equiv U^{T} \eta U-\eta$
Observe: $U \in S O(r, s) \quad \Longleftrightarrow \quad w=0 \quad \Longleftrightarrow\left\{\begin{array}{l}\Delta w=0 \\ \left.w\right|_{\partial \Omega}=0\end{array}\right.$

Substitute red equation

$$
\Longrightarrow \quad \alpha \equiv\left(U^{T} \eta\right)^{-1}\left\langle d U^{T} ; \eta d U\right\rangle+\langle d U ; \mathbf{A}-\tilde{\mathbf{A}}\rangle
$$

- Substitution of α into blue and red equations yields RT-equations:

$$
\begin{align*}
\Delta \tilde{\mathbf{A}} & =\delta d \mathbf{A}-\delta\left(d U^{-1} \wedge d U\right) \tag{I}\\
\Delta U & =U \delta \mathbf{A}-\left(U^{T} \eta\right)^{-1}\left\langle d U^{T} ; \eta d U\right\rangle \tag{2}
\end{align*}
$$

$$
\begin{align*}
\Delta \tilde{\mathbf{A}} & =\delta d \mathbf{A}-\delta\left(d U^{-1} \wedge d U\right) \tag{I}\\
\Delta U & =U \delta \mathbf{A}-\left(U^{T} \eta\right)^{-1}\left\langle d U^{T} ; \eta d U\right\rangle \tag{2}
\end{align*}
$$

- Why is U a gauge transformation to optimal regularity:

Lemma: Let $U \in W^{1, p}(\Omega, S O(r, s))$ solve (2).
Then $\tilde{\mathbf{A}}^{\prime} \equiv \mathbf{A}-U^{-1} d U$ solves (I) and $\tilde{\mathbf{A}}^{\prime} \in W^{1, \frac{p}{2}}$.

Proof:

- That $\tilde{\mathbf{A}}^{\prime}$ solves (I) follows by direct computation, substituting (2).
- $\tilde{\mathbf{A}}^{\prime} \in W^{1, \frac{p}{2}}$ follows from (I) using Hölder inequality.
$\rightarrow \mathbf{A}_{\mathbf{b}} \equiv U \tilde{\mathbf{A}}^{\prime} U^{-1}$ is the connection in gauge $\mathrm{b}=U \cdot \mathrm{a}$ and $\mathbf{A}_{\mathbf{b}} \in W^{1, \frac{p}{2}}$ (optimal regularity)
\rightarrow Thus, U transformation to optimal regularity!

$$
\begin{align*}
\Delta \tilde{\mathbf{A}} & =\delta d \mathbf{A}-\delta\left(d U^{-1} \wedge d U\right) \tag{I}\\
\Delta U & =U \delta \mathbf{A}-\left(U^{T} \eta\right)^{-1}\left\langle d U^{T} ; \eta d U\right\rangle \tag{2}
\end{align*}
$$

- Why is U a gauge transformation to optimal regularity:

Lemma: Let $U \in W^{1, p}(\Omega, S O(r, s))$ solve (2).
Then $\tilde{\mathbf{A}}^{\prime} \equiv \mathbf{A}-U^{-1} d U$ solves (I) and $\tilde{\mathbf{A}}^{\prime} \in W^{1, \frac{p}{2}}$.

Proof:

- That $\tilde{\mathbf{A}}^{\prime}$ solves (I) follows by direct computation, substituting (2).
- $\tilde{\mathbf{A}}^{\prime} \in W^{1, \frac{p}{2}}$ follows from (I) using Hölder inequality.
$\rightarrow \mathbf{A}_{\mathrm{b}} \equiv U \tilde{\mathbf{A}}^{\prime} U^{-1}$ is the connection in gauge $\mathrm{b}=U \cdot \mathrm{a}$ and $\mathbf{A}_{\mathbf{b}} \in W^{1, \frac{p}{2}}$ (optimal regularity)
\rightarrow Thus, U transformation to optimal regularity!
-Why is U in $S O(r, s)$?

$$
\begin{equation*}
\Delta U=U \delta \mathbf{A}-\left(U^{T} \eta\right)^{-1}\left\langle d U^{T} ; \eta d U\right\rangle \tag{2}
\end{equation*}
$$

- Why is U in $S O(r, s)$:
- Define $w \equiv U^{T} \eta U-\eta, \quad$ where U is a solution of (2).

Recall: $U \in \operatorname{SO}(r, s) \Longleftrightarrow w=0 \Longleftrightarrow\left\{\begin{array}{l}\Delta w=0 \\ \left.w\right|_{\partial \Omega}=0\end{array}\right.$

- For $U \in S O(N)$:

Computing Δw, substitution of (2) yields $\Delta w=0$. Thus $U \in S O(N)$.

$$
\begin{equation*}
\Delta U=U \delta \mathbf{A}-\left(U^{T} \eta\right)^{-1}\left\langle d U^{T} ; \eta d U\right\rangle \tag{2}
\end{equation*}
$$

- Why is U in $S O(r, s)$:
- Define $w \equiv U^{T} \eta U-\eta$, where U is a solution of (2).

Recall: $U \in S O(r, s) \quad \Longleftrightarrow \quad w=0 \quad \Longleftrightarrow\left\{\begin{array}{l}\Delta w=0 \\ \left.w\right|_{\partial \Omega}=0\end{array}\right.$

- For $U \in S O(N)$:

Computing Δw, substitution of (2) yields $\Delta w=0$. Thus $U \in S O(N)$.

- For $U \in S O(r, s)$:

Computing Δw, by substituting (2) and using $\delta \mathbf{A} \in s o(r, s)$, yields

$$
\Delta w=\delta \mathbf{A}^{T} \cdot w+w \cdot \delta \mathbf{A}
$$

and Fredholm alternative allows for non-zero solutions. Problem!

$$
\begin{equation*}
\Delta U=U \delta \mathbf{A}-\left(U^{T} \eta\right)^{-1}\left\langle d U^{T} ; \eta d U\right\rangle \tag{2}
\end{equation*}
$$

- For $U \in S O(r, s)$:

Computing Δw, by substituting (2) and using $\delta \mathbf{A} \in \operatorname{so}(r, s)$, yields

$$
\Delta w=\delta \mathbf{A}^{T} \cdot w+w \cdot \delta \mathbf{A}
$$

and Fredholm alternative allows for non-zero solutions. Problem! Resolution: (By a spectral perturbation argument)

- Write w-eqn as $w=K(w)$ for the compact operator

$$
K(w) \equiv \Delta^{-1}\left(\delta \mathbf{A}^{T} \cdot w+w \cdot \delta \mathbf{A}\right) .
$$

- Solving (2) for \mathbf{A} / λ in place of \mathbf{A} for $\lambda \in(0,1]$ gives eigenvalue problem $K(w)=\lambda w$, (with w defined in terms of new solution).
- Since compact operators have a countable spectrum, $w=0$ must hold for almost every $\lambda \in(0,1]$.
- By continuous dependence in λ of solutions constructed (Thm 3), it follows that $w=0$ for original eigenvalue problem $(\lambda=1)$.

$$
\begin{equation*}
\Delta U=U \delta \mathbf{A}-\left(U^{T} \eta\right)^{-1}\left\langle d U^{T} ; \eta d U\right\rangle \tag{2}
\end{equation*}
$$

Existence Theory:

Thm 3: [R. \& Temple, 202I]

Let $\mathbf{A}_{\mathbf{a}} \in L^{p}(\Omega) \& d \mathbf{A}_{\mathbf{a}} \in L^{p}(\Omega),(p>n)$. Then, locally, there exists a solution $U \in W^{1, p}(\Omega, S O(r, s))$ of (2), with Dirichlet data $U \in S O(r, s)$ on $\partial \Omega$, such that $\|U\|_{W^{1}, p} \leq C(M)$.

Proof:

Initial bound $M>0$:

- Iteration via Poisson equations with $W^{-1, p}$-sources. (Linearisation)
- Requires ϵ-rescaling of equations by domain restriction. ($U \equiv I+\epsilon v$)
- Elliptic estimates (for scalar PDE's) together with source estimates yield $W^{1, p}$-convergence to solution.

Conclusion:

The RT-equations establish:

- Optimal regularity, (independent of metric signature).
- GR-shock waves are non-singular.
- Uhlenbeck compactness in Lorentzian geometry.
- Uhlenbeck compactness for compact \& non-compact Lie groups.

Outlook:

- Extension to lower regularities $\Gamma, d \Gamma \in L^{p}$?
- (Include singularities of Schwarzschild type?)
- Applications of Uhlenbeck compactness in Lorentzian geometry?
- Zero viscosity limits?
- Assumptions of Cosmology?
- Extending "classical" applications of Uhlenbeck compactness?
- Cauchy Problem for Einstein/Yang-Mills equations?
I.M.R., "Spacetime is locally inertial at points of general relativistic shock wave interaction...", Adv. Theor. Math. Phys. 2 I. 6 (20|7), I525-I6II. arXiv:I409.5060

2. M.R. \& B. Temple, "Shock Wave Interactions and the Riemann-flat condition: The Geometry behind...", Arch. Rat. Mech. Anal. 235 (2020), 3I pages. [arXiv:I6I0.02390]
3. M.R. \& B. Temple, "How to smooth a crinkled map of spacetime: Uhlenbeck compactness for $L^{\infty} . . . "$, Proc. R. Soc.A. 476: 20200I77, (2020), 22 pages. [arXiv: I 8I2.06795]
4. M.R. \& B. Temple, "The Regularity Transformation Equations: An elliptic mechanism for smoothing ...", Adv. Theor. Math. Phys. 24.5 (2020), 34 pages. [arXiv:I805.0I004]
5. M.R. \& B. Temple, "Optimal metric regularity in General Relativity follows from the RTequations by elliptic...", Meth.Appl.Anal. 27.3 (2020), 46 pages. [arXiv: I 808.06455]
6. M.R. \& B. Temple, "On the Regularity Implied by the Assumptions of Geometry", (Dec. 2019), 92 pages. [arXiv:I912.12997]
7. M.R. \& B.Temple, "Uhlenbeck compactness and optimal regularity for Yang-Mills theory with Lorentzian geo. and non-compact Lie groups", (202I), 32 pages. [arXiv:2I05.I0765]

Thank you very much for your attention!

I.M.R., "Spacetime is locally inertial at points of general relativistic shock wave interaction...", Adv. Theor. Math. Phys. 2 I. 6 (20I7), I525-I6 I I. arXiv:I409.5060
2. M.R. \& B. Temple, "Shock Wave Interactions and the Riemann-flat condition: The Geometry behind...", Arch. Rat. Mech. Anal. 235 (2020), 3 I pages. [arXiv: I 6 I 0.02390]
3. M.R. \& B. Temple, "How to smooth a crinkled map of spacetime: Uhlenbeck compactness for L^{∞}...", Proc. R. Soc.A. 476: 20200I77, (2020), 22 pages. [arXiv:I8I2.06795]
4. M.R. \& B. Temple, "The Regularity Transformation Equations: An elliptic mechanism for smoothing ...", Adv.Theor. Math. Phys. 24.5 (2020), 34 pages. [arXiv:I805.0I004]
5. M.R. \& B. Temple, "Optimal metric regularity in General Relativity follows from the RTequations by elliptic...", Meth. Appl.Anal. 27.3 (2020), 46 pages. [arXiv: I808.06455]
6. M.R. \& B. Temple, "On the Regularity Implied by the Assumptions of Geometry", (Dec. 2019), 92 pages. [arXiv:1912.12997]
7. M.R. \& B.Temple, "Uhlenbeck compactness and optimal regularity for Yang-Mills theory with Lorentzian geo. and non-compact Lie groups", (202I), 32 pages. [arXiv:2I05.I O765]

