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A little background on Shock Waves:

» Shock waves (discontinuities) are typical phenomena in fluid dynamics:
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» For the Einstein equations with a fluid source 7" (Cosmology; Stars)
R" — 2g"'R = 8xTH
V,TF =0

shock waves form when flow is compressive enough.



Motivation from General Relativity:

* |In coordinates where the Einstein equations are solvable,
regularity issues often arise.

® Shock wave solutions of Einstein egn’s are such
Their metric tensors are only Lipschitz and appear singular.

Can one remove these singularities in the metric tensor?
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Can one remove these singularities in the metric tensor?

» Yes, ... across a single shock surface.
» Yes, ... across two intersecting shock surfaces.

By coordinate transformation to “optimal metric regularity”.




Motivation from General Relativity:

* |In coordinates where the Einstein equations are solvable,
regularity issues often arise.

® Shock wave solutions of Einstein egn’s are such
Their metric tensors are only Lipschitz and appear singular.

Can one remove these singularities in the metric tensor?

» Yes, ... across a single shock surface.
» Yes, ... across two intersecting shock surfaces.

By coordinate transformation to “optimal metric regularity”.

 The question remained open for general shock wave solutions.
» E.g.: Glimm scheme based shock solutions of Einstein-Euler eqn’s.
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rCorollary: [R. & Temple, Dec.2019.]

_ These singularities are removable by a coordinate transformation.
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Preview of results:
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Uhlenbeck compactness in Lorentzian geometry (affine connections).J
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Uhlenbeck compactness in Lorentzian geometry (affine connections).J

‘Thm 3: [R. & Temple, May 2021]
The results of Thm’s | & 2 extend from tangent bundles to

vector bundles, with compact and non-compact gauge

_groups. )




Optimal Regularity



The setting:

e Connection components: | = Fg.

® Their Riemann curvature: Riem(I') = Curl(T") + [, T']

Both defined on an open & bounded set € C R".

The problem of optimal regularity is local.

» The set 2 C R" represents a chart (x, U) on a manifold, 2 = x(U).



Optimal regularity and coordinate transformations:

e C!

0

dy

Riem(T") € C"

Riem(I") ~ Curl(T")



Optimal regularity and coordinate transformations:

Riem(I") ~ Curl(I")
\ makes this possible

e C! e’
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“Optimal Regularity” “Non-optimal Regularity”



Optimal regularity and coordinate transformations:
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Optimal regularity and coordinate transformations:

Typical, when solving
Einstein equations.
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Optimal regularity and coordinate transformations:

Typical, when solving
Einstein equations.

/

e C! e’

0

O

Riem(I") Riem(T") € C*

“Optimal Regularity” N — CUM “Non-optimal Regularity”

A
Question: dx — y 7

E.g.. Shock wave solutions of Einstein-
Euler egn’s have non-optimal regularity.



Optimal regularity and coordinate transformations:

Riem(I") ~ fluid € L, required for shock discontinuities.

' e L™

9
ox

Riem(I") € L™

“Optimal Regularity” ‘\J — V “Non-optimal Regularity”

Question: dox — y 7




Our optimal regularity result:
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Thm | is based on a novel system of elliptic PDFE’s.

=p» E|liptic regularity theory requires spaces WP, p < .
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Our optimal regularity result:

' e L™

0

Oz

Riem(I") € L™

“Optimal Regularity” \ / “Non-optimal Regularity”

~
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Thm |: (R. & Temple, Dec.2019.)
Let I' € L*™° with Riem(I') € L in x-coordinates. Let p € (n, ).

Then there exists a coordinate transformation x — y with Jacobian

J € W% such that I' € W!P(optimal regularity) in y-coordinates. )
-




-
Thm |I:
Let I' € L*™ with Riem(I') € L® in x-coordinates. Let p € (n, o).

Then there exists a coordinate transformation x — y with Jacobian

J € W% such that I' € W!P(optimal regularity) in y-coordinates. )
.

'

rCorollary: (First application to General Relativity) -
Singularities in Lorentzian metrics of GR shock wave solutions
are removable, because I in y-coord’s is Holder continuous.
=P (Geodesic curves exist. (Particle trajectories)
. = | ocally inertial coordinates exist. (INewtonian limit) .

Remark:

» Higher regularities (n > 1,p > n): I, Riem(I") € W™’ — " € W+l»

* Proof of Thm | is based on the Regularity Transformation (RT-)equations,
a novel system of PDE’s, elliptic regardless of metric (signature).



A glimpse at the
RI-equations



The “Regularity Transformation (RT-)equations’:
AT = 6dl — §(dJ L AdJT) + d(JLA),
AJ = §(JT) — (dJ:T) — A,
dA = div(dJ AT) + div(J dT) — d((dJ; T)),
SA = v,

® |' denotes components of non-optimal connection (in x coord’s),

e Unknowns: (J,T, A) are matrix-valued differential forms.

e J is Jacobian of coord. transformation to optimal regularity.

e |'is a tensor related to connection of optimal regularity.

* A is an auxiliary field required to induce integrability for .J.



The “Regularity Transformation (RT-)equations’:
AT = 6dl — §(dJ L AdJT) + d(JLA),
AJ = §(JT) — (dJ:T) — A,
dA = div(dJ AT) + div(J dT) — d((d.J;T
SA = v,

~—7

),

® The RT-equations are elliptic PDE’s on spacetime:

e A is the Euclidean Laplacian in R" (in x-coordinates).

do + od = A

® The RT-equations are based on a “Cartan Calculus” for matrix
valued differential forms, w.r.t. the Euclidean metric in x-coordinates.



AT = §dl — 6(dJ 2 AdJ) +d(JLA),
AJ = §(JT) — (dJ;T) — A,

dA = div(dJ AT) + div(J dT) — d((d.J;T)).
SA = v,
with dJ = 0 on 99 (boundary data)

"Thm 0: [R. & Temple, Dec. 2019]

Assume I', Riem(I") € L in x-coordinates.
If (J,I',A) € WP x WP x L* solves the RT-eqn

then J is the Jacobian of a coordinate transformation x — y such that

kF € W' in y-coordinates.  (Equivalence holds)

e ThmO + Existence Theory =— Thm |

e Equivalence: RT-eqgn’s are derived from the connection transformation
law alone, via the Riemann-flat condition

e Metric signature plays no role for optimal regularity!



Optimal regularity and “"harmonic coordinates’:

® Riemannian geometry:

. . Laplace-Beltrami
In harmonic coordinates: / o it

Ric(I') ~ Ayg

=P Optimal regularity by elliptic regularity theory.



Optimal regularity and “"harmonic coordinates’:

® Riemannian geometry:

. . Laplace-Beltrami
In harmonic coordinates: / o it

Ric(I') ~ Ayg

=P Optimal regularity by elliptic regularity theory.

® | orentzian geometry: (Problematic!) D’Alembert operator,

In harmonic coordinates: /h)’Pel”bO“C

Ric(T') ~ Ugg

=P No elliptic regularity theory can be applied...

Partial results were obtained in modified coord’s.



Uhlenbeck Compactness



~
Thm I: (R. & Temple, Dec.2019) (“Optimal Regularity”)
Let p € (n,00). Assume that in x-coordinates

Then there exists coordinates y such that the transformed
connection has optimal regularity, 1', & WP, and satisfies

_ where C(M) > 0 depends only on Q,n,p and M > 0.

Norms are taken component-wise in fixed x-coordinates.

1
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~
Thm I: (R. & Temple, Dec.2019) (“Optimal Regularity”)
Let p € (n,00). Assume that in x-coordinates

Then there exists coordinates y such that the transformed
connection has optimal regularity, 1';, & WP and satisfies

||Fy||W1’P < C(M)
_ where C'(M) > 0 depends only on 2, n,p and M > 0.

Thm 2: (R. & Temple, Dec. 2019) (“Uhlenbeck compactness”)
Let (I';);en be a sequence of L* connections in x-coordinates.

Assume: |[|I';|| + ||Riem(T;)||p < M.

Then for each 1'; there exists coordinates ¥; such that the
transformed connection has optimal regularity, 1';,. & WP and

Hry-HWlp < C( )

Thus, we have compactness A subsequence I’y converges
weakly in WP and strongly in "




-
Thm 2; (“Uhlenbeck compactness”)
Let (I';);ey be a sequence of L™ connections in x-coordinates.

Assume: ||I';]|p~ + ||Riem(I;)||p> < M.

Then for each 1'; there exists coordinates ¥; such that the
transformed connection has optimal regularity, I',, € WP and

HFy' HWl p < C(M)

Thus, we have compactness A subsequence I';,. converges
weakly in WP and strongly in L

_

* Thm 2 only requires uniform bound on Riem(I";), not all derivatives.

* The convergence is regular enough to pass limits through products!

(Corollar,y: Let (g));cn in CY! with uniform curvature-type bound.
Assume g; —> g weakly in W' and Ric(g;) — O weakly in L”.

 Then, Ric(g) = 0, i.e. g solves the vacuum Einstein equations.




Thm 2: (“Uhlenbeck compactness”) :

Let (I';);ey be a sequence of L™ connections in x-coordinates.
Assume: ||I';]|p~ + ||Riem(I;)||p> < M.

Then for each 1'; there exists coordinates ¥; such that the
transformed connection has optimal regularity, I',, € WP and

HFy' HWl p < C(M)

Thus, we have compactness A subsequence I';,. converges
weakly in WP and strongly in L?

_ J
Thm 2 extends Uhlenbeck compactness to Lorentzian geometry!

Uhlenbeck Compactness in Riemannian Geometry:
[K. Uhlenbeck, ’82] (Abel Prize 2019, Steele Prize 2007)

e Assumes only a uniform curvature bound, but I'; € W'».

® Applies to vector bundles over Riemannian manifolds.

» Thm 2 applies to tangent bundles of arbitrary manifolds,

including Lorentzian manifolds.



Uhlenbeck Compactness
and
Optimal Regularity
for
Yang-Mills Gauge Theories



The setting:

e Vector bundle: V./Z =RY xQ

® Gauge group: SO(r,s) = {U e RVN| UlyU =n & det(U) = 1}

for r+s =N and n = diag(—1,..., — 1,1,...,1).
T

® Connectionon V.Z: A :Q — so(r,s)

for so(r, s) = {XTn +nX =0 & tr(X) = O},
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e Vector bundle: V./Z =RY xQ

® Gauge group: SO(r,s) = {U e RVN| UlyU =n & det(U) = 1}

for r+s =N and n = diag(—1,..., — 1,1,...,1).
T

® Connectionon V.Z: A :Q — so(r,s)

for so(r, s) = {XTn +nX =0 & tr(X) = O},

Remark:

» We discard (w.l.o.g.) the affine connection on the base manifold and
work with Euclidean metric as auxiliary Riemannian structure.

» Method extends to U(r, s) and SU(r, s), as well as more general Lie
groups



The setting:

e Vector bundle: V./Z =RY xQ

® Gauge group: SO(r,s) = {U e RVN| UlyU =n & det(U) = 1}

for r+s =N and n = diag(—1,..., — 1,1,...,1).
T

® Connectionon V.Z: A :Q — so(r,s)

for so(r, s) = {XTn +nX =0 & tr(X) = O},

® Under a gauge transformation U : Q — SO(r, s),

a connection transforms by A, = U~ 'dU+ U™'A U,

where b=U-a,



Statement of Results:
Assumption: A, € L?(Q2) & dA, € LP(Q), (p > n).

-
Thm |I:
There exists a gauge transformation U & WiP(Q, SO(r, 5))

to a gauge b=U-a suchthat Ay €& Wl’%(Q) with
IApll 1z + Ul < CM).

: : ,

Remark:
Thm | extends the optimal regularity result of DeTurck & Kazdan ['81]

from Riemannian metrics to connections on vector bundles (over

Lorentzian manifolds).



(Thm |: B
There exists a gauge transformation U € W'P(Q, SO(r, s))

to a gauge b=U-a suchthat Ay €& Wl’%(Q) and

i &bl + Ul < COM), .

v

Thm 2: (“Uhlenbeck compactness™)

¢¢_ %

Assume a sequence of connections A in a (fixed) gauge “a” satisfies
Al » + |[dA;|l;» < M. Then there exist gauge transformations U,
in SO(r, s) to gauges b; = U, - a such that

|Ab I 1z + [ Uillys < CO).

: J
Thus, a subsequence of A converges weakly in W7 to some Ay,



Thm 2: (“Uhlenbeck compactness™)

€¢_ %

Assume a sequence of connections A; in a (fixed) gauge “a” satisfies
Al » + |[dA;|l;» < M. Then there exist gauge transformations U,
in SO(r, s) to gauges b; = U, - a such that

|Ap |z + 1 Uillyns < CO).

: P
Thus, a subsequence of A, converges weakly in W7 to some Ay,

Remarks:

* Thm 2 extends Uhlenbeck’s theorem ['82] from compact to non-

compact groups SO(r, s) and Lorentzian geometry.

* Thm’s | & 2 are based on the “RT-equations associated to vector
bundles”.



The RT-equations associated to vector bundles:

AA = 8dA — 8(dU~! A dU) (1)
AU = USA — (U'p)~YaU’; ndU) — (2)

Unknowns: U in SO(7, s)
A= U_lAbU

Remarks:

* The RI-equations are elliptic.
* The equations for U and A are already decoupled.
* Solving RT-equation (2) with Dirichlet data U € SO(r, s) on 02

yields regularising gauge transformation U € W'P(Q, SO(r, 5)).
* RT-equation (|) gives regularity boost.



Derivation of the RT-equations:

e Start with connection transformation law to optimal regularity

A, =U"'dU+ U 'ALU

/ \

Assume: Assume:

P
A, €L &dA, € L Ap € W'
(non-optimal) (optimal)




Derivation of the RT-equations:

e Start with connection transformation law to optimal regularity
A, =U'dU+ U AU
A=A, l A = U_lAbU

A=UYWU+ A

'4 £

dA = dA — dU ' AdU AU = U (6A — 6A) + (dU; A — A)



Derivation of the RT-equations:

e Start with connection transformation law to optimal regularity
A, =U'dU+ U AU

A=A, l A=U"AU

A=UYWU+ A

'4 £

dA = dA — dU ' AdU AU = U (6A — 6A) + (dU; A — A)

® Introduce the matrix function a € LP(L2) by
A = U la

and treat o as a free parameter.



Derivation of the RT-equations:

e Start with connection transformation law to optimal regularity
A, =U'dU+ U AU

A=A, l A=U"AU

A=UYWU+ A

'4 £

dA = dA — dU ' AdU AU = U (6A — 6A) + (dU; A — A)

J A = U la J SA = U g

AA = 6dA — (AU AdU) +d(U'a) AU = USA + (dU;A — A) — a

® Next: Use U € SO(r, s) to determine a!



AA = 6dA — 8(dU ' AdU) +d(U 'a) AU = USA + (dU;A — A) — a

® Next: Use U € SO(r, s) to determine a!
Define: w=UnU —y

Observe: U € SO(r,s) < w

{Aw=0
0 <
Wlia =



AA = 6dA — 8(dU ' AdU) +d(U 'a) AU = USA + (dU;A — A) — a

® Next: Use U € SO(r, s) to determine a!
Define: w=UnU —y

Observe: U € SO(r,s) < w

Aw =0
0 <
Wl =0

By Leibniz rule: Aw = (AU yU + 2(dU";ndU)Y + Uty AU

"\ /

Substitute red equation

—  a= U KdUT;ndU) + (dU; A — A)




AA = 6dA — 8(dU ' AdU) +d(U 'a) AU = USA + (dU;A — A) — a

® Next: Use U € SO(r, s) to determine a!
Define: w=UnU —y

Observe: U € SO(r,s) < w

Aw =0
0 <
w\aQ=O

By Leibniz rule: Aw = (AU yU + 2(dU";ndU)Y + Uty AU

"\ /

Substitute red equation

— a= Uy NdU";ndU) + (dU; A — A)

N

Cancellation: (SA)! - UTnU + U'nU - 6A =0
by interplay of Lie algebra with Lie group

This is crucial for regularity to close!



AA = 6dA — 8(dU ' AdU) +d(U 'a) AU = USA + (dU;A — A) — a

® Next: Use U € SO(r, s) to determine a!
Define: w=UnU —y

Observe: U € SO(r,s) < w

Aw =0
0 <
Wl =0

By Leibniz rule: Aw = (AU yU + 2(dU";ndU)Y + Uty AU

"\ /

Substitute red equation

—  a= U KdUT;ndU) + (dU; A — A)
e Substitution of a into blue and red equations yields RT-equations:

AA = 6dA — 5 dU" A dU) (1)
AU = USA — (UTn) " dU";ndU) (2)



AA = 56dA — 5(dU~! A dU) (1)
AU = USA — (U'n) " dU";ndU) (2)

» Why is U a gauge transformation to optimal regularity:

~

(Lemma: Let U € W'P(Q, SO(r, 5)) solve (2).
Then A’= A — U~ 'dU solves (1) and A’ € W, )

Proof:

* That A’ solves (1) follows by direct computation, substituting (2).

)2

+ A’ € W7 follows from (1) using Holder inequality. u

—-> AL = UA'U~! is the connection in gauge b = U - a
and Ap € Wiz

=% Thus, U transformation to optimal regularity!



AA = 56dA — 5(dU~! A dU) (1)
AU = USA — (U'n) " dU";ndU) (2)

» Why is U a gauge transformation to optimal regularity:

~

(Lemma: Let U € W'P(Q, SO(r, 5)) solve (2).
Then A’= A — U~ 'dU solves (1) and A’ € W, J

Proof:

* That A’ solves (1) follows by direct computation, substituting (2).

)2

+ A’ € W7 follows from (1) using Holder inequality. u

—-> AL = UA'U~! is the connection in gauge b = U - a
and Ap € Wiz

=% Thus, U transformation to optimal regularity!

» Why is U in SO(r, 5)?



AU = USA — (U'n) dU";ndU) (2)

» Why is U in SO(z, 5):

® Define w = U'nyU —1#, where U is a solution of (2).

Aw =0

Recal: U € S0O(r,s) <= w=0 < { — 0

Wloa
e For U € SO(N):
Computing Aw, substitution of (2) yields Aw = 0. Thus U € SO(N).




AU = USA — (U'n) dU";ndU) (2)

» Why is U in SO(z, 5):

® Define w = U'nyU —1#, where U is a solution of (2).

Recal: U e SO(r,s) << w=0 < {

e For U € SO(N):

Aw =0

Wlse =0

Computing Aw, substitution of (2) yields Aw = 0. Thus U € SO(N).

e For U € SO(z.5):
Computing Aw, by substituting (2) and

using 6A € so(r, s), yields

Aw = AT - w4+ w - SA,

and Fredholm alternative allows for non-zero solutions. Problem!



AU = USA — (U'n) dU";ndU) (2)

e For U € SO(.5):
Computing Aw, by substituting (2) and using 6A € so(r, s), yields
Aw = SAT - w +w - SA,

and Fredholm alternative allows for non-zero solutions. Problem!

Resolution:

» Write w-eqnas w = K(w) for the compact operator
Kw)= A" (AT -w+w-5A).

» Solving (2) for A// in place of A for 4 € (0,1] gives eigenvalue
problem K(w) = Aw,

» Since compact operators have a countable spectrum, w = 0 must
hold for almost every A € (0,1].

» By continuous dependence in A of solutions constructed

it follows that w = 0O for original eigenvalue problem (A =1). =



AU = USA — (U'n) dU";ndU) (2)

Existence Theory:

(Thm 3:

Let A, € LP(QQ) & dA, € LP(Q), (p > n). Then,locally, there
exists a solution U € W'P(Q, SO(r, s)) of (2), with Dirichlet data
\U € SO(r, s) on 092, such that ||U||y1, < C(M).

_J
Proof:
» |teration via Poisson equations with W~ !-sources.
* Requires e-rescaling of equations by domain restriction.
* Elliptic estimates together with source estimates

yield W!-convergence to solution. u



Conclusion:

The RT-equations establish:
» Optimal regularity, (independent of metric signature).

» GR-shock waves are non-singular.
» Uhlenbeck compactness in Lorentzian geometry.
» Uhlenbeck compactness for compact & non-compact Lie groups.

Outlook:

» Extension to lower regularities I, dI" € L”?

» Applications of Uhlenbeck compactness in Lorentzian geometry?
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