#### $\alpha$ -Kähler quantization

#### Robert Oeckl

Centro de Ciencias Matemáticas Universidad Nacional Autónoma de México Morelia, Mexico

Regensburg – Mathematical Physics Seminar 9 July 2021

based on joint work with Daniele Colosi Phys. Rev. **D 100** (2019) 045081, arXiv:1903.08250 SIGMA, to appear, arXiv:2009.12342

・ロト ・四ト ・ヨト ・ ヨ

### Overview

Motivation: Spacetime locality

- 2 Classical field theory
  - Lagrangian field theory
  - Axiomatization
  - Review: Canonical quantization in curved spacetime
  - Extended Axiomatization
- Path integral and observables
  - Iice observables
  - Kähler quantization via GNS construction
- 6  $\alpha$ -Kähler quantization
- 🧭 An example: Evanescent particles

• • = • • = •

## Spacetime locality



#### **Classical Field Theory**

Glue solutions in spacetime regions at boundaries.

Robert Oeckl (CCM-UNAM)

2021-07-09 3 / 26

## Spacetime locality



#### **Classical Field Theory**

Glue solutions in spacetime regions at boundaries.

Quantum Field Theory

TQFT/GBQFT: Glue amplitudes in spacetime regions at boundaries.

# Spacetime locality



#### **Classical Field Theory**

Glue solutions in spacetime regions at boundaries.

Quantum Field Theory TQFT/GBQFT: Glue amplitudes in spacetime regions at boundaries.

- in non-relativistic (Q)M, there is only "temporal locality"
- spacetime locality might apply to **quantum gravity** as well

#### Amplitudes in spacetime regions



2021-07-09 4 / 26

イロト イポト イヨト イヨト

## Lagrangian field theory

Formulate field theory in terms of first order Lagrangian density  $\Lambda(\varphi, \partial \varphi, x)$ . For a spacetime region *M* the **action** of a field  $\phi$  is

$$S_M(\phi) \coloneqq \int_M \Lambda(\phi(\cdot), \partial \phi(\cdot), \cdot).$$

**Classical solutions** in M are extremal points of this action. These are obtained by setting to zero the first variation of the action,

$$(\mathrm{d}S_M)_{\phi}(X) = \int_M X^a \left( \frac{\delta\Lambda}{\delta\varphi^a} - \partial_\mu \frac{\delta\Lambda}{\delta\partial_\mu\varphi^a} \right) (\phi) + \int_{\partial M} X^a \partial_\mu \lrcorner \frac{\delta\Lambda}{\delta\partial_\mu\varphi^a} (\phi)$$

under the condition that the infinitesimal field X vanishes on  $\partial M$ . This yields the **Euler-Lagrange equations**,

$$\left(\frac{\delta\Lambda}{\delta\varphi^a} - \partial_\mu \frac{\delta\Lambda}{\delta\,\partial_\mu\varphi^a}\right)(\phi) = 0.$$

Robert Oeckl (CCM-UNAM)

イロト イポト イヨト イヨト

## The symplectic form

The boundary term can be defined for an arbitrary hypersurface  $\Sigma$ .

$$(\theta_{\Sigma})_{\phi}(X) = -\int_{\Sigma} X^{a} \partial_{\mu} \lrcorner \frac{\delta \Lambda}{\delta \partial_{\mu} \varphi^{a}}(\phi)$$

This 1-form is called the **symplectic potential**. Its exterior derivative is the **symplectic 2-form**,

$$\begin{split} (\omega_{\Sigma})_{\phi}(X,Y) &= (\mathrm{d}\theta_{\Sigma})_{\phi}(X,Y) = -\frac{1}{2} \int_{\Sigma} \left( (X^{b}Y^{a} - Y^{b}X^{a}) \partial_{\mu} \lrcorner \frac{\delta^{2}\Lambda}{\delta\varphi^{b}\delta \partial_{\mu}\varphi^{a}}(\phi) \right. \\ &+ (Y^{a}\partial_{\nu}X^{b} - X^{a}\partial_{\nu}Y^{b}) \partial_{\mu} \lrcorner \frac{\delta^{2}\Lambda}{\delta \partial_{\nu}\varphi^{b}\delta \partial_{\mu}\varphi^{a}}(\phi) \bigg) \,. \end{split}$$

We denote the space of solutions in *M* by  $L_M$  and the space of germs of solutions on a hypersurface  $\Sigma$  by  $L_{\Sigma}$ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

#### Conservation of the symplectic form

globally hyp. s. !. WE, stagel; K. 45 construction => Lu S LE, x LE, Le qui migi an 243 space

2021-07-09 7 / 26

イロト イポト イヨト イヨト 二日

# Lagrangian submanifolds

Let *M* be a region and  $\phi \in L_{\partial M}$ . Then  $\phi$  may or may not be induced from a solution in *M*. If  $\phi$  arises from a solution in *M* and *X*, *Y* arise from infinitesimal solutions in *M*, then,

 $(\omega_{\partial M})_{\phi}(X,Y) = (\mathrm{d}\theta_{\partial M})_{\phi}(X,Y) = -(\mathrm{d}\mathrm{d}S_M)_{\phi}(X,Y) = 0.$ 

This means,  $L_M$  induces an **isotropic** submanifold of  $L_{\partial M}$ .

It is natural to require that the symplectic form is **non-degenerate**. We are then led to the converse statement: If given *X* we have  $(\omega_{\partial M})_{\phi}(X, Y) = 0$  for all induced *Y*, then *X* itself must be induced. This means,  $L_M$  induces a **coisotropic** submanifold of  $L_{\partial M}$ .

#### $L_M$ induces a **Lagrangian** submanifold of $L_{\partial M}$ .

[Kijowski, Tulczyjew 1979]

イロン イロン イヨン イヨン 三日

## Geometric setting – manifolds

Fix dimension *d*. Manifolds are **oriented** and may carry **additional structure**: differentiable, metric, complex, etc.



#### region *M*

*d*-manifold with boundary.

#### hypersurface $\Sigma$

d - 1-manifold with boundary, with germ of d-manifold.

#### slice region $\hat{\Sigma}$

*d* – 1-manifold with boundary, with germ of *d*-manifold, interpreted as "infinitely thin" region.

### Axiomatic classical field theory

[RO 2010]



#### per hypersurface $\Sigma$ :

The space of germs of solutions near  $\Sigma$ . This is a symplectic manifold  $(L_{\Sigma}, \omega_{\Sigma})$ .

#### per **region** *M* :

The **space of solutions** in *M*. Forgetting the interior yields a map  $L_M \rightarrow L_{\partial M}$ . Under this map  $L_M$  is a **Lagrangian submanifold**  $L_M \subseteq L_{\partial M}$ .

### Axiomatic classical field theory

There are additional axioms related to gluing etc. like this one:



 $L_{M_1} \hookrightarrow L_M \rightrightarrows L_{\Sigma}$ 

Robert Oeckl (CCM-UNAM)

 $\alpha$ -Kähler quantization

2021-07-09 11/26

< ロ > < 同 > < 回 > < 回 > < 回 >

### Axiomatic classical field theory

There are additional axioms related to gluing etc. like this one:



 $L_{M_1} \hookrightarrow L_M \rightrightarrows L_{\Sigma}$ 

BUT, this does not work for many non-compact regions.

Robert Oeckl (CCM-UNAM)

 $\alpha$ -Kähler quantization

2021-07-09 11 / 26

・ロト ・四ト ・ヨト ・ヨト

## Canonical quantization in curved spacetime (review)

- *L* space of germs of solutions of the equations of motion (a real vector space). *L*<sup>C</sup> complexification.
- $\omega: L \times L \to \mathbb{R}$  symplectic form a bilinear antisymmetric form
- Define sesquilinear form  $(\phi, \phi') := 4i\omega(\overline{\phi}, \phi')$
- A quantization is determined by a complete set of modes  $\{u_k\}_{k \in I}$ :

$$(u_k, u_l) = \delta_{k,l}, \quad (\overline{u}_k, \overline{u}_l) = -\delta_{k,l}, \quad (u_k, \overline{u}_l) = 0, \quad \forall k, l \in I.$$

- $L^+ \subseteq L^{\mathbb{C}}, L^- \subseteq L^{\mathbb{C}}$  subspaces generated by the modes  $u_k, \overline{u}_k$ . Have  $L^{\mathbb{C}} = L^+ \oplus L^-$  and  $L^- = \overline{L^+}$ .
- postulate corresponding creation and annihilation operators:

$$[a_k, a_l] = 0, \quad [a_k^{\dagger}, a_l^{\dagger}] = 0, \quad [a_k, a_l^{\dagger}] = \delta_{k,l}.$$

Alternative characterization:

**Choice of vacuum** corresponds to choice of **positive-definite Lagrangian subspace** *L*<sup>+</sup>:

- $L^+ \subseteq L^{\mathbb{C}}$  is Lagrangian subspace
- **2**  $L^+$  is positive-definite with respect to  $(\cdot, \cdot)$

 $\{u_k\}_{k \in I}$  is just an ON-basis of  $L^+$ .

### Extended classical axioms



The classical axioms extend to general non-compact regions.

- For compact regions  $L_M \subseteq L_{\partial M}^{\mathbb{C}}$  is the complexification of a real Lagrangian subspace.
- For non-compact regions  $L_M \subseteq L^{\mathbb{C}}_{\partial M}$  is a general complex Lagrangian subspace.

## The path integral and observables

To construct (asymptotic) amplitudes for **interacting theories** in QFT we need to insert **observables** into the path integral.

A typical example are *n*-point functions.



 $\langle 0 | \mathbf{T}\phi(t_1, x_1)\phi(t_2, x_2)\phi(t_3, x_3) | 0 \rangle = \int \mathcal{D}\phi \,\phi(t_1, x_1)\phi(t_2, x_2)\phi(t_3, x_3)e^{iS(\phi)}$ 

#### Observables

In relativistic field theory observables need to be defined on configuration space.



#### per **region** *M* :

Assign the **configuration space**  $K_M$  in M. Have  $L_M \subseteq K_M$ . Also, a space  $C_M$  of **classical observables** given by maps  $K_M \rightarrow \mathbb{R}$ .

< ロ > < 同 > < 回 > < 回 > < 回 >

per **region** *M* with **label** *F*:

Assign the **classical observable**  $F \in C_M$ .

## Evaluating the path integral with observables

Insert a source  $\mu$  into the path integral of a transition amplitude.  $M = [t_1, t_2] \times \mathbb{R}^3$ .  $X = (-\infty, t_1] \times \mathbb{R}^3 \cup [t_2, \infty) \times \mathbb{R}^3$ .



- Exterior vacuum is given by Lagrangian subspace  $L_X^{\mathbb{C}} \subseteq L_{\partial X} = L_{\overline{\partial M}}$ .
- Here,  $L_X^{\mathbb{C}} = L_{\overline{1}}^+ \oplus L_2^+ = L_1^- \oplus L_2^+$ .
- Solve inhomogeneous equations  $(\Box + m^2)\eta = \mu$  such that  $\eta \in L_X^{\mathbb{C}}$ . (Klein-Gordon example)

$$\int \mathcal{D}\phi \, e^{\mathrm{i}(S(\phi) + \int \mathrm{d}^4 \, \phi \mu)} = \exp\left(\frac{\mathrm{i}}{2} \int \, \mathrm{d}^4 \, \eta \mu\right)$$

### Evaluating the path integral with observables

Write source  $\mu$  as linear observable  $D(\phi) := \int d^4 \phi(x)\mu(x)$ . Write exponentiated observable  $F = \exp(iD)$ .

$$\rho_{M}^{F}(W) = \langle 0|\mathbf{T}F(\phi)|0\rangle = \int \mathcal{D}\phi F(\phi)e^{\mathbf{i}S(\phi)} = \int \mathcal{D}\phi e^{\mathbf{i}(S+D)(\phi)}$$
$$= \int \mathcal{D}\phi e^{\mathbf{i}(S(\phi) + \int d^{4} \phi \mu)} = \exp\left(\frac{\mathbf{i}}{2} \int d^{4} \eta \mu\right) = \exp\left(\frac{\mathbf{i}}{2}D(\eta)\right)$$

This works for arbitrary **linear observables** *D*.

### Evaluating the path integral with observables

- Suppose *D* is a **linear observable**  $D : K_M \to \mathbb{R}$ .
- Suppose *F* is the associated **Weyl observable**: *F* = exp(i*D*)
- Replace the quadratic action *S* by S + D. Let  $A_M^D$  denote the space of solutions of the new equations of motions.



Let *X* denote the **exterior region**.  $L_X^{\mathbb{C}} \subseteq L_{\partial X}^{\mathbb{C}} = L_{\overline{\partial M}}^{\mathbb{C}}$  is Lagrangian.  $\eta \in (A_M^D \oplus iL_M) \cap L_X^{\mathbb{C}}$  is (generically)

$$D(\phi) = 2\omega_{\partial M}(\eta, \phi) \text{ for } \phi \in L_M^{\mathbb{C}}$$
 (1)

$$\rho_M^F(W) = \exp\left(\frac{i}{2}D(\eta)\right)$$
(2)

 $\alpha$ -Kähler quantization

### Slice observables

 $\Sigma$  a hypersurface,  $\hat{\Sigma}$  associated slice region.  $\partial \hat{\Sigma} = \Sigma \cup \overline{\Sigma'}$ . Set  $K_{\hat{\Sigma}} = L_{\partial \hat{\Sigma}} = L_{\Sigma} \oplus L_{\overline{\Sigma'}}$ . Slice observable  $D : K_{\hat{\Sigma}} \to \mathbb{C}$  induced by  $D' : L_{\Sigma} \to \mathbb{C}$  via  $D(\phi, \phi') = D'(\frac{1}{2}(\phi + \phi'))$ .



< ロ > < 同 > < 回 > < 回 > < 回 >

### Slice observables

 $\Sigma$  a hypersurface,  $\hat{\Sigma}$  associated slice region.  $\partial \hat{\Sigma} = \Sigma \cup \overline{\Sigma'}$ . Set  $K_{\hat{\Sigma}} = L_{\partial \hat{\Sigma}} = L_{\Sigma} \oplus L_{\overline{\Sigma'}}$ . Slice observable  $D : K_{\hat{\Sigma}} \to \mathbb{C}$  induced by  $D' : L_{\Sigma} \to \mathbb{C}$  via  $D(\phi, \phi') = D'(\frac{1}{2}(\phi + \phi'))$ .



If *D* is **linear**,  $\exists \xi \in L_{\Sigma}^{\mathbb{C}}$  s.t.  $D'(\phi) = 2\omega_{\Sigma}(\phi, \xi)$ . Then  $D(\phi, \phi) = 2\omega_{\Sigma}(\phi, \xi)$ . Let  $\eta \in A_{M}^{D}$ . From (1) we conclude  $D(\phi, \phi) = 2\omega_{\Sigma}(\eta_{\Sigma} - \eta_{\Sigma'}, \phi)$ .

$$\eta_{\Sigma'} - \eta_{\Sigma} = \xi$$

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

### Vacuum correlator of Weyl slice observable



Let *D* be linear with  $D'(\phi) = 2\omega_{\Sigma}(\phi, \xi)$ . Impose vacuum boundary conditions via Lagrangian subspace  $L_X \subseteq L_{\partial X} = L_{\overline{\partial \Sigma}} = L_{\Sigma}^+ \oplus L_{\overline{\Sigma}}^-$ . Suppose factorization  $L_X = L_{\Sigma}^+ \oplus L_{\overline{\Sigma}}^-$  with  $L_{\Sigma}^+ \subseteq L_{\Sigma}^{\mathbb{C}}$  and  $L_{\overline{\Sigma}}^- \subseteq L_{\Sigma'}^{\mathbb{C}}$ . Then,  $\eta_{\Sigma} \in L_{\Sigma}^+$  and  $\eta_{\Sigma'} \in L_{\overline{\Sigma}}^-$  while  $\eta_{\Sigma'} - \eta_{\Sigma} = \xi$ .

$$\eta_{\Sigma} = -\xi^+ \qquad \eta_{\Sigma'} = \xi^-$$

$$\rho_{\hat{\Sigma}}^{F}(W) = \exp\left(\frac{\mathrm{i}}{2}D'\left(\frac{1}{2}(\eta_{\Sigma} + \eta_{\Sigma'})\right)\right) = \exp\left(-\mathrm{i}\omega_{\overline{\Sigma}}(\xi^{-},\xi^{+})\right)$$

Robert Oeckl (CCM-UNAM)

### Composition of slice observables

Compose **linear slice observables** *D* and *E* and the corresponding **Weyl observables** *F* and *G*.



## Composition of slice observables

Compose **linear slice observables** *D* and *E* and the corresponding **Weyl observables** *F* and *G*.



Quantum algebra of slice observables.

 $G \star F = \exp(i\omega_{\Sigma}(\xi_D, \xi_E)) G \cdot F$ 

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## GNS construction (I)

The vacuum correlation function defines a **linear functional on slice observables**  $v_{\Sigma}(F) = \rho_{\Sigma}^{F}(W)$ .

The slice observables form a **\*-algebra** with  $F^*(\phi) = F(\overline{\phi})$ . If the polarization is **Kähler**, we have a positive-definite Lagrangian subspace. In particular,  $L_{\Sigma}^- = \overline{L_{\Sigma}^+}$ . Moreover, for  $\xi \in L_{\Sigma}$  with  $\xi \neq 0$ ,

$$4\mathrm{i}\omega_{\overline{\Sigma}}(\xi^-,\xi^+)=4\mathrm{i}\omega_{\overline{\Sigma}}(\overline{\xi^+},\xi^+)=(\xi^+,\xi^+)_{\overline{\Sigma}}>0$$

If *F* is a **Weyl observable** determined by  $\xi \in L_{\Sigma}$ ,

$$v_{\Sigma}(F) = \exp\left(-\frac{1}{4}(\xi^+,\xi^+)_{\overline{\Sigma}}\right)$$

This implies that  $v_{\Sigma}$  is a **positive** \*-functional.

Robert Oeckl (CCM-UNAM)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

## GNS construction (II)

Construct the Hilbert space  $\mathcal{H}_{\Sigma}$  from the quantum \*-algebra  $\mathcal{A}$  on  $L_{\Sigma}$  via the **GNS construction**.

Define on  $L_{\Sigma}$  the hermitian sesquilinear form.

 $[G,F] := v_{\Sigma}(G^* \star F)$ 

Then  $I := \{A \in \mathcal{A} : [A, A] = 0\}$  is a **left ideal** and the **quotient**  $\mathcal{A}/I$  is a positive-definite inner product space. **Completion** yields the desired Hilbert space.

Here, I is generated by the relation  $F \sim 1$  for F a Weyl observable determined by  $\xi \in L_{\Sigma}^+$ .

Under the quotient Weyl observables become coherent states.

## $\alpha$ -Kähler quantization

 $L_{\Sigma}^{\pm} \subseteq L_{\Sigma}^{\mathbb{C}}$  complementary Lagrangian subspaces.  $L_{\Sigma}^{\mathbb{C}} = L_{\Sigma}^{+} \oplus L_{\Sigma}^{-}$ . What if this is not a Kähler polarization?

## $\alpha$ -Kähler quantization

 $L_{\Sigma}^{\pm} \subseteq L_{\Sigma}^{\mathbb{C}}$  complementary Lagrangian subspaces.  $L_{\Sigma}^{\mathbb{C}} = L_{\Sigma}^{+} \oplus L_{\Sigma}^{-}$ . What if this is not a Kähler polarization?

Positive-definite real structure  $\alpha$ 

- $\alpha: L_{\Sigma}^{\mathbb{C}} \to L_{\Sigma}^{\mathbb{C}}$  anti-linear involution.
- $\alpha(L_{\Sigma}^{\pm}) = \alpha(L_{\Sigma}^{\mp})$
- $\omega_{\Sigma}(\alpha(\phi), \alpha(\eta)) = \overline{\omega_{\Sigma}(\phi, \eta)}$
- $(\phi, \eta)_{\Sigma}^{\alpha} := 4i\omega_{\Sigma}(\alpha(\phi), \eta)$  positive-definite on  $L_{\Sigma}^{+}$ .

Define new \*-structure on  $\mathcal{A}$ :  $F^{\alpha}(\phi) = F(\alpha(\phi))$ . This yields the twisted quantum \*-algebra  $\mathcal{A}^{\alpha}$ .  $v_{\Sigma}$  is again a positive \*-functional on  $\mathcal{A}^{\alpha}$ . We can apply the GNS construction to obtain the Hilbert space  $\mathcal{H}^{\alpha}_{\Sigma}$ .

# Application: Evanescent particles

#### [D. Colosi, RO: arXiv:2104.12321] Klein-Gordon theory in Minkowski space, $\Sigma$ timelike hyperplane



This can be quantized via  $\alpha$ -Kähler quantization.  $\alpha$  arises from a **reflection**. (Compare **reflection-positivity** in Euclidean QFT.)

→ く注→ く注→