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Overview

@ Motivation: Spacetime locality

@ Classical field theory
e Lagrangian field theory
o Axiomatization
@ Review: Canonical quantization in curved spacetime
o Extended Axiomatization

@ Path integral and observables

@ Slice observables

© Kahler quantization via GNS construction
@ o-Kahler quantization

@ An example: Evanescent particles

Robert Oeckl (CCM-UNAM) a-Kahler quantization 2021-07-09 2/26



Spacetime locality

time

Classical Field Theory

Glue solutions in spacetime
regions at boundaries.
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Spacetime locality

A / Classical Field Theory
timg 2 Glue solutions in spacetime

4 regions at boundaries.

Quantum Field Theory

APAGN TQFT/GBQFT: Glue amplitudes in
spacetime regions at boundaries.

N e in non-relativistic (Q)M, there
4 7 ‘; is only “temporal locality”

I . space @ spacetime locality might apply
to quantum gravity as well
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Amplitudes in spacetime regions
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Lagrangian field theory

Formulate field theory in terms of first order Lagrangian density
A(g, d¢, x). For a spacetime region M the action of a field ¢ is

Su() = /M AG().06(). ).

Classical solutions in M are extremal points of this action. These are
obtained by setting to zero the first variation of the action,

oA oA oA
ds X)= | X' | —=-0u—70— X0ya——
WioX) = [ X (2 -augp| 0 [ X,
under the condition that the infinitesimal field X vanishes on M. This
yields the Euler-Lagrange equations,
oA oA
— -y = 0.
(W ;468”<pa) (¢) =0
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The symplectic form

The boundary term can be defined for an arbitrary hypersurface .

oA
00,

(05)(X) = - /E X9, =22 (4)

This 1-form is called the symplectic potential. Its exterior derivative is
the symplectic 2-form,

1 52A
X,Y) = (d6s)s(X,Y) = —= XPY* - YPX") 8,y n————
()(X, Y) = (d05) (X, ) 2/2(< T Wil
2
A
+(Y*9, X — X%, Y?) a,,Jé—(@ .
5 0,96 84"

We denote the space of solutions in M by Ly and the space of germs of
solutions on a hypersurface X by Ls.
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Conservation of the symplectic form
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Lagrangian submanifolds

Let M be a region and ¢ € Lsy. Then ¢ may or may not be induced
from a solution in M. If ¢ arises from a solution in M and X, Y arise
from infinitesimal solutions in M, then,

(Wom) ¢(X,Y) = (dapm) ¢ (X, Y) = =(ddSpm) ¢ (X, Y) = 0.
This means, Ly induces an isotropic submanifold of Lyys.

It is natural to require that the symplectic form is non-degenerate. We
are then led to the converse statement: If given X we have
(wam)¢(X,Y) =0 for all induced Y, then X itself must be induced. This
means, Ly induces a coisotropic submanifold of Lyy.

Ly induces a Lagrangian submanifold of L. J

[Kijowski, Tulczyjew 1979]
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Geometric setting — manifolds

Fix dimension 4. Manifolds are oriented and may carry additional
structure: differentiable, metric, complex, etc.

region M
d-manifold with boundary.

.—-\_/ hypersurface ¥
> d — 1-manifold with boundary,

with germ of d-manifold.

slice region =

oM d — 1-manifold with boundary;
with germ of d-manifold,
interpreted as “infinitely thin”
region.
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Axiomatic classical field theory

[RO 2010]

Ly, wy
‘\% LaM
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Ly

a-Kahler quantization

per hypersurface X :

The space of germs of
solutions near X. This is a
symplectic manifold

(Ls, wy).

per region M :

The space of solutions in
M. Forgetting the interior
yields a map Ly — Lom.
Under this map Ly is a
Lagrangian submanifold
Ly C Lopm-

2021-07-09
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Axiomatic classical field theory

There are additional axioms related to gluing etc. like this one:
Ly

\

L, Ly
%) 2
LM1 — LM 3 Lz J
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Axiomatic classical field theory

There are additional axioms related to gluing etc. like this one:

Ls
L, Ly \
21 2

LMl%LMjLz J

BUT, this does not work for many non-compact regions.
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Canonical quantization in curved spacetime (review)

e L space of germs of solutions of the equations of motion (a real
vector space). L© complexification.

e w:LxL — Rsymplectic form — a bilinear antisymmetric form

o Define sesquilinear form | (¢, ¢") := 4iw (¢, ¢")

e A quantization is determined by a complete set of modes {u }ier:

(ug,up) = Ok, (g, up) = =01,  (ug,u;) =0, Vk,lel.

e L* C L%, L~ C L® subspaces generated by the modes u, .
Have L®=L*®L and L™ = L*.

@ postulate corresponding creation and annihilation operators:

[a.a) =0, [a.a/]1=0, [ar.a]] =5,
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Positive-definite Lagrangian Subspaces

Alternative characterization:
Choice of vacuum corresponds to choice of
positive-definite Lagrangian subspace L*:

@ L* ¢ L® is Lagrangian subspace

@ L' is positive-definite with respect to (-, -)
{ux }rer is just an ON-basis of L*.
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Extended classical axioms

definite Lagrangian
ty subspace Lx
. vo X
real Lagrangian ! )
subspace Ly 5 T
¢ Yo %
1 definite Lagrangian
N N subspace Lx

(a) (b) ()

The classical axioms extend to general non-compact regions.
e For compact regions Ly C L}, , is the complexification of a real
Lagrangian subspace.

e For non-compact regions Ly C LSM is a general complex
Lagrangian subspace.
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The path integral and observables

To construct (asymptotic) amplitudes for interacting theories in QFT
we need to insert observables into the path integral.

A typical example are n-point functions.

EA 0

o $(t3.x3)
eBltaxa)

® p(t1,x1)

S-10)

X

<0|T¢(t1,x1)¢(fz,x2)¢(t3,xs)|o>=/@¢¢(t1,x1)¢(fz,X2)¢(f3,x3)€is(¢)
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Observables

In relativistic field theory observables need to be defined on
configuration space.

per region M :

Assign the configuration space Kj; in
M. Have Ly € K. Also, a space Cy of

K classical observables given by maps
Ky — R.

oM per region M with label F:

Assign the classical observable
F € Cym1.
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Evaluating the path integral with observables

Insert a source y into the path integral of a transition amplitude.
M = [t1, ] XxR3. X = (=00, 1] X R3 U [tp, 00) x R3.
t

] ‘ ]POSiﬁve energy] ] ] ] e Exterior vacuum is given by
b solutions Lagrangian subspace
LS € Lox = Lz -
M o Here Ly =Lt @ L] =L; L]
t . e Solve inhomogeneous
J l Jnegam’e.energyJ J J J equations (0 + m?)n = u such
solutions .
thatn € Lg. (Klein-Gordon
x example)

/D¢ei(5(¢)+fd4¢;1) =exp(%/d4nu)
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Evaluating the path integral with observables

Write source u as linear observable D(¢) := f d* p(x)u(x).
Write exponentiated observable F = exp(iD).

Pla(W) = OITF(@)10) = [ DoF(@)e® = [ DpelseD1®

— / D¢ei(s(¢)+/d4 ¢/~‘) = exp (% / d4 77#) = eXp (%D(]]))

This works for arbitrary linear observables D.
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Evaluating the path integral with observables

@ Suppose D is a linear observable D : Kj; — R.
@ Suppose F is the associated Weyl observable: F = exp(iD)

@ Replace the quadratic action S by S + D. Let A}, denote the space
of solutions of the new equations of motions.
Let X denote the exterior region.
LS c Ly, = L%\A is Lagrangian.
n € (AP @ily) N LS is (generically)
unique.

K
s D(¢) = 2wam(n. ¢) for ¢ €LS, (1)

oM

PEL(W) = exp (%D(n)) 2)

Robert Oeckl (CCM-UNAM) a-Kahler quantization 2021-07-09 19/26



Slice observables

¥ a hypersurface, 3 associated slice region. 9% =X U Y’
Set Ki = Lai =Ly ® L@.

Slice observable D : K¢ — Cinduced by D’ : Ly — C via
D(¢.¢') =D'(3(¢ +¢").
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Slice observables

¥ a hypersurface, 3 associated slice region. 9% =X U Y’
Set Ki = Lai =Ly ® L@.

Slice observable D : K¢ — Cinduced by D’ : Ly — C via
D(¢,¢") =D’ (3(¢ +¢").

If D is linear, 3¢ € LS s.t. D’(¢) = 2ws (¢, €). Then D(¢, ¢) = 2ws (4, ).
Letn € AZI\D/I. From (1) we conclude D(¢, ¢) = 2ws(ns — 1y, ¢).
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Vacuum correlator of Weyl slice observable

p2i4 z

Let D be linear with D’(¢) = 2ws (¢, ¢). Impose vacuum boundary
conditions via Lagrangian subspace Lx C Lox = L =Ly @ L.
Suppose factorization Lx = L{ ® Ly with L € LS and L5 € L5,.

Then, ny € L and 7y € Lg while ny — s = £.

’772=—§+ 772'=-f_‘

pL(W) = exp (%D' (%(772 + 772'))) = exp (-lwg(¢7,¢7))
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Composition of slice observables

Compose linear slice observables D and E and the corresponding
Weyl observables F and G.

G =exp(iE)

/— Uh
T-fE

s— 1%
TfD ?
% 3

F = exp(iD) K s,
GeF

Compare pg = pg Opg to pg'F via (2).

exp (%(E + D)(n)) ~ exp (% (E' (émzz + n&)) LD (%mzl + 7722))))

= exp (iws(€p, £E)) exp (%(E' +D’) (%(7721 + 7723))) .

7
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Composition of slice observables

Compose linear slice observables D and E and the corresponding
Weyl observables F and G.

G = exp(iE)

/— Uh
TfE

— 13
TfD :
X X X3

F = exp(iD) K s,
GeF

— G F GF ;
™ =pg o pg topg via (2).

7

Compare p

ps*h = exp (iwx(ép, éx)) pg "

Quantum algebra of slice observables.

G F =exp (iws(ép.€e)) G- F

Robert Oeckl (CCM-UNAM) a-Kéahler quantization 2021-07-09 22 /26



GNS construction (I)

The vacuum correlation function defines a linear functional on slice
observables vs (F) = pg(W).

The slice observables form a *-algebra with F*(¢) = F (9).
If the polarization is Kadhler, we have a positive-definite Lagrangian

subspace. In particular, L; = L_E Moreover, for £ € Ly with & # 0,
diws(£7,&7) = diwg (4,67 = (67,65 >0
If F is a Weyl observable determined by ¢ € Ly,

vz (F) = exp (—}L(Ff)z)

This implies that vy is a positive #-functional.
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GNS construction (II)

Construct the Hilbert space Hs from the quantum x-algebra A on Ly
via the GNS construction.

Define on Ly the hermitian sesquilinear form.
[G,F] :==vs(G" x F)

Then I := {A € A : [A,A] =0} is a left ideal and the quotient A/I isa
positive-definite inner product space. Completion yields the desired
Hilbert space.

Here, 7 is generated by the relation F ~ 1 for F a Weyl observable
determined by ¢ € L.

Under the quotient Weyl observables become coherent states.
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a-Kéhler quantization

Li ¢ LS complementary Lagrangian subspaces. L = L} @ L.

What if this is not a Kahler polarization?
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a-Kdhler quantization

Li ¢ LS complementary Lagrangian subspaces. L = L} @ L.

What if this is not a Kahler polarization?

Positive-definite real structure «
°o a: L‘g — Lg anti-linear involution.
o a(L3) = a(L3)

o wx(a(¢),a(n) =ws(g,n)
o (¢,n)y =4iws(a(¢),n) positive-definite on L3.

Define new x*-structure on A: F*(¢) = F(a(¢)). This yields the twisted
quantum *-algebra A“. vy is again a positive *-functional on A“. We
can apply the GNS construction to obtain the Hilbert space "
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Application: Evanescent particles

[D. Colosi, RO: arXiv:2104.12321]
Klein-Gordon theory in Minkowski space, X timelike hyperplane
t

-
_7P
oLy=LPelg
P .
e L;: propagating waves (as on
spacelike hypersurface)
vacuum e L$: evanescent waves
° L§’+ c LY is positive-definite
boundary Lagrangian subspa
o grangian subspace
condition o 3" C LS is real Lagrangian
X
— subspace
z

This can be quantized via a-Kéhler quantization. « arises from a
reflection. (Compare reflection-positivity in Euclidean QFT.)
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