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A brief history of “quantization” 1: Heisenberg c.s.

I Heisenberg (1925), Quantum-mechanical re-interpretation of
kinematical and mechanical relations, contains essence of
quantization: classical observable (function)  matrix

I Born–Heisenberg–Jordan (1926), On quantum mechanics II,
relates quantization to classical limit, in the light of CCR

pq−qp =
h

2π i
·1 (5)

‘We will later discuss the physical significance of this relation
according to the correspondence principle’

‘classical mechanics may be regarded as the limiting case of
quantum mechanics when h̄ tends to zero’

‘one can see from eq. (5) that in the limit h = 0, the new
theory would converge to the classical theory, as is physically
required.’ (if only things were as simple as that . . . )



A brief history of “quantization” 2: Schrödinger
Schrödinger 1926 (2.5), On the relation between the quantum
mechanics of Heisenberg, Born, and Jordan, and mine:
‘to each function of the position- and momentum-co-ordinates
there may be related a matrix in such a manner that these
matrices, in every case, satisfy the formal calculating rules of Born
and Heisenberg (among which I also reckon the so-called
“quantum condition” or “commutation relation” [i.e.

(plql −qlpl)
ik = Kδijk (K = h/(2π

√
−1)) (11)

]), (. . . ), it is understood that we could have also found relation
(11) by taking the two matrices allied to ql and pl , viz.

qikl =
∫

qlρ(x)ui (x)uk(x)dx ;

pikl = K
∫

ρ(x)ui (x)
∂uk(x)

∂ql
dx

This is qj 7→ q̂j = M(x j) and pj 7→ p̂j =−i h̄∂/∂x j quantization



A brief history of “quantization” 3: Dirac

Dirac (1925), The fundamental equations of quantum mechanics:

‘The difference between the Heisenberg product of two quantum
quantities is equal to ih/2π times their Poisson bracket expression’

xy −yx =
ih

2π
{x ,y} ⇒ qkpl −plqk =

ih

2π
{qk ,pl}=

ih

2π
δkl

‘The strong analogy between the quantum P.B. [i.e. commutator
×(2π i/h)] and the classical P.B. leads us to make the assumption
that the quantum P.B.’s, or at any rate the simpler ones of them,
have the same values as the corresponding classical P.B.’s.’

‘The correspondence between the quantum and classical theories
lies not so much in the limiting agreement when h→ 0 as in the
fact that the mathematical operations on the two theories obey in
many cases the same laws.’ within entirely different mathematical
contexts! Dirac (1930): ‘classical mechanics may be regarded as
the limiting case of quantum mechanics when h̄ tends to zero.’



Intermezzo: ‘The magic year 1927’ (Mackey)

I Hilbert, von Neumann, & Nordheim (1927), On the
foundations of quantum mechanics

I von Neumann (1927a), Mathematical foundation of QM

I von Neumann (1927b), Probabilistic development of QM

I Peter & Weyl (1927), The completeness of the primitive
representations of a closed continuous group (24/7/1926)

I (Wigner (1927ab): Sn and SO(3) symmetries of Hamiltonian)

I Weyl (1927), QM and group theory (13/10/1927)

I Weyl (1928), Group Theory and Quantum Mechanics (book)

Independently of QM, Hilbert’s former PhD student Hermann Weyl
had begun to develop the theory of unitary group representations

Because of QM, Hilbert’s postdoc John von Neumann formalized
Hilbert-school functional analysis into theory of Hilbert spaces

These lines crossed in 1927, leading vN and W to study unitary
group representation theory on infinite-dimensional Hilbert spaces



A brief history of “quantization” 4: Weyl
Weyl (1927) distinguished two ‘very similar questions’ in QM:

1. ‘How to construct the Hermitian matrix that represents some
quantity of a known physical system?’ (‘left open by JvN’)

2. ‘Given this Hermitian form, what is their physical meaning?’
(Weyl regarded this problem as solved by von Neumann)

Weyl: group theory answers 1. CCR [p,q] =−i h̄  projective
unitary representation of R2 ∼= unitary representation of Heis(R2):

I p  unitary representation U of R: U(a) = exp(iap̂)

I q  unitary representation V of R: V (b) = exp(ibq̂)

This changes the CCR (involving unbounded operators) to

U(a)V (b) = e i h̄abV (b)U(a)

Quantization formula for phase space functions f (p,q) added in
2nd ed. (1931) of Group Theory and Quantum Mechanics (1928)

f (p,q) 7→
∫ ∫

dadb f̂ (a,b)e iap̂+ibq̂ =
∫ ∫

dadb f̂ (a,b)e i h̄ab/2U(a)V (b)



A brief history of “quantization” 5: Stone–von Neumann

Weyl (1928, without proof), Stone (1930, with sketch of proof),
von Neumann (1931, with complete proof), Stone–vN theorem:

Theorem
For fixed h̄ 6= 0, up to unitary equivalence there is a unique unitary
irreducible representation (i.e. on Hilbert space) of the Weyl–CCR

U(a)V (b) = e i h̄abV (b)U(a)

such that a 7→ U(a) and b 7→ V (b) are strongly continuous
(equivalently via Stone’s theorem: there are associated self-adjoint
operators p̂ and q̂ such that U(a) = exp(iap̂) and V (b) = exp(ibq̂))

C*-algebraically: uniqueness of regular irreducible representations
of Weyl-CCR algebra W (M,σ) over finite-dimensional symplectic
space (M,σ), but this algebra is very awkward (= twisted group
C*-algebra over R2 but with horrible discrete topology on R2)
and should be replaced by Buchholz–Grundling C*-algebra



Later approaches to quantization
After first push (1925–1930) quantization theory branched off:
I Deformation quantization (emphasizing classical limit,

downplaying symmetry): Groenewold (1946), Moyal (1949)
I (a) Formal (= algebraic) deformation quantization:

Berezin (1975), Flato–Lichnerowicz–Sternheimer (1976)
I (b) Strict (= C*-algebraic) deformation quantization (Rieffel)

Applicable to arbitrary phase spaces (= Poisson manifolds)

I Weyl’s program (emphasizing symmetry, downplaying classical
limit): Mackey (1957), induced group representations
Applicable to arbitrary configuration spaces (notably: G/H)

I Geometric quantization (idem dito): Souriau (1969), Kostant
(1970), constructs Hilbert spaces from line bundles etc.
Applicable to homogeneous symplectic manifolds M = G/H

I Phase space (= Borel = POVM = coherent state)
quantization, path integral quantization, stochastic . . .

In remainder I will explain strict deformation quantization and
Weyl’s program and, though complementary, relate these
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Mackey’s approach to quantization (slightly reformulated)
Mackey breaks phase space symmetry between p and q! He
exponentiates CCR [p,q] =−i h̄ to system of imprimitivity:

I p unitary representation of R on H , U(a) = exp(iap̂)

I q representation π of C*-algebra C0(R) on H (abstraction
of Schrödinger’s q̂ψ(x) = xψ(x) to π(f )ψ(x) = f (x)ψ(x))

I CCR  covariance condition U(a)π(f )U(a)∗ = π(f ◦−a)

Generalization: group G acts on (configuration) space Q

I Unitary representation U of G on Hilbert space H

I Nondegenerate representation π of C*-algebra C0(Q) on H

I Covariance condition U(a)π(f )U(a)∗ = π(f ◦a−1)

Classification or irreps known if Q = G/H with left G=action:

Theorem (Mackey’s imprimitivity theorem)

Covariant irreps of (G ,C0(G/H)) ↔ unitary irreps of H (up to . . . )

Corollary: if Q = G (e.g. Q = G = Rn) then ∃! 1 irrep (H = {e})
(Mackey’s PhD advisor) Stone–von Neumann uniqueness theorem



Mackey’s approach: smooth setting

Mackey never mentioned Poisson brackets or explained which
phase space he quantized (obvious choice T ∗Q cannot be right)

I Mackey worked topologically. If G Lie group, Q manifold,
action G � Q smooth, and U(G ) regular (i.e. exponentiates
Lie algebra g representation à la Stone–Nelson), then system
of imprimitivity may be defined via commutation relations:

[dU(A),dU(B)] = dU([A,B]) [π(f ),π(g)] = 0

[dU(A),π(f )] = π(ξAf ) ξAf (q) :=
d

dt
f
(
e−tAq

)
t=0

which for G = Q = Rn and G � Q left action retrieves CCR:

[p̂j , p̂k ] = 0 [q̂j , q̂k ] = 0 [p̂j , q̂k ] =−i h̄δjk

This is the key for a formulation in terms of Poisson brackets:



Mackey’s quantization: Poisson brackets

Underlying phase space (= manifold M with Poisson bracket on
C∞(M)) for Mackey turns out to be M = g∗×Q with P.B.

{Â, B̂}=−[̂A,B] {f ,g}= 0 {Â, f }=−ξAf

where, for A ∈ g, Â ∈ C∞(g∗) is Â(θ) := θ(A), and f ∈ C∞(Q)

With Qh̄(A) := i h̄dU(A) and Qh̄(f ) := π(f ), the CCR become:

i

h̄
[Qh̄(Â),Qh̄(B̂)] = Qh̄({Â, B̂});

i

h̄
[Qh̄(f ),Qh̄(g)] = Qh̄({f ,g}) = 0

i

h̄
[Qh̄(Â),Qh̄(f )] = Qh̄({Â, f })

Mackey’s quantization fits Dirac’s “P.B.  commutator” ideology

though underlying phase space g∗×Q is (often) not symplectic!

(Poisson manifolds M are foliated by symplectic leaves on which
the P.B. is nondegenerate in that any point can dynamically move
to any other point via Hamiltonian flow; this is not true for M)



Mackey’s quantization: inequivalent possibilities

Special case Q = G/H: by imprimitivity theorem inequivalent
irreducible representations of system of imprimitivity (G ,C0(G/H))
↔ unitary irreducible representations of H. Mackey’s key example:

G = E (3) := SO(3)nR3 Q = R3 ∼= G/SO(3)

so inequivalent irreducible representations ↔ unitary irreps of H

↔ spin j = 0,1,2. . . . (if SO(3) SU(2) then j ∈ N/2)

This was Mackey’s explanation of spin which fitted (Pauli’s) idea
that spin is a purely QM phenomenon. This is wrong (Souriau)

I Quantum: irreps of system of imprimitivity (G ,C0(Q))

I Classical: symplectic leaves of Poisson manifold M = g∗×Q

Symplectic leaves of M = g∗× (G/H) ↔ coadjoint orbits of h∗ (so
M is symplectic iff h = 0 and then M ∼= T ∗G ). For G = E (3) and
Q = R3 have h∗ ∼= R3 with Euler’s P.B., whose symplectic leaves
are spheres, so classical spin exists with continuous values j ≥ 0



Groenewold–Rieffel: (strict) deformation quantization
Groenewold’s (and Moyal’s) idea: for phase space M, deform
commutative algebra C∞(M) “in the direction of the Poisson
bracket” (Dirac) into some non-commutative algebra (Heisenberg)

Formalized by Rieffel (1989) in language of C*-algebras = “nice”
algebras of bounded operators on Hilbert space, also defined
abstractly, with ensuing representation theory on Hilbert spaces,
like groups, which unify commutative and non-commutative worlds

I Continuous field of C*-algebras (Dixmier, 1962) is (not
necessarily locally trivial) bundle whose fibers are C*-algebras

I Strict quantization of Poisson manifold M is continuous field
of C*-algebras over I ⊆ [0,1] with commutative C*-algebra
A0 = C0(M) and non-commutative C*-algebras Ah̄ at h̄ > 0,
plus quantization maps Qh̄ : A0→ Ah̄ satisfying the condition

lim
h̄→0

∥∥∥∥ ih̄ [Qh̄(f ),Qh̄(g)]−Qh̄({f ,g})
∥∥∥∥
Ah̄

= 0



Some examples of strict deformation quantization

I Non-commutative tori (Rieffel, 1989)

I Weyl quantization (Rieffel, 1994; Connes, 1994)

I Toeplitz quantization of compact Kähler manifolds
(Bordemann– Meinrenken–Schlichenmaier, 1994)

I Coadjoint orbits of compact Lie groups (1998)

I Mackey quantization (“The big picture”, 1998)

I Symmetric spaces (Bieliavsky, 2000)

I Symplectic manifolds (Natsume–Nest–Peter, 2003)

I ∞-dim. symplectic spaces (Binz–Honegger–Rieckers, 2004)

I Symplectic groupoids (Hawkins, 2008)

I Quantum field theory (Buchholz–Lechner-Summers, 2011)

I Philosophy of physics, classical limit (Feintzeig, 2017–2021)

I Buchholz–Grundling reolvent algebra (van Nuland, 2019)

I Quantum spin systems (van de Ven et al., 2021–2021)
N.B. N = 1/h̄, then h̄→ 0 = thermodynamic limit N → ∞



Intermezzo: Lie groupoids and Lie algebroids

Groupoids (small categories with inverses) generalize sets, groups,
group actions, equivalence relations: partial (associative)
multiplication and local units (inverse defined everywhere)

1. group G : multiplication always defined, single unit

2. space M: multiplication x ·y = x defined iff y = x

3. pair groupoid M×M, (u,v) · (w ,x) = (u,x) defined iff v = w

4. equivalence relation R ⊂M×M (Grothendieck)

5. action groupoid Γ = G nQ from group action G � Q:
multiplication (g ,x) · (h,y) = (gh,x) defined iff y = gx

Smooth (Lie) groupoids have associated “infinitesimal” objects: Lie
algebroids E (vector bundles), e.g. g, M, TM, E ⊂ TM, g×Q (!)

Lie groupoid Γ has associated C*-algebra C ∗(Γ) (Connes)

Lie algebroid E has associated Poisson manifold E ∗ (Weinstein)



Combining Mackey with Groenewold–Rieffel

Given smooth group action G � Q Mackey unwittingly quantized
Poisson manifold g∗×Q, which is the Poisson manifold associated
to the Lie agebroid of the action Lie groupoid G nQ, suggesting:

I Strict deformation quantization of commutative C*-algebra
C0(g∗×Q) by non-commutative C*-algebras Ah̄ = C ∗(G nQ)

This works well, and can be generalized to vast class of examples:

I Lie groupoid Γ defines both C*-algebra C ∗(Γ) and Lie
algebroid Lie(Γ) with associated Poisson manifold Lie(Γ)∗

I Continuous field of C*-algebras on [0,1] with fibers
A0 = C0(Lie(Γ)∗) and Ah̄ = C ∗(Γ) for h̄ ∈ (0,1]

I Quantization maps Qh̄ : A0→ Ah̄ generalizes Weyl’s formula

I Axiom limh̄→0

∥∥ i
h̄ [Qh̄(f ),Qh̄(g)]−Qh̄({f ,g})

∥∥
C ∗(Γ)

= 0 holds

Proof is based on fact that C*-algebra C ∗(A) of continuous
cross-sections of this field A is the C*-algebra of a Lie groupoid,
namely the tangent groupoid of Γ (introduced by Connes in NCG)



Summary

I Quantization pioneers: Heisenberg (the very idea of
quantization), Schrödinger (the first prescription for p and q),
Dirac (Poisson bracket  commutator), Weyl (group theory)

I First mathematical result: Stone–von Neumann theorem

I After first push (1925–1930) quantization theory branched off:

Deformation quantization (emphasizing classical limit)

Mackey–Weyl program (emphasizing symmetry and S-vN)

I Deformation quantization: deform commutative algebra of
classical algebra of observables in direction of Poisson bracket
so as to become non-commutative (Groenewold, Moyal)

I Unwittingly, Mackey quantized (non-symplectic) Poisson
manifold g∗×Q and hence can be bracketed under Dirac

I Mackey quantization and a vast generalization of it to Lie
groupoid C*-algebras (on quantum side, borrowed from NCG)
and Lie algebroid Poisson manifolds (on classical side) falls
under the scope of Rieffel’s strict deformation quantization
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