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1. Local isometric embeddings - the regular case (Cartan-Janet)
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Section 1 is textbook material. Main references include :

• Han, Q. and Hong, J., Isometric embedding of Riemannian manifolds in
Euclidean spaces, Mathematical Surveys and Monographs, 130, American
Mathematical Society, Providence, RI, 2006.

• Jacobowitz, H., Local isometric embeddings, Seminar on Differential
Geometry, Ann. of Math. Stud., 102, Princeton Univ. Press, Princeton,
N.J., 1982.

• M. Spivak, A comprehensive introduction to differential geometry, Vol. 5,
Chapter 11, Publish or Perish, Houston, 1979.
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Local isometric embeddings

The regular case

Let U 3 0 be an open neighbourhood in Rn, with local coordinates
x = (xα)1≤α≤n. We write x = (x ′, xn) where x ′ = (xk)1≤k≤n−1. On U, we
consider a Cω Riemannian metric, written with no loss of generality as

g = gnn(x) dx2
n + gkl(x) dxk dxl , (1)

where 1 ≤ k, l ≤ n − 1 and where the coefficients gnn and gkl are functions of
all the local coordinates x = (xα), 1 ≤ α ≤ n.

Remark :
We may choose coordinates in which gnn = 1, but we won’t do it here, in
anticipation of the singular case that will be treated below.

Local isometric embedding (LIE) problem

Basic question : Can one locally isometrically embed (U, g) into a Euclidean
space EN for some N ?
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The PDE system governing LIEs

The LIE problem is a PDE problem :

Recall, that by definition, (U, g) can be locally isometrically embedded in EN

if ∀x ∈ U,∃ an open neighborhood W ⊂ U of x and a smooth map
u : W → EN of rank n satisfying

g = u∗gEN .

This is equivalent to the system of n(n + 1)/2 first-order PDEs given by

‖∂nu‖2 = gnn , (2)

∂ku · ∂nu = 0 , (3)

∂ku · ∂lu = gkl , (4)

where the dot to denotes the Euclidean inner product in the ambient
Euclidean space EN .

Remark : We won’t distinguish between U and W from now on since the
problem is local.
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The Cartan-Janet Theorem

If N = n(n + 1)/2, we have as many equations as unknowns. The
Cartan-Janet Theorem says that in this case the system always admits a
solution in the Cω category :

Theorem (E. Cartan, M. Janet, 1928)

(U, g) can be locally isometrically embedded in En(n+1)/2 by a Cω map.

Remark : The much harder case of global isometric embeddings of Riemannian
manifolds of class C k was solved much later in the breakthrough work of Nash
(1954), who took a very different approach based on the development of a
powerful open mapping theorem. Important subsequent improvements are due
to Gromov, Rokhlin and Günther, with improved codimensions. For the
Lorentzian case, we refer to the important results of Müller and Sánchez
(2011), where the global isometric embedding problem is solved under the
assumptions of stable causality and the existence of a steep temporal function.
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The proof of the Cartan-Janet Theorem is obtained by successive application
of the Cauchy-Kovalevskaia Theorem, working one dimension at a time. We
will recall the main steps of the proof, in preparation for the singular case.

We thus consider Cauchy data for the system (2), (3), (4) along the
hypersurface xn = 0, given by Cω maps u0, u1,

u|xn=0 = u0 , ∂nu|xn=0 = u1 . (5)

Observe that the data are constrained in view of (2), (3) and (4) by

‖u1‖2 = gnn(·, 0) , (6)

∂ku0 · u1 = 0 , (7)

∂ku0 · ∂lu0 = gkl(·, 0) . (8)
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The system (2), (3), (4) is not in Cauchy-Kovalevskaia form. We therefore
differentiate the equations (2), (3), (4) with respect to xn to obtain the
system of n(n + 1)/2 second-order PDEs given by

∂nu · ∂nnu =
1

2
∂ngnn , (9)

∂ku · ∂nnu = −1

2
∂kgnn , (10)

∂klu · ∂nnu = ∂knu · ∂lnu− 1

2
∂nngkl −

1

2
∂klgnn . (11)

The Cauchy data u0 , u1 must satisfy besides (6), (7), (8), the additional
constraint

∂klu0 · u1 = −1

2
∂ngkl(·, 0) . (12)

This process can be reversed to show that the Cauchy problems for the first
and second-order systems are equivalent. We have :
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Proposition

Consider a Cω Riemannian metric (1). The system of first-order PDEs (2),
(3), (4) governing local isometric embeddings of (U, g) into EN , with initial
data (5) constrained by (6) to (8), is equivalent to the system of second-order
PDEs (9), (10), (11) with initial data (5) constrained by (6) to (8) and (12).

Remark : The above proposition is true even in the C∞ case since it rests on
an ODE argument.



Ramified
local

isometric
embeddings
of singular

Riemannian
metrics

Niky
Kamran

1. Local
isometric
embeddings
- the regular
case

2. Local
isometric
embeddings
- the case of
admissible
singularities

3. Leray’s
ramified
Cauchy-
Kovalevskaia
Theorem

4. Proof of
the theorem
on ramified
LIE

5.
Perspectives

Remark : Closely related to the constraints on the Cauchy data is the fact that
a LIE does not always admit an isometric extension. In other words, if
(H, g |H) ⊂ (U, g) is a (n − 1)-submanifold and v : (H, g |H)→ EN is a LIE,
then there doesn’t always exist a LIE u : U → EN such that u |H = v.

Indeed, let γ be a minimizing geodesic curve between a pair of sufficiently
close points x , y ∈ U ⊂ R2 and let ρ be a non-geodesic curve from x to y . Let
v : ρ→ v(ρ) ⊂ E3 be a LIE where v(ρ) is chosen to be a straight line
segment. Let d be the arc length distance from x to y measured along ρ.
Since v is an isometry from ρ onto its image, we have

d = length (ρ) = length (v(ρ)) ,

Suppose now that v admits a local isometric extension u : U → E3. Since
v(ρ) ⊂ E3 is a straight line segment, we have

length (v(ρ)) = length (u(ρ)) = distE3 (u(x), u(y)) .

Since γ is a minimizing geodesic and ρ is a non-geodesic, so we have

length (γ) < length (ρ) = d .

But
length (γ) = length (u(γ)) = length (v(γ)) = d ,

which is a contradiction. This extends to all higher dimensions (Jacobowitz).
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The proof of the Cartan-Janet Theorem thus amounts to constructing the
local isometric embedding by induction on n, applying the
Cauchy-Kovalevskaya Theorem at each step to the system (9), (10), (11) with
suitably chosen initial data satisfying (6) to (8) and (12).

We summarize the iterative step as a proposition, which follows directly from
the Cauchy-Kovalevskaya Theorem by putting the system of PDEs (9), (10),
(11) in Cauchy-Kovalevskaya form. This is done by solving for ∂nnu, assuming
a rank hypothesis on the initial data :

Proposition

Consider a Cω Riemannian metric (1). The equivalent system of second-order
PDEs (9), (10), (11) governing local isometric embeddings of (U, g) into EN ,
with initial data u0, u1 constrained by (6) to (8) and (12) , admits a unique
local analytic solution u if the set {∂ku0, ∂klu0, u1, 1 ≤ k, l ≤ n− 1} is linearly
independent at every point of the initial hypersurface xn = 0.
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Proof of Cartan-Janet by induction on n

Since g is regular, we may choose coordinates so that gnn = 1,

g = dx2
n + gkl(x) dxk dxl .

Start with n = 2 :
g = dx2

2 + g11(x1, x2)dx2
1 .

We further assume with no loss of generality that

g11(x1, 0) = 1 , ∂2g11(x1, 0) = 0 ,

and choose the Cauchy data to be given by

u0(x1) = (cos x1, sin x1, 0) , u1(x1) = (0, 0, 1) .

The constraints (6) to (8) and (12) are satisfied. Furthermore, ∂1u0, ∂11u0 and
u1 are linearly independent. So by the above proposition, we get a Cω LIE of
g in E3.
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We now proceed with the inductive step. Write for n ≥ 3

g = dx2
n + gkl(x) dxk dxl ,

where we assume with no loss of generality that

gkl(0) = δkl , ∂ngkl(0) = 0 .

By the induction hypothesis, ∃ a Cω map v : V → E(n−1)n/2 such that

gkl(x
′, 0) = v∗gEn−1 .

We take as a candidate for the Cauchy data

u0 = (v, 0) , ũ1 = (0, 1) .
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By construction, we have

‖ũ1‖2 = 1 , ∂ku0 · ũ1 = 0 ,

and
∂ku0 · ∂lu0 = gkl(·, 0) ,

as required.

However we have
∂klu0 · ũ1 = 0 ,

instead of

∂klu0 · ũ1 = −1

2
∂ngkl(·, 0) .

The idea is to perturb ũ1 by adding a suitable term to ensure that the
constraints on the Cauchy data are satisfied. Thus we write

u1 = ũ1 + p ,

where p : V → En(n+1)/2 is a Cω map defined in a neighborhood of the origin
x ′ = 0 in the initial hypersurface, such that the constraints are satisfied.
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The necessary and sufficient conditions on p for the Cauchy data u0, u1 to
satisfy the constraints are given by

∂ku0 · p = 0 , ∂klu0 · p = −1

2
∂ngkl(·, 0) ,

and
2 p · ũ1 + ‖p‖2 = 0 .

By using the condition ∂ngkl(0) = 0 and applying the Implicit Function
Theorem, we obtain the existence of a solution p near the origin x ′ = 0 in the
initial hypersurface, as required.

This completes the proof of the Cartan-Janet Theorem.
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2. Local isometric embeddings - the case of admissible singularities
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Admissible singularities

Admissible singularities

We say that a Riemannian metric g defined on a domain U 3 0 of Rn has an
admissible singularity at the origin if it is of the form

g = (‖x ′‖2 + x2l
n )F0(x) dx2

n + gkl dxk dxl , (13)

where l ≥ 1 is an integer, where F and gjk are Cω with F0(0) > 0, where the
quadratic form defined by (gkl) is positive definite, and where

∂ngjk(x ′, 0) = O(‖x ′‖2) . (14)
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The main result on ramified LIEs

Theorem (Alberto Enciso, N.K.)

Let g be a Cω Riemannian metric defined on a domain U ⊂ Rn with an
admissible singularity at the origin. Then there exists a local Cω isometric

embedding u : (U ′,Π∗g)→ E(n2+3n−4)/2, where Π : U ′ → U\{0} is a finite
Riemannian branched cover of (U\{0}, g).

The proof uses a ramified version of the Cauchy-Kovalevskaia Theorem, due
to Leray and Gårding-Kotake-Leray for linear systems, and extended to the
non-linear case by Choquet-Bruhat. We now summarize these results.
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3. Leray’s ramified Cauchy-Kovalevskaia Theorem
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The main references for Section 3 are :

• Leray, J., Problème de Cauchy I. Uniformisation de la solution du
problème linéaire analytique de Cauchy près de la variété qui porte les
données de Cauchy, Bull. Soc. Math. France, 85 (1957), pp. 389-429.

• Gårding, L., Kotake. T., and Leray, J., Uniformisation et développement
asymptotique de la solution du problème de Cauchy linéaire, à données
holomorphes ; analogie avec la théorie des ondes asymptotiques et
approchées (Problème de Cauchy, I bis et VI)., Bull. Soc. Math. France,
92 (1964), pp. 263-361.

• Gårding, L., Partial differential equations : Problems and uniformization
in Cauchy’s problem, in Lectures on Modern Mathematics, Vol. II, pp.
129-150, Wiley, New York, 1964.

• Choquet-Bruhat, Y., Uniformisation de la solution d’un problème de
Cauchy non linéaire à données holomorphes, Bull. Soc. Math. France, 94
(1966), pp. 25-48.
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We begin with the scalar linear case, and consider on an open subset V of Rn

with local coordinates x = (x1 . . . , xn) an m-th order linear differential
operator

A = a(x , ∂x) =
∑
|α|≤m

aα(x)∂αx , (15)

with Cω coefficients.

We are interested in the Cauchy problem for the PDE

a(x , ∂x)u(x) = v(x) , (16)

where v is Cω in V , where we prescribe the values of a Cω function w and its
derivatives of order 0 ≤ k ≤ m − 1 on a Cω hypersurface S ⊂ V given as the
zero set s(x) = 0 of a Cω function s,

u(x)− w(x) = O(s(x)m) . (17)
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The principal part G of A, defined by

G = g(x , ∂x) :=
∑
|α|=m

aα(x)∂αx , (18)

plays an important role in the ramified Cauchy problem. It defines on T ∗V a
Cω real-valued function g given in bundle coordinates
(x , p) = (x1, . . . , xn, p1, . . . , pn) by

g(x , p) =
∑
|α|=m

aα(x)pα . (19)

The function g(x , p) is thus homogeneous of degree m in the fiber coordinates
p = (p1, . . . , pn), and is invariant under lifts of local diffeomorphisms of V.
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The condition for a point x ∈ S to be characteristic for the Cauchy problem
involves the hypersurface S supporting the data and the principal part G of A :

Definition

We say that a point x ∈ S is characteristic for the Cauchy problem (16),(17) if

g(x , ∂xs(x)) = 0 . (20)

The subset of characteristic points x ∈ S will be denoted by C .

The classical Cauchy-Kovalevskaya Theorem guarantees the existence of a
unique Cω solution to the Cauchy problem (16),(17) for data that are
non-characteristic.
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Leray’s extension of the Cauchy-Kovalevskaya Theorem is precisely concerned
with this case where the data are allowed to be characteristic on a non-empty
subset of the initial hypersurface S . In a nutshell :

• The Cauchy problem (16),(17) will have a Cω solution that is ramified
around a characteristic subvariety tangent to the initial hypersurface S .
The ramification locus can be described geometrically in terms of the
flow of a Hamiltonian vector field on T ∗V associated to g and the initial
hypersurface S .

• A uniformizing map for the solution will be constructed explicitly through
the solution of an auxiliary Cauchy problem for a Hamilton-Jacobi
equation associated to g and the initial hypersurface S .

The above results will be formulated precisely below.

We remark that for the application of Leray’s results to the LIE problem of the
class of metrics with an admissible singularity, we shall be concerned with the
case for which the data are characteristic at a single point x ∈ S , with an
additional non-degeneracy condition that will be specified below.
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The first step is to extend the Cauchy problem (16),(17) by the addition of an
auxiliary variable ξ. Consider on (−η, η)× V ⊂ Rl+1 with coordinates (ξ, x)
the modified Cauchy problem given by

a(x , ∂x)u(ξ, x) = v(ξ, x) , (21)

where the initial hypersurface S is now replaced by the hypersurface Sξ
defined as the level set s(x) = ξ, where v is assumed to be Cω in (−η, η)×V ,
and where the Cauchy problem is now given by prescribing the values of an
analytic function w(ξ, x) and its derivatives of order 0 ≤ k ≤ m − 1 on Sξ,

u(ξ, x)− w(ξ, x) = O(s(ξ, x)m) , (22)

with s(ξ, x) := s(x)− ξ.

The set of characteristic points for the Cauchy problem (21), (22) will be
denoted by Cξ.
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The key idea behind the uniformization of the solution of the Cauchy problem
is to pass to the modified Cauchy problem (21), (22), and to construct the
uniformizing map by means of the solution ξ(t, x) of the Cauchy problem for
the auxiliary Hamilton-Jacobi equation associated to the Hamiltonian g
defined by (19) :

∂tξ + g(x , ∂xξ) = 0 , ξ(0, x) = s(x) , (23)

This Cauchy problem has a unique Cω solution ξ(t, x) defined for |t| < ε
sufficiently small. Now by construction, the map
f : (−ε, ε)× V → (−η, η)× V defined by

(t, x) 7→ f (t, x) = (ξ(t, x), x) , (24)

maps the hypersurface t = 0 to the hypersurface Sξ.
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Basic observation :

Since the Jacobian determinant of this map equals ∂tξ, the zero set

Zξ := {(t, x) ∈ (−ε, ε)× V | ∂tξ(t, x) = 0} , (25)

corresponds precisely by (23) to the analytic subvariety of (−ε, ε)× V on
which the characteristic condition g(x , ∂xξ(t, x)) = 0 is satisfied.

This leads one naturally to define the characteristic conoid Kξ ⊂ (−η, η)× V
as the image under f of Zξ ⊂ (−ε, ε)× V ,

Kξ = f (Zξ) . (26)

We thus see that for any Cω function u(ξ, x), the map

(u ◦ f )(t, x) = u(ξ(t, x), x) ,

obtained by composition of f with u will be in general multivalued, and
ramified precisely along the characteristic conoid Kξ.
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Remark :The characteristic conoid Kξ is directly related to the characteristic
strips for the Hamilton-Jacobi equation (23) :

Indeed, given the Hamiltonian vector field Xg on T ∗V corresponding to g , the
characteristic strips are the integral curves γ(t), −ε < t < ε, of Xg whose
initial points γ(0) are located on the submanifold of T ∗V obtained as the
Lagrangian lift of S . The projections onto V of these integral curves are by
definition the bi-characteristic curves x(t), ε < t < ε, of the original Cauchy
problem (16), (17). Leray shows :

Lemma

The characteristic conoid Kξ is the union of the projections of the
bi-characteristic curves x(t), ε < t < ε, whose initial points x(0) are elements
of the subset Cξ of characteristic points of Sξ.

If we fix a point x ∈ Cξ, the subset of Kξ consisting of the images of the
bi-characteristics x(t), −ε < t < ε such that x(0) = x will be denoted by Kx

and referred to as the conoid with vertex at x . Our analyticity hypotheses on
the coefficients aα of A imply immediately that Kx \ {x} is a Cω submanifold
of V .
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Finally, we need to define what is meant by an exceptional characteristic point
for the Cauchy problem (21), (22) :

Definition

A characteristic point x ∈ Cξ is said to be exceptional if either the initial
hypersurface Sξ and the conoid Kx are tangent to each other at infinitely many
points in a neighbourhood of x , or the characteristic strip γ(t), −ε < t < ε,
with initial point γ(0) = (x , ∂xs(x)) consists of a single point.

Remark : In our application of Leray’s theory to the local isometric
embeddings for the Riemannian metrics admitting an admissible singularity,
the characteristic subset will consist of a single non-exceptional characteristic
point for the differential system governing local isometric embeddings.
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We are now ready to state Leray’s uniformization theorem :

Theorem

Let ξ = ξ(t, x) be the solution of the Cauchy problem (23) for the
Hamilton-Jacobi equation. In a neighborhood of a non-exceptional
characteristic point, the map (t, x) 7→ (ξ(t, x), x) uniformizes the solution
u(ξ, x) of the Cauchy problem (21), (22), in the sense that the composition

u(ξ(t, x), x) := u ◦ ξ ,

and its derivatives of order 1 ≤ j ≤ m − 1,

∂ j
ξu(ξ(t, x), x) , 1 ≤ j ≤ m − 1 ,

are Cω for (t, x) ∈ (−ε, ε)× V . Furthermore, the support of the ramification
locus of the multi-valued function u(ξ, x) solving the Cauchy problem (21),
(22) lies in the set of points (ξ, x) ∈ (−η, η)× V for which the hypersurface
Sξ is tangent to the conoid Kx . Likewise, the restriction of u(ξ, x) to the locus
ξ(t, x) = 0 uniformizes the solution u(0, x) of the original Cauchy problem
(16), (17). Finally, the singularities of u in the neighbourhood of any
non-exceptional characteristic point are algebroid.
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Here is a very simple example taken from Gårding’s paper : Let

a(x , ∂x) := ∂x1 ,

with initial data given on the hypersurface S defined by

x2 − xp
1 = 0 ,

where p > 0 is a positive integer. The solution of this Cauchy problem is given
by

u(x) = w(x
1/p
2 , x2 . . . , xn) +

∫ x1

x
1/p
2

v(s, x2 . . . , xn) ds .

This solution is not analytic, but it is ramified along the hyperplane x2 = 0,
with p branches. The ramification locus x2 = 0 is tangent to S (to order p)
along the characteristic submanifold of S given by x1 = x2 = 0, and the
uniformization map is simply given by

(x1, x2, . . . , xl) 7→ (x1, t
p, . . . , xl) .

For a lot more examples, see :
Johnsson, G., The Cauchy problem in CN for linear second order partial
differential equations with data on a quadric surface, Trans. Amer. Math. Soc.
344 (1994), no. 1, pp. 1-48
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In Choquet-Bruhat’s generalization of Leray’s uniformization theorem, the
scalar linear PDE (21) is replaced a non-linear system of N PDEs for N
unknowns, of the form

F [u] :=
(
Fj(x , ξ,D

mu)
)N
j=1

= 0 , (27)

where u(ξ, x) = (u1(ξ, x), . . . , uN(ξ, x)), and where F is Cω in all its
arguments. There is no loss of generality in expressing the system (27) in the
form

F [u] :=
(
Fj(x , ξ,D

mk−nj u)
)N
j=1

= 0 , (28)

in which mk , nj (with 1 ≤ k, j ≤ N) are non-negative integers. The Cauchy
problem (22) is then replaced by the prescription of N functions
wk(ξ, x), 1 ≤ k ≤ N, of class Cω and derivatives of order 0 ≤ k ≤ mk − 1 on
Sξ, that is

uk(ξ, x)− wk(ξ, x) = O(s(ξ, x)mk ) . (29)
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One puts the system (27) in quasi-linear form by differentiation. The vanishing
condition (20) that defines characteristic points in the scalar linear case is
then replaced by the vanishing condition of the determinant of a matrix A
governing the linear dependence of the highest-order derivatives appearing in
each of the differentiated equations.

Define the matrix A(ξ, x , p) = Ajk(ξ, x , p) by

Ajk(ξ, x , p) :=
∑

|α|=mk−nj

∂Fj

∂(∂αuk)
pα .

Definition

We say that x ∈ S is characteristic for the Cauchy problem (28), (29) if
A∗(x) = 0, where

A∗(x) := det
(
A(s(x), x , ∂xs(x))

∣∣
uk (x)=wk (x)

)
= 0 . (30)
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The rest of the analysis is essentially similar to the scalar linear case, with the
function induced by detA(s(x), x , p) on the cotangent bundle T ∗V playing
the role of the Hamiltonian g(x , p). Leray’s Theorem carries over with the
modification that it is now each of the components uk(ξ, x) of u with its
derivatives of order 1 ≤ j ≤ mk − 1 which gets uniformized by the map
(t, x) 7→ (ξ(t, x)), x) :

Theorem

In a neighborhood of a non-exceptional characteristic point, the compositions

uk(ξ(t, x), x) := uk ◦ ξ , 1 ≤ k ≤ N , (31)

and their derivatives of order 1 ≤ j ≤ mk − 1,

∂ j
ξuk(ξ(t, x), x) , 1 ≤ k ≤ N , 1 ≤ j ≤ mk − 1 .

are Cω for (t, x) ∈ (−ε, ε)× V . The support of the ramification locus admits
the same description as above. In particular, the restriction of u(ξ, x) to the
locus ξ(t, x) = 0 uniformizes the solution u(0, x) of the Cauchy problem given
by (28) and (29). Likewise the singularities of u in the neighbourhood of any
non-exceptional characteristic point will be algebroid.
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We begin by remarking that the normal form (1), in which the components gnj
of the metric tensor are identically zero, can be achieved by a suitable Cω

local diffeomorphism for a class singular metrics which include as a special
case the metrics with an admissible singularity at the origin.

Proposition

Consider on a domain U ⊂ Rn a singular Cω metric

g = gαβ(x) dxα dxβ = gnn(x) dx2
n + 2bj(x) dxj dxn + gjk(x) dxj dxk , (32)

where by singular we mean that gnn has an isolated zero at the origin 0 ∈ U
and det(gkl) 6= 0 in U. Then there exists a Cω local diffeomorphism f of the
form

xn = x̄n , xj = x̄j + fj(x̄) , (33)

such that the components b̄j of the transformed metric ḡ := f ∗g are
identically zero, that is ḡ takes the form

ḡ = ḡnn(x̄) dx̄2
n + ḡkl(x̄) dx̄k dx̄l . (34)
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The first step in the proof is to show that the coefficients bj in (32) must
vanish at the origin as a consequence of our hypothesis that gnn has an
isolated zero at the origin. Let

V = V ′∂x′ + Vn∂n ,

denote a non-zero tangent vector at a point x ∈ U. We have,

0 ≤ g(V ,V ) = ‖V ′‖2
g′ + 2VnV

′ · b + gnn(Vn)2 ,

where g ′ := (gkl) is the (n− 1)× (n− 1) sub-matrix of g corresponding to the
range 1 ≤ k, l ≤ n − 1. Defining b ∈ Rn−1 by b =: g ′b, the above inequality
then reads

0 ≤ g(V ,V ) = ‖V ′‖2
g′ + 2Vn g

′(V ′, b) + gnn(Vn)2 .
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The worst possible case for this inequality occurs when V ′ = λ b,where λ ∈ R,
in which case the condition 0 < g(V ,V ) reduces to

0 ≤ λ2‖b‖2
g′ + 2λVn‖b‖2

g′ + gnn(Vn)2 .

This inequality will hold if an only if

‖b‖2
g′gnn(Vn)2 − ‖b‖4

g′(Vn)2 ≥ 0 ,

for all Vn 6= 0, or equivalently

‖b‖2
g′ ≤ gnn ,

which establishes the first step.
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Next we apply a local diffeomorphism of the form (33) to the metric (32) and
determine the conditions that the functions fj(x̄) must satisfy in order for
transformed metric f ∗g to take the form (34) in which the coefficients b̄j of
the cross terms in the metric

f ∗g = ḡαβ(x̄) dx̄α dx̄β = ḡnn(x̄) dx̄2
n + 2b̄j(x̄) dx̄j dx̄n + ḡjk(x) dx̄j dx̄k ,

are identically zero. A straightforward calculation gives that b̄j = 0 if and only
if

bk∂nfk + gjk∂l fj∂nfk = −bl , (35)

where all the partial derivatives are taken with respect to the barred
coordinates (x̄ ′, x̄n). We now choose an invertible matrix A = (Ajk) of small
norm, say ‖A‖ < ε, and define n − 1 linear functions f̃j(x̄) by

f̃j(x̄) = (g−1)jmAlmx̄l .

Define next G(∂′f ) := M−1(∂′f ), where

Mlk(∂′f ) := bk + ∂l fjgjk .
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We claim that the matrix-valued function G(∂′f ) is well defined for fj in a
C 1-small neighbourhood of f̃j and x in a small neighbourhood of the origin.
Indeed, by definition of f̃ and using the fact that bj(0) = 0, we have

Mlk(∂′f )(x̄) =O(‖x̄‖) + (g−1)jmAlmgjk + O(‖f − f̃ ‖C1 ) (36)

=Alk + O(‖x̄‖+ ‖f − f̃ ‖C1 ) . (37)

(38)

Therefore we can write the system of equations (35) to be solved as

∂nfk = −Gkl(∂
′f )bl , (39)

and take as initial data

fk |x̄n=0 = f̃k = (g−1)kmAlmx̄l . (40)

We now apply the Cauchy-Kovalevskaya Theorem to (39) with initial data
given by (40). By choosing ε small enough, we can ensure that the map (33)
obtained by solving the system (39) is a local diffeomorphism, which proves
our claim.
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Now that the normal form

g = gnn(x) dx2
n + gkl(x) dxk dxl . (41)

has been established for singular metrics such that gnn has an isolated zero at
the origin 0 ∈ U, we need to make further assumptions about the leading
order behaviour of gnn and of the normal derivative of gij at the origin in order
to be able to apply the results of Leray.

First, we require that both the partial Hessian (∂jkgnn(0))1≤j,k≤n−1 and the
matrix (gjk(0))1≤j,k≤n−1 be positive definite. Transforming the partial Hessian
at 0 into the identity matrix with a local change of coordinates and employing
the division property of analytic functions, this almost leads to the starting
point

g = (‖x ′‖2 + x2l
n )F0(x) dx2

n + gkl dxk dxl ,

except that we still have to impose the condition

∂ngjk(x ′, 0) = O(‖x ′‖2) .
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In analogy with the construction of Cauchy data for the iterated sequence of
Cauchy-Kovalevskaya problems needed for the proof of the Cartan-Janet
Theorem, our next task is to show that there exist Cω Cauchy data u0, u1 for
the local isometric embedding problem of the class of singular metrics with an
admissible singularity at the origin, which are such that the Cauchy problem
for the system (9) to (11) admits an isolated non-exceptional characteristic
point at the origin 0 ∈ U. This is where the condition

∂ngjk(x ′, 0) = O(‖x ′‖2) ,

will enter the picture.

The construction of the Cauchy data turns out to be somewhat more delicate
than what we had to do for the proof of the classical Cartan-Janet Theorem.
It is the main technical step in the proof.
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We begin by noting that letting

F (x ′) := F0(x ′, 0), ḡij(x
′) := gij(x

′, 0), hij(x
′) := −1

2
∂ngij(x

′, 0) ,

the constraints (6) to (12) read

‖u1‖2 = ‖x ′‖2F . (42)

∂iu0 · u1 = 0 , (43)

∂iu0 · ∂ju0 = ḡij , (44)

∂iju0 · u1 = hij , (45)

and the assumption that the origin should be an isolated characteristic point
for the system of PDEs (9),(10), (11) implies that the vectors ∂iu0, u1, ∂iju0

must be linearly independent at every x ′ 6= 0 in the domain of definition of u0

and u1 in the initial hypersurface xn = 0.
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We have :

Proposition

Consider a Cω metric g on a neighbourhood U ⊂ Rn admitting an admissible
singularity at the origin, that is a metric of the form (13) satisfying (14). Then
there exist Cω initial data u0, u1 for the system (9) to (11), taking values in
EN+n−2, which satisfy the constraints (42) to (45) and which are such that
∂iu0, u1, ∂iju0 are linearly independent on the complement of the origin in the
initial hypersurface xn = 0. Furthermore, the function ∆ : V → R defined as

∆(x ′) := det(∂ju0(x ′), u1(x ′), ∂jku0(x ′), ea)1≤j,k≤n−1, 2≤a≤n−1 (46)

has a nondegenerate zero at 0. More precisely, in a neighbourhood of the
origin in the initial hypersurface xn = 0, the function ∆ is of the form

∆(x ′) = x1 ∆0(x ′)

with ∆0(0) 6= 0.
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Recall first that for any Cω non-degenerate metric ĝij(x
′) on the hypersurface

xn = 0, we know from the Cartan-Janet Theorem that there exits a Cω local
isometric embedding from Σ ⊂ {xn = 0} → EN′ , where N ′ = n(n − 1)/2,
meaning that there exists a Cω map v which satisfies

∂iv · ∂jv = ĝij , (47)

where we may assume with no loss of generality that the vectors
∂av, ∂n−1v, ∂abv, 1 ≤ a, b ≤ n − 2, are linearly independent at every x ′ ∈ Σ.

Consider now the embedding w : Σ→ EN−1 = EN′ × En−1 defined by

w := (v,V) ,

with V = (V1, . . . ,Vn−1) defined by

Va := ε5 sin
xn−1

ε4
sin

xa
ε2
, Vn−1 := −ε5 cos

xn−1

ε4
,

where 1 ≤ a ≤ n − 2.
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It is straightforward to verify that

∂aw = ∂av + O(ε3) ,

∂n−1w = ∂n−1v + O(ε)

∂abw = ∂abv + O(ε)

∂n−1,aw = ∂n−1,av +
1

ε
cos

xn−1

ε4
cos

xa
ε2

Ea

∂n−1,n−1w = ∂n−1,n−1v +
1

ε3

(
cos

xn−1

ε4
En−1 − sin

xn−1

ε4

n−2∑
a=1

sin
xa
ε2

Ea

)
,

where Ei are unit vectors in the xi direction in En. So if we take ε small and
choose x ′ with ‖x ′‖ < ε5, we may conclude that ∂jw and ∂jkw are linearly
independent at every point of their domain of definition in RN−1. We also have

∂iw · ∂jw = ∂iv · ∂jv + ∂iV · ∂jV ,

where
|∂iV · ∂jV| < Cε2 , (48)

for some positive constant C .
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If we set now
ĝij := ḡij − ∂iV · ∂jV ,

then this metric is now positive-definite at the origin as a consequence of the
estimate (48), so we may apply the Cartan-Janet Theorem as we did above to
ĝij to conclude using (47) that the map w satisfies

∂iw · ∂jw = ḡij .

Next we consider the embedding u0 : Σ→ EN−1 × En−1 = EN+n−2 given by

u0 := (w, 0) . (49)

The tangent space Tu0(x′)Σ̄ to Σ̄ = u0(Σ) ⊂ EN+n−2 at u0(x ′) is the
(n − 1)-dimensional subspace given by the linear span of the vectors
∂jw, 1 ≤ j ≤ n − 1, that is

Tu0(x′)Σ̄ = 〈∂jw , 1 ≤ j ≤ n − 1〉 . (50)
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We also have

〈∂jw, ∂jkw , 1 ≤ j , k ≤ n−1〉 = 〈∂jw,Nr , 1 ≤ j ≤ n−1, 1 ≤ r ≤ n(n−1)/2〉 ,

where {Nr , 1 ≤ r ≤ n(n − 1)/2} is a linearly independent set of unit normal
vectors in EN−1 ⊂ EN+n−2.

Denoting by {ej : 1 ≤ j ≤ n − 1} an orthonormal basis of the En−1 factor in
EN+n−2 = EN−1 × En−1, the normal space Nu0(x′)Σ̄ to Σ̄ = u0(Σ) ⊂ EN+n−2

at u0(x ′) is, in view of the linear independence of set of vectors
{∂jw, ∂abw : 1 ≤ j ≤ n − 1, 1 ≤ a, b ≤ n − 2}, given by the
(N − 1)-dimensional subspace

Nu0(x′)Σ̄ = 〈Nr , ej , 1 ≤ r ≤ n(n − 1)/2, 1 ≤ j ≤ n − 1〉 . (51)
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Consequently, there exists a unique vector field N along Σ̄ of the form

N =

n(n−1)/2∑
r=1

αrNr ,

such that
N · ∂jkw = hij .

Note that the hypothesis (14) on g can be rewritten as hij = O(‖x ′‖2), so we
immediately infer that

‖N‖ = O(‖x ′‖2) . (52)

We now set

u1 := N +
N∑
j=1

xj G ej , (53)

where

G :=

(
F − ‖N‖

2

‖x ′‖2

)1/2

(54)

is a now real-valued Cω function near x ′ = 0 by the bound (52).
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Next, a direct calculation using (50), (51), (53) and (54) shows that the initial
data u0, u1 defined by (49), (53) satisfy the constraints (42), (43), (44) and
(45). Finally, we have

∆(x ′) = det(∂ju0(x ′), u1(x ′), ∂jku0(x ′), ea)1≤j,k≤n−1, 2≤a≤n−1

= det

(
∂ju0(x ′),N(x ′) +

N∑
l=1

xl G(x ′) el , ∂jku0(x ′), ea

)
1≤j,k≤n−1, 2≤a≤n−1

= det
(
∂ju0(x ′), x1 G(x ′) e1, ∂jku0(x ′), ea

)
1≤j,k≤n−1, 2≤a≤n−1

= x1 G(x ′) det
(
∂ju0(x ′), e1, ∂jku0(x ′), ea

)
1≤j,k≤n−1, 2≤a≤n−1

=: x1 ∆0(x ′) ,

where indeed ∆0(0) 6= 0 by the linear independence of the above vectors. This
ends the proof of the proposition.
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Proof of the main theorem

Since the system is underdetermined in that there are fewer equations
(N = n(n + 1)/2) than unknowns (N + n − 2 = (n2 + 3n − 4)/2), let us
augment the system by imposing that

ea · ∂nnu = 0 , 2 ≤ a ≤ n − 1 (55)

where the orthonormal vectors {ea}n−1
a=2 are defined as before.

To construct a solution to the augmented system of PDEs (9)-(10)-(11) and
(55), we employ Leray’s Cauchy-Kovalevskaya theorem in the form given by
Choquet-Bruhat for non-linear systems.
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Let us consider the Cauchy surface S := {x ∈ Rn : xn = 0}, corresponding to
the function s(x) := xn.

One checks that A(x , p) is an (N + n − 2)× (N + n − 2) matrix of the form

A(x , p) = p3
n (∂ju(x), ∂nu(x), ∂jku(x), ea)1≤j,k≤n−1, 2≤a≤n−1 +

∑
α

pαMα(x) ,

where the sum ranges over the set of multi-indices with |α| = 3 such that the
monomial pα is different from p3

n and Mα(x) are matrices whose concrete
expressions will not be needed.
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With the Cauchy data

u|xn=0 = u0 , ∂nu|xn=0 = u1 , (56)

and using the fact that the gradient of s(x) = xn points in the n-th direction,
we immediately obtain from the previous formula that, on S , the function A∗
defined above is precisely

A∗(x ′) = ∆(x ′) ,

where the function ∆ was introduced in (46).
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We have ∂1∆(0) 6= 0, so there is a direction tangent to the hyperplane S such
that the corresponding directional derivative of ∆ at 0 does not vanish. The
origin is then a non-exceptional characteristic point of the system.

Choquet-Bruhat’s nonlinear extension of Leray’s theorem, then shows that, in
a small deleted neighborhood of 0, the system (9)-(10)-(11)-(55) admits a
unique ramified solution with the initial data (56), and that the singularities
of u in a neighborhood of 0 are algebroid.

This implies that there is a finite Riemannian cover U ′ of U\{0} as in the
statement of the theorem such that u defines an embedding U ′ → EN+n−2.

This completes the proof.
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Perspectives

• It is likely that Leray’s Theorem can be used to handle the LIE problem
for metrics with singularities which are more severe than the admissible
singularities considered here. It would be interesting to explore this
possibility.

• Cartan’s proof of the Cartan-Janet Theorem is based on the
Cartan-Kähler Theorem for the existence of integral manifolds of exterior
differential systems in involution. The Cartan-Kähler Theorem has many
other geometric applications (orthogonal coordinates, special
submanifolds, G2 structures, etc...). It would be an interesting but
challenging problem to formulate a ramified version of the Cartan-Kähler
Theorem that could be applied to these settings.
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Thank you for your attention !
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