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Outline
After a short review of some puzzling features of QM I will study the
e↵ective quantum dynamics of systems under repeated observation, more
specifically ones interacting with a chain of independent probes, which,
afterwards, are subject to a projective measurement and are then lost.
This leads to a theory of indirect measurements of time-independent
quantities (non-demolition measurements).
Subsequently, a theory of indirect weak measurements of time-dependent
quantities is outlined, and a new family of di↵usion processes, dubbed
quantum jump processes, is described. –
To conclude, some open problems are sketched.

Here are the founding fathers of Quantum Mechanics:
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Prologue: The Problem of the Unsolved Problems

I feel I have a reasonably precise idea of what some of the big unsolved
problems a✏icting the foundations of modern physics are. Among others,
a well known example concerns the Foundations of Quantum Mechanics.

My impression is that people much prefer to endlessly talk about puzzles
and paradoxes and the “weirdness” of Quantum Mechanics rather than
to sit down and to try to solve the most pressing open problems.

In fact, I suspect that many physicists, information scientists, philoso-
phers,... would be deeply disappointed if someone actually solved, for
example, the so-called “Measurement Problem.” This would deprive
them of the pleasure of endless debates with essentially no outcome.
They therefore prefer to think that it is impossible to make decisive
progress in answering some of the deep questions about the foundations
of Quantum Mechanics, and they do not pay attention to people who
claim otherwise. – That is the experience I have made!

Unfortunately, the phenomenon of just talking about big problems rather
than attempting to solve them has infltrated all circles and spheres of
human society ...



1. Introduction – some fundamental questions and claims

In our courses, we tend to describe the Quantum Mech. of systems,
S , in terms of pairs of a Hilbert space, H, of pure state vectors
and a propagator, (U(t, s))t,s2R, describing “time evolution.”

Unfortunately, these data hardly encode any information about S
enabling one to draw conclusions about its physical properties, and
they give the erroneous impression that quantum theory might be
a linear and deterministic theory.

! Fundamental questions and problems:
1. What do we have to add to the usual formalism of Quantum

Mechanics (QM) to arrive at a mathematical structure that –
through interpretation – can be given unambiguous physical
meaning; hopefully without the intervention of “observers”?

2. Where does the intrinsic randomness of QM come from, given
the deterministic character of the Schrödinger and Heisenberg
equations? How does it di↵er from classical randomness?



Fundamental questions

3. What do we mean by an isolated (but open) system in QM, and
why is this an important notion? How can one prepare an isolated
system in a prescribed state?

4. What is the meaning of “observables”/phys. quantities and of states
of systems in QM? What is the time evolution of phys. quantities
and of states in the Heisenberg picture? What does it have to do
with solutions of the Schrödinger equation?

5. What is a potential/actual event, and how should one describe an
instrument used to record an event, in QM? Does QM require the
intervention of “observers” to make sense?

Basic definitions and claims:
i. An isolated system, S , is one that has negligible interactions with

the rest of the Universe.

ii. “Observables” of S are linear operators representing physical
quantities. In QM, for isolated systems, the Heisenberg(-picture)
time evolution of such operators makes perfect sense.



Basic claims

Yet, nothing could be farther from the truth than the claim that the
Schrödinger equation yields a correct description of the time
evolution of states of an isolated system featuring events!

iii. In non-relativistic QM, potential events are described by certain
partitions of unity by disjoint orthogonal projections. All potential
events setting in at time t or later generate a (von Neumann)
algebra E�t . An isolated system is characterized by a co-filtration,�
E�t

 
t2R, of such algebras.

iv. An isolated open system, S , i.e. one releasing actual events
accessible to observation with suitable instruments, has the property
that

E�t �
6=
E�t0 , whenever t 0 > t,

expressing the Principle of Diminishing Potentialities (PDP).

(PDP) typically holds in relativistic quantum theories with massless
modes. –



Basic claims – ctd.

Together with the phenomenon of “Entanglement”, (PDP) yields a
stochastic law for the time evolution of states, replacing Schrödinger
evolution, enabling one to understand why “pure” states may evolve
into “mixed” states and to develop a probabilistic quantum theory
of histories of actual events and of their projective recordings.

v. In the q.m. description of isolated open systems sketched here,
interventions of “observers” are superfluous; events happen spon-
taneously. – @ any information- or unitarity paradoxes! ...

A substantiation of these claims forms the basis of the so-called ETH
Approach to QM, where “ETH” stands for:

“Events, Trees, and Histories”.

Upshot: In QM, the fundamental dynamics of states of phys. systems
featuring events can be described in terms of a new kind of stochastic
branching process whose (non-commutative) state space can be
described in terms of partitions of unity by disjoint orthogonal
projections, with branching rules determined by Born’s Rule.



Metaphor for the ”mysterious holistic aspects” of QM

It is time to open this black box and see what’s inside!

The ETH Approach to QM appears to succeed in doing that. (Don’t be
afraid of some sophisticated math concepts!) Unfortunately, it would
take too much time to present it here. Instead, I will make use of some
of its conclusions without further justification. –

And let’s, for once, leave out discussions of Bell’s inequalities and of
what people call the “non-locality” of QM!



2. Examples of systems under repeated observation –
Haroche-Raimond- & solid-state exps., particle tracks

The ETH approach represents a “quantum theory without observers”
describing actual events and their observation in projective measure-
ments, using instruments. – Taking this theory of projective measure-
ments for granted, the theory of indirect (in particular, non-demolition-)
measurements is fairly straightforward and can be presented with
mathematical precision – at least on examples.

The Theory of Indirect Measurements of physical quantities – pioneered
by Karl Kraus – is the main topic of this lecture.

Karl Kraus (1938-1988)

We will focus on the discussion of examples, rather than develop an
abstract theory!



A metaphor for the theory of indirect observations

Plato’s Allegory of the Cave – ‘Politeia’, in: Plato’s ‘Republic’

As Plato was anticipating, more than 350 years BC, all we “prisoners of
our senses” are able to perceive of the world are “shadows of reality” – in
the form of long streams of crude, uninteresting, directly perceptible
signals (= outcomes of projective measurements) – from which events
and meaningful facts can be reconstructed. – As Socrates explains:

Philosophers (= mathematicians and theoretical physicists) are
“liberated prisoners” who are able to infer the fabric of reality from the

shadows it creates on the wall of the cave. (% Theory of perception!)



Systems/experiments to be studied

I. The Haroche-Raimond experiment: S = E _ C (cavity)

B : atom/probe gun, R1: State prep., C : Cavity, . . . , D: Detector

II. A solid-state (Gedanken-) experiment: S = E _ P



Particle tracks – an interestings story for next time!

III. In a bubble-, cloud- or wire chamber, tracks of quantum particles
become visible and resemble classical trajectories. How can this be
explained? Answers: Figari-Teta; (Ballesteros-) Benoist-Fraas-JF.



Details concerning experiments I and II

Isolated open system: S = E _ P , where P = subsystem of interest, i.e.,
cavity C , or quantum dot; E = “environment/equipment” consisting of:

(1) Probes: Independent atoms A1,A2, . . . prepared in R1, or indep.
electrons prepared in e�gun – all in the same initial state.

In time interval [(m� 1)⌧,m⌧), mth atom streams through cavity C,
or mth e� travels from e�gun through T -shaped wire to either the
detector DL, or the detector DR , respectively.

⌧ : duration of a “measurement cycle.”

(2) An atom detector, D, or two electron detectors, DL,DR , resp.,
serving to perform projective measurements on probes.

***
It is a little easier to picture how the solid-state experiment works:
• Physical quantities referring to quantum dot P :

OP := {functions of e�-number (charge) operator, N}
• Physical quantities referring to environment E :

OE = {1P ⌦ 1
e
�
1
⌦ · · ·⌦ X

e
�
m
⌦ 1

e
�
m+1

⌦ . . . }m=1,2,3,....



Description of solid-state experiment

Here the operator X
e
�
m

acts on the one-particle Hilbert space of the mth

electron traveling through the T - shaped wires towards DL,DR , resp. It
is given by

X
e
�
m
=

✓
1 0
0 �1

◆
,

with infinitely degenerate eigenvalues ⇠ = ±1:

⇠ = +1 $ e�
m

hits DL, ⇠ = �1 $ e�
m

hits DR .

From now on, “L” is replaced by +1 and “R” by �1. The eigen-
projection of X

e
�
m

corresp. to the eigenvalue ⇠ is denoted by ⇡m

⇠ ; Xe
�
m

measured around time m · ⌧ .
In the following, ⇢ denotes the state of S (some density matrix).

Our aim is to determine the probability, µ⇢, of the events that, for
m = 1, 2, ..., k , the mth electron hits the detector D⇠m , ⇠m = ±1;
k = 1, 2, ...



The LSW formula
For (strictly) independent electrons 2, this probability is given by a
formula proposed by Lüders, Schwinger and Wigner (LSW):

µ⇢
�
⇠1, ⇠2, . . . , ⇠k

�
:= tr

�
⇡k⇠k · · ·⇡

1
⇠1 ⇢ ⇡

1
⇠1 · · ·⇡

k

⇠k

�
(1)

Since ⇡k1 + ⇡k�1 = 1, 8k , and because of the cyclicity of the trace,

X

⇠k

µ⇢(⇠1, ⇠2, . . . , ⇠k�1, ⇠k) = µ⇢(⇠1, ⇠2, . . . , ⇠k�1).

Thus, by a lemma due to Kolmogorov, µ⇢ extends to a measure on
the space, ⌅, of “histories” (= 1 long measurement records,
⇠ :=

�
⇠j
�1
j=1

) equipped with the �-algebra, ⌃, generated by
cylinder sets.

The measure µ⇢ can be decomposed on the �-alg. at 1:

µ⇢(⇠) =

Z

⌅1

dP⇢(⌫)µ(⇠|⌫), (2)

2
the property of strict indep. of e�’s is a special case of “decoherence”!



Exchangeable probability measures
where ⌅1 is the spectrum of the algebra of bounded meas.
functions on ⌅ measureable at 1;3 ⌅1 is the “space of facts”
(or of the “Dinge an sich” – quite in the sense of Plato and Kant).

First, we consider the situation where the e�’s are indep., and their
passage from the electron gun through the T - shaped wire to one
of the detectors D⇠, ⇠ = ±1, does not a↵ect the charge, ⌫, of the
quantum dot P , assumed to be conserved ! “non-demolition
measurements”. One can then argue that the measure µ⇢ is
exchangeable, i.e.:

µ⇢
�
⇠�(1), . . . , ⇠�(k)

�
= µ⇢

�
⇠1, . . . , ⇠k

�
,

for all permutations, �, of {1, . . . , k}, for arbitrary k < 1.
According to De Finetti’s Theorem this implies that (in Eq. (2))

µ(⇠
k
|⌫) =

kY

m=1

p(⇠m|⌫), ⇠
k
:= (⇠1, . . . , ⇠k). (3)

3
equiv. classes (w.r. to a measure class determined by normal states of S)

of functions on ⌅ not dep. on any finite number of measurement outcomes!



Interpretation of ⌅1 in the solid-state experiment
Suppose every electron traveling from the e�-gun to one of the detectors
D±1 is prepared in same one-particle state �0. Assuming that the charge
operator, N , of the quantum dot P is a conservation law, the time evol.
of the state �0 during one measurement cycle is given by

U⌫�0,
where U⌫ is a unitary operator on the one-electron Hilbert space dep. on
the charge ⌫  N of P : The charge (/ nb. of e�) bound by P creates a
“Coulomb blockade” in the right arm of the T - shaped wire; whence:
the larger ⌫, the more likely it is that an electron in the wire will be
scattered onto the detector D1 ⌘ DL.
The projection of one-electron wave functions that vanish identically near
D�⇠ is denoted by ⇡⇠. The probability, p(⇠|⌫), that an e� hits D⇠ is
given by Born’s Rule

p(⇠|⌫) = h�0,U⇤
⌫⇡⇠U⌫ �0i, (4)

and the space ⌅1 of the “Dinge an sich” is given by

⌅1 = spec(N ) = {0, 1, 2, . . . ,N},N < 1, N = charge operator of P .



3. Indirect Non-Demolition Measurements: Basic
Assumptions and General Results

Thinking of the solid-state experiment, we will henceforth assume:4

(i) The measures µ⇢ are exchangeable (non-demolition obs. using
independent e�!) ) they are convex combinations of product
measures

µ(⇠
k
|⌫) =

kY

m=1

p(⇠m|⌫), ⇠m 2 XS , 8m, ⌫ 2 ⌅1.

(ii) The space of “facts” is a finite set of points (charge values):

⌅1 = {0, 1, 2, . . . ,N}, for some N < 1. (6)

(iii) We also assume that p(⇠| ·) separates points of ⌅1: There
exists  > 0 such that

min⌫1 6=⌫2 |p(⇠|⌫1)� p(⇠|⌫2)| �  > 0, for some ⇠ 2 XS . (7)

4
these assumptions can and have been generalized



Summary of main results

Equivalence classes of functions on the space ⌅ of histories meas. at 1
form an abelian algebra: the algebra of “observables at infinity”,
(= funs. on the “space of facts” ⌅1), which is isomorphic to Diag(N+1).
An example of an “observable at infinity” is the “asymptotic frequency”
of an event ⇠ 2 XS : We define the frequencies

f (l,l+k)
⇠ (⇠) :=

1

k

 
l+kX

m=l+1

�⇠,⇠m

!
, with

X

⇠

f (l,l+k)
⇠ (⇠) = 1. (8)

Summary of Main Results:
(I) Law of Large Numbers for exchangeable measures: For every ⇠ 2 ⌅,

the asymptotic frequency satisfies

limk!1f (l,l+k)
⇠ (⇠) =: p(⇠|⌫), (9)

for some “fact” ⌫ 2 ⌅1.



“q-hypothesis testing”/parameter estimation

Definition: With each ⌫ 2 ⌅1 we associate a subset ⌅⌫ of ⌅ def. by

⌅⌫(l , k ; ") := {⇠| |f (l,l+k)
⇠ (⇠)� p(⇠|⌫)| < "k}, (10)

where
"k ! 0,

p
k "k ! 1, as k ! 1

(II) Distinguishability: It follows from Hyp. (7) and definition (8) that,
for k so large that ✏k < /2,

⌅⌫1(l , k ; ") \ ⌅⌫2(l , k ; ") = ;, ⌫1 6= ⌫2.

(III) Central Limit Theorem: ) Under suitable hypotheses
on the states ⇢, e.g., (i) through (iii),

µ⇢

 
[

⌫

⌅⌫(l , k ; ")

!
! 1, as k ! 1.



hypothesis testing – ctd.

(I), (II) & (III) ) As k ! 1, every measurement record ⇠
k
dets. a

unique point (charge) ⌫ 2 ⌅1; (with error ! 0, as k ! 1).

Moreover, Born’s Rule holds: µ⇢

�
⌅⌫(l , k ; ")

�
!

k!1
⇢(�N ,⌫) = P⇢(⌫)

(See Eq. (3).)

(IV) Theorem of Boltzmann-Sanov ) If the measures µ⇢ are
exchangeable one has that

µ
�
⌅⌫1(l , k ; ")|⌫2

�
 C e�k�(⌫1k⌫2),

where � is the relative entropy of the distribution p(·|⌫1) given p(·|⌫2).

(V) Theorem of Maassen-Kümmerer & Bauer-Bernard (see (III), (IV),
above!) ) In the Haroche-Raimond exp., state of S , restr. to B(HP),
approaches a state, ⇢⌫ , with a fixed number, ⌫, of photons in the
cavity P (⌘ C ), as k ! 1: “Purification”!
(Analogous results for solid-state experiment.)

***



Summary of theory of non-demolition experiments

The theory of indirect measurements outlined so far only concerns
measurements of time-independent “facts”, which correspond to
points in ⌅1: non-demolition measurements! The outcomes of
such measurements only depend on the tails of histories (at arb.
late times). The “extremal” measures µ(·|⌫), ⌫ 2 ⌅1, come from
normal states ⇢⌫ . (This is a non-trivial statement.)

However, most interesting facts depend on time, i.e., are “events”
appearing and disappearing, and ⌅1 = ; ! Thus, we must ask how
one can infer or reconstruct information concerning events and
their time evolution from finitely long records of projective
measurements of quantities referring to probes and represented by
operators that act on the Hilbert spaces of probes. – This question
will be answered next!



4. Weak Measurements of Time-Dependent Quantities –
Markov Jump Processes on the Spectra of Observables & Particle Tracks

We consider an isolated physical system S = P _ E , as before.
States of S are given by density matrices, ⇢S , acting on a Hilbert space
HS = HP ⌦HE , where HP = CN+1, for some N < 1. When restricted
to observables of P , states are given by density matrices ⇢P := trE ⇢S .

I Hilbert space of a single probe Aj : HAj
' HA

I Initial state of each probe Aj : �0 2 HA.

I Reference state in HE :
N1

j=1 �
(j)
0 , �(j)0 = �0, 8j .

Space HE = completion of linear span of vectors
N1

j=1  
(j), with

 (j) = �0, except for finitely many j .

I For each probe Aj , the same observable, represented by an operator

X =
X

⇠2XS

⇠ ⇡⇠, card (XS) = k < 1, (11)

acting on HAj
, is measured in a detector D at a random time tj ,

with tj < tj+1, tj+1� tj Poissonian, 8j ; (D ignored in the following).



The formalism

During the j th measurement cycle (tj�1, tj ], only Aj briefly interacts with
P at time tj . Measurement results for probes A1, . . . ,Aj�1 at times

t
j
=
�
tk
�j
k=1

are denoted by ⇠
j�1

= (⇠k)
j�1
k=1 (measurement record).

• ⇢(j�1)
t (t

j�1, ⇠j�1
) : State of P at time t < tj , after interaction with

probe Aj�1 at time tj�1.
• Let N be an “observable” acting on HP with simple spectrum,

spec(N ) = {0, 1, . . . ,N},N < 1.

By E⌫ we denote the spectral projection of N corresp. to ev ⌫.

We obtain a recursion formula for the states ⇢(j) := ⇢(j)tj
(t

j
, ⇠

j
) of P :

⇢(j) = Z�1
⇠j

V⇠j e
�i(tj�tj�1)HP ⇢(j�1) e i(tj�tj�1)HPV⇠j , (13)

where HP is the Hamiltonian of P in the absence of interactions with
probes, ...



Formalism – ctd.

... Z⇠ is a normalization factor, and the operator V⇠ is given by

V⇠ =
X

⌫

V⇠(⌫), where V⇠(⌫) := E⌫

p
p(⇠|⌫), with

p(⇠|⌫) := hU⌫�0,⇡⇠ U⌫�0i,

with �0 the initial state of a probe, (% Eq. (4), Sect. 2).
Note that

V⇠ = V ⇤
⇠ , [V⇠,N ] = 0, 8⇠, and

X

⇠02XS

V 2
⇠0 = 1. (14)

The recursion formula (13) yields a trajectory of states of the
subsystem P (the cavity/quantum dot) given by

⇢t(t, ⇠) := e�i(t�tj )HP ⇢(j)tj
(t j , ⇠j) e

i(t�tj )HP , tj < t < tj+1 (15)



Averaged time-evolution of state of P

We suppose that the di↵erences tj � tj�1 of times of interaction
between the probes Aj and the subsystem P are Poisson distri-
buted, with rate � = 1, 8j . Fixing a time t and taking an average,
E, over measurement times and measurement outcomes, we find
that

E
⇥
⇢t(t, ⇠)

⇤
= et L ⇢, (16)

where ⇢ is the initial state of the subsystem P at time t = 0, and
L is a Lindblad generator given by

L ⇢ = �i adHP
(⇢) +

� X

⇠2XS

V⇠ ⇢V⇠

�
� ⇢. (17)

Eq. (15) is what one calls the “unravelling” of the Lindblad evo-
lution (16); it appears as the integrand in the Dyson expansion of
the right side of (16), with the second term on the right side of
(17) treated as the perturbation.



Main result

We suppose that the “Basic Assumption” (iii) of Sect. 3 is valid.
We assume furthermore that

HP = "hp, for some " > 0, (19)

and we rescale time: t = "�2⌧ . We define a continuous-time
Markov jump process, with state space = spec(N ), paths
⌫⌧ (!), ! = (t, ⇠), and transition function generated by the Markov
kernel:

Q(⌫, ⌫ 0) = � |h⌫|hP |⌫ 0i|2P
⇠2XS

V⇠(⌫)V⇠(⌫ 0)� 1
+ cc , ⌫ 6= ⌫ 0,

with Q(⌫, ⌫) = · · · � 0, 8⌫.

We are now prepared to state our Main Result, (which has simila-
rities with models illustrating the “ETH approach” to QM!).



Main result – ctd.
Theorem.

• Convergence of qm evolution to Markov jump process:

lim"&0 E
⇥
⇢"�2⌧

�
! = (t, ⇠)

�⇤
= e

�⌧Q⇢0,

where ⇢0 = Diag (h⌫|⇢|⌫i).
• The state ⇢"�2⌧

�
! = (t, ⇠)

�
approaches in law a diagonal

matrix, Diag
�
�⌫,⌫⌧ (!)

�
.

Numerical simulation for the behaviour of the diagonal matrix
elements of ⇢"�2⌧ (t, ⇠) in the special case where N = 1 (i.e.,
HP = C2), for small ":
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5. Open Problems, Conclusions
I More general models of probes and “cavities”; in particular:

I Correlated probes; 1-dimensional state spaces for cavity, P .

I More general models of indirect measurements of time-dependent
quantities. –
Approach to classical dynamics: Consider “observables,” ~N , with
continuous spectrum �( ~N ) ' Rd ; e.g., particle position operators.
Then HP may generate dynamics describing a particle motion on
�( ~N ) resembling classical motion; the full dynamics of P may then
describe tracks on �( ~N ) with “di↵usive broadening:” Theory of
“Mott tracks”; (now fairly well understood, at least in semi-classical
regime – next time!). Etc.

I Theory of projective (direct) measurements – ETH-Approach

Our conclusion: Quantum Mechanics and its foundations are well and
alive. There are plenty of beautiful new experiments testing fundamental
aspects of Quantum Mechanics, and there are plenty of interesting
problems for theorists to worry about – good luck!

Thank you!



Epilogue: “Vivre et Survivre” – 50 years later

... depuis fin juillet 1970 je consacre la plus grande partie de mon
temps en militant pour le mouvement Survivre, fondé en juillet à
Montréal. Son but est la lutte pour la survie de l’espèce humaine,
et même de la vie tout court, menacée par le déséquilibre
écologique croissant causé par une utilisation indiscriminée de la
science et de la technologie et par des mécanismes sociaux
suicidaires, et menacée également par des conflits militaires liés à
la prolifération des appareils militaires et des industries
d’armements. ...

Alexandre Grothendieck

Let’s take up this struggle again – it matters!


