


Motivation: quantum gravity, quantum geometry
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Quantum spacetime

quantum + gravity =

Quantized geometry: apply the principles of QM to spacetime itself

P intrinsic length scale, spacetime coarse-graining
» microscopic non-commutative/non-associative spacetime structures

» natural regularization, non-locality



Quantum fields on noncommutative spaces
» novel interactions, controlled Lorentz violation, UV/IR mixing
» NC Standard Model, NC GUTs, etc.

» Gravity on noncommutative spaces [©.®] #0
twisted tensor calculus, deformed Einstein equations

P space-time coarse graining = higher structures

» beyond non-commutative geometry =- generalized geometry



Outline
» interaction via deformation (~- gauge theory, monopoles)
» aspects of quantization
» graded spacetime mechanics (~ general relativity)
» generalized geometry and gravity
» summary and outlook



Interaction via deformation

“Beyond gauge theory”
» gravity = free fall in curved spacetime L
— extend this idea to all forces!
» free Hamiltonian, interaction via deformation:
deformed symplectic structure (or operator algebra) [©.@] #0

» gauge theory recovered via Moser's lemma:
deformation maps are not unique = gauge symmetry

» more general than gauge theory, but just as simple to use as the
good old gauge principle



Interaction via deformation

Analytical mechanics “warm-up” ...

Hamiltonian (first order) action “Sy = [ >~ pdg — H(p, q)dt" :
SH = /a — H(X)dT + dX vary with X = 0 at boundary

Lsx (a — HdT) = isxda + d(l'(sxa) — (f(;de)dT

— |w(—,X)=dH| where w=da

& | X=6(—,dH) — f={f H}| where §=w!

interaction, coupling to gauge field:
» either deform H (“minimal substitution"): H' = H(p — A, q)
» ordeform w and hence {, }: &/ =Y pdg+ A = W' =w+dA



Interaction via deformation

example: relativistic particle in einbein formalism
1 S P " 1 »
S=[dr zgm,(x)x X" — Sem” + Au(X)XH ) s py = S8 +A,

1
Sy = /PudXH_Ee ((pu — Au)> + m?) dr < p,: canonical momentum

1
Sy = /(Pu + A,) dxt — 5e (pi + m2) d7| < pu: physical momentum

w = d(pu —|—A#) A dxt ~
{p/uplf}, = Ful/a {XM7PV}/ = 557 {X#’XV}I =0

| {px: {Pu P} Y + cycl. = (dF)apuw = (%jm)apwv | < magnetic 4-current

magnetic sources < non-associativity



Interaction via deformation

Quantization
» path integral v/
» deformation quantization v'(— details later)
» canonical? depends... (V') :

Deformed CCR:

[Pus pv] = ihFuy,  [X*,p] =ihdy,  [x*,x"]=0, [v*,7"]+ = 2"
Let p=1#p, and H = %pz ~~ correct coupling of fields to spin

H= %(['Y#a'yu]+[l3wpv]+ + [’YM”YV][puvPV]) = %pz - %SWF/W
Lorentz-Heisenberg equations of motion (ignoring spin)

pu = FIH. pul = 3(Fux” + X"Fu) with X" = {[H,x"] =p"

this formalism allows dF # 0: magnetic sources, non-associativity



Interaction via deformation: monopoles

local non-associativity: 1[p, [Py, pu]] dx*dxtdx” = h2dF = h? %jp

Jm # 0 < no operator representation of the p,,!
spacetime translations are still generated by p,,, but magnetic flux ®,
leads to path-dependence with phase e'®; where ¢ = ig.®,,/h

globally:

a b

¢m:/F:/ A <> non-commutativity
s as

c

¢m:/ F:/ dF:/ *jm = Gm <> non-associativity
av v v

dedm
21h

global associativity requires ¢ € 27Z = € Z | Dirac quantization

non-relativistic version of this: Jackiw 1985, 2002



Magnetic monopoles in the lab

F

e

spin ice pyrochlore and Dirac monopoles

>

>

Castelnovo, Moessner, Sondhi (2008)
Fennell; Morris; Hall, ...(2009)

frustrated spin system <> huge degeneracy of classical ground state
Lieb, PS (1999), (2000); PS (2001)



Aspects of quantization  ~> %

The operator-state formulation of QM cannot handle non-associative
structures. . .

Phase-space formulation of QM

» Observables and states are (real) functions on phase space.

» Algebraic structure introduced by a star product,
traces by integration.

> State function (think: “density matrix"): S, >0, [ S, =1.2
> Expectation values (O) = [ O % S,.

» Schrodinger equation H* S, — S, * H = ih%

>

“Stargenvalue” equation: Hx S, =5,«H =ES,.

LWick-Voros formulation yields non-negative state function; Moyal-Weyl leads
instead to Wigner quasi-probability function that can be negative in small regions.



Aspects of quantization  ~> %

Popular choices of star products
» Moyal-Weyl (symmetric ordering, Wigner quasi-probability function)
Weyl quantization associates operators to polynomial functions via
symmetric ordering: x* ~» £F, xHx” ~ %()?“)?V + xV&H), etc.
extend to functions, define star product f; x f, := ?1?2 .
» Wick-Voros (normal ordering, coherent state quantization)
QHO states in Wick-Voros formulation:

» xp-ordered star product: x-exponential = ordinary path integral



Aspects of quantization  ~> %

Deformation quantization of the point-wise product in the direction of a
Poisson bracket {f, g} = 099, - 0;g:

i

h
f*g: fg+ E{f)g}+h282(f7g)+h’3B3(fag)+ )

with suitable bi-differential operators B,,.

There is a natural (local) gauge symmetry: “equivalent star products”
x>+, DfxDg=D(f+g),

with Df = f + hDif + h?Dof + ...

Dynamical non-associative star product:

ih i AR (o o5 5igs
fapg = o2 R¥ P00y o (0,00 _3®3')(f®g)]



Aspects of quantization  6(x) ~ %

Kontsevich formality and star product
U, maps n k;-multivector fields to a (2 — 2n+ Y k;)-differential operator

Un(Xa, ..., X)) = Z wr Dr(Xy, ..., &,) .

reG, 0
P SR
The star product for a given bivector 8 is:

f*gzzo (i:!)" Un(©,...,0)(f,g)

H 2
=gt 2 Y000 o~ S 00 gkt - 0ig
h2 ,
- (Z 019,04 (9;04f - Oig — Oncf - a,-a,g)) ¥

Kontsevich (1997)



Aspects of quantization  6(x) ~ %

Formality condition
The U, define a quasi-isomorphisms of L.,-DGL algebras and satisfy

QU )4y Y elTT) [U(n), U ()]

TUJ=(1,...,n)
Z,T#0

= Z (_1)0617 Un—l([Xi)')(j]Sa‘Xla'")‘5&7"'7')(1')"')Xn) )

i<j
relating Schouten brackets to Gerstenhaber brackets.
This implies in particular ®(de®) = L-d, ®(0), i.e.

6 (non-)Poisson < % (non-)associative



Aspects of quantization  0(x) ~> %

Poisson sigma model
2-dimensional topological field theory, E = T*M

. 1 .
St = [ (6rax+ 500006 18)
Pt
with © = 2 0¥(x)9; A §; , £ = (&) € QY(ZTo, X* T*M)

perturbative expansion = Kontsevich formality maps

valid on-shell ([©,©]s = 0) as well as off-shell, e.g. twisted Poisson

Kontsevich (1997)
Cattaneo, Felder (2000)



Graded spacetime mechanics

Now try to do the same for gravity! Deformation maybe fine for
curvature Ry, however, the metric g, is symmetric but {, } is not.

» use graded geometry, i.e. odd variables and/or odd brackets

» or consider derived brackets

g~ {{x*,H},x"} ,

» -~ algebraic approach to the geodesic equation, connections,
curvature, etc. Properties like metricity follow from associativity.
Local inertial coordinates are reinterpreted as Darboux charts

{H,H} =0

» the classical formulation requires graded variables (~ differentials),
quantization leads to y-matrices and Clifford algebras

classical

oM

oHe" = —0v o+
Hom 07} = g

>

T T2

quantum
At
3y 1-
0" =g



Graded spacetime mechanics

Graded Poisson algebra
{0507 =270 Apwxt =0 (P fO)} = 0,7 ()

Since g"¥(x) has degree 0, the Poisson bracket must have degree
b = —2a for 6" of degree a, i.e. it is an even bracket.

Since g"¥(x) is symmetric, we must have —(—1)b+%" < +1, ie ais odd.

wlog: {,} is of degree b= —2, 6" are Grassmann variables of degree 1,
69" = —0v0", and the momenta p,, have degree c = —b =2

< a metric structur on TM and natural symplectic structure on T*M,
shifted in degree and combined into a graded Poisson structure on

T*[2]® T[] M

Pu or  xH



Graded spacetime mechanics

Graded Poisson algebra
0.0 =200 {pux) =30 F()) = ()
0 270 0
Jacobi identity (i.e. associativity) < metric connection

{pus 8%} = 150" = 9,6

{Pus (07,07} = 20,8°7 = {{pu, 07}, 07} + {0, {p,, 0" }}

and curvature
Hpu, P}, 0%} = [V, V,]0% = 0°Rs% .0,

_ 1pBpc
= {g;ufz)u} - 4? ? Rﬁap,l/



Graded spacetime mechanics

symmetries = canonical transformations

» generator of degree 2 (degree-preserving):
v (X)Pa + 1Qas(x)0%0°  ~~  local Poincare algebra
» generators of degree 1:
V=V, (x)0* ~ {V,W}=2g(V,W) Clifford algebra
» generators of degree 3:
©=0%py (+1Cap,070°07)
» generators of degree 4:
H = 18" ()pupy + 372, ()0°6" b + & R (x)976°916"

~  SUSY algebra 1{0,0}=H



Graded spacetime mechanics

Graded Poisson algebra on T*[2IM © T[1]M:  {p,,x"} = d},

09,60y =2g""(x)  {pw0°} =T7s0"  {pu.po} = 300 Rsap

Equations of motion with Hamiltonian (Dirac op.) © = 6/p,,

A~ 1{0.10,A1) = 1{{0,0),A} - }{6,{0, A}} =: {H, A}

and derived Hamiltonian
H=1{0,0} = Lg"p,p, + 30"6"T5 ps + £0°0°0"0" Rugyu

For a torsion-less connection, only the first term is non-zero.

Derived anchor map applied to V = V,,(x)0%:

h(V)f = {{V,0},f} = Va(x)g* 0f



Graded spacetime mechanics

Equations of motion (cont'd)

dxH o y
— = 21040, x"}} = {3¢ P paps, X"} = g" py

dp.
= {26 paps. pv} = 2(0.8°")Paps = €T .’ paps

with any metric-compatible connection &T’; pick a WB connection. . .
Geodesic equation:

Py T
dr dr

dr2 =138 PaPBngPu

nice. ..supergravity and string effective actions? ... — double up ...



Geometric ladder to generalized geometry

hierarchie of actions, brackets, extended objects and algebras

AKSZ-model: Poisson-sigma Courant-sigma
(open string) (open membrane)
T*[1]M T*[2] T[1 M
derived bracket: Poisson Dorfman
T*M ™o T*M
object: point particle closed string

algebraic structure:  non-commutative non-associative

AKSZ construction: action functionals in BV formalism of sigma model
QFT's in n+ 1 dimensions for symplectic Lie n-algebroids E
Alexandrov, Kontsevich, Schwarz, Zaboronsky (1995/97)



Graded geometry

Graded Poisson manifold T*[2] T[1]M

» degree 0: x' “coordinates”

> degree 1: £ = (0", ;)

» degree 2: p; “momenta”
symplectic 2-form

w=dp; Adx + %Gagdfo‘ AdEP = dp; A dx' + dy; A db
even (degree -2) Poisson bracket on functions f(x, &, p)
(X} =0, {p ¥} =4, {¢"¢"}=6"
metric G*%: natural pairing of TM, T*M:

{Xnoj}:é{ ) {Xi)Xj}=07 {61’91}20



Graded geometry

degree-preserving canonical transformations

» infinitesimal, generators of degree 2:
v (x)pa + SM*P(x)¢a€s  ~  diffeos and o(d, d)

> finite, idempotent ( “coordinate flip”): (%,6) = 7(x, 0) with 72 = id
~~ generating function F of type 1 with F(0,6) = —F(6,6):

Fzg.g.é_%9.5.9+%§.3.9"

Eal— 0-B A

1
= ) =0 (, fplip G

~> generalized metric



Generalized Geometry

Generalized tangent bundle E: 0 - T"M — E —- TM — 0
eg. E=TM® T*M, i.e. "vector fields plus differential forms"

Courant algebroid: vector bundle E — M, anchor h: E — TM,
bracket [—, —] , pairing (—, =), s.t. for e, ', e’ € TE:

2le, ¢, ¢y Y h(e)e', ') D 2(le’, €], €)

[e,[¢", "]l = [[e, €], "] + ¢/, [e,€"]]  (3)

Consequences:

le,fe'] = h(e).f e’ + fle,e'] (L)

h(le, €]) = [h(e), h(e)]Lie

axioms 1, 2 can be polarized, axiom 3 and (L) define a Leibniz algebroid



Generalized geometry

Generalized geometry as a derived structure

Cartan’s magic identy:
Lx = [ix,d] = ixd + dix
Lie bracket [X, Y] of vector fields as a derived bracket:

[[ix, d], iy] = [Ex, iy] = i[X,Y]Lie with [d, d] = d2 =0



Generalized geometry

Generalized geometry as a derived structure

degree 3 “Hamiltonian”: Dirac operator
O = fahfx(x)Pi + écaﬁ'ygagﬂgy
| ——
twisting/flux terms
For e = eo(x)§* € [(TM @ T*M) (degree 1, odd):

» pairing: (e, e’) = {e, €'}
» anchor: h(e)f = {{e,0},f}
» bracket: [e, e']p = {{e, O}, €'}



Generalized geometry

Generalized geometry as a derived structure
Courant algebroid axioms from associativity and {©,0} = 0:

h(&1) (§2,&2) = {{©, &} {€2. &}
=2{{{0,&},6}, &) =2([61, 6], &) (axiom 1)
=2{&,{{0,&}, &1 =2 (&, [€2, &) (axiom 2)

[515 [62763]] = {{9751}7 {{@a 52}753}}
= ll6n, &1, 61 + [62, 61,651 + 5 {{1{0,0},61), &}, ).

{©,0} =0 <& [,]-Jacobi identity (in 1st slot) (axiom 3)



general (deformed) Poisson structure
{v,f} =v.f
(V,W} = G(V, W) = (V, W)
{v,V}=V,V < connection metric wrt. G
{v,w} =[v.w]ue + R(v,w) < curvature of V

with

» degree 0: f(x)

» degree 1: V = V¥(x)¢, ‘“generalized vectors”
> degree 2: v = vi(x)p; ‘“vector fields"

general Hamiltonian

0 =£%h(E,) + éCa57£a§~B£7 < general flux (H,f,Q,R)



derived bracket

{{{faa @},fﬁ},f'y} = raﬁ'y - rﬁa'y ‘H_'yaﬁ + Caﬁ“Y = %VZ
————

torsion

“mother of all brackets”

[V.W]=VyW—VwV+(VV, W)+ C(V,W,-)
= [[V, W]] + T(V, W)+ (VV, W) + C(V, W, —)

In order to obtain a regular Courant algebroid, impose

1
{8,0}=0 & VC+3{C C}=0, G lp=0,...



Generalized differential geometry

generalized Lie-bracket (involves anchor h: E — TM)

(VWi =—[w, V], [V, W]] = (h(V)A)W + F][V, W]]

generalized connection “type I and miraculous triple identity

(v, w,U) = (h(V)F)(W,U)+ fr(V; W, U),

[V, [W, Z]) = (V,[[W, Z]]) + T(V; W, 2)|

(VyW, Uy :=T(V; W, U)
generalized curvature and torsion
R(V, W) = VvV — VwVy — Viv.w

T(V,W)=VyW —-VyV [V, W]
Boffo, PS (2019/2020)



Graded/generalized geometry and gravity

cookbook recipe

|

vvyyy

deform graded Poisson structure

pick Hamiltonian © (e.g. canonical), compute derived brackets
choose generalized Lie bracket [[, ]] (e.g. canonical)

determine connection I from triple identity

project (or rather embed) via non-isotropic splitting (e.g. canonical)

s:T(TM) 5 T(E)  pos=id  (X,Y)7um = (s(X),s(Y))

(VzX,YY1m :=T(s(2);s(X),s(Y))

compute Riemann and Ricci tensors, take trace with g + B, write
action in terms of resulting Ricci scalar



Graded/generalized geometry and gravity

deformation by generalized vielbein E
Q= dx' Adp; +do' Ady;

deformation by change of coordinates in the odd (degree 1) sector
two choices:

O, (1 0y (9 4 1 n+c6\ (o
X g+B 1 X —-g+8B 1 X
Boffo, PS 1903.09112 and in preparation

now crank the “machine” (deformed derived bracket, connection, project,
Riemann, Ricci) ~~ (effective) gravity actions . ..



Graded/generalized geometry and gravity

generalized Koszul formula for nonsymmetric G = g + B
28(VzX,Y) = (Z,[X, Y]

— XG(Y.Z) - YG(X,Z)+ ZG(X,Y)
_g(Y7 [X7 Z]Lie) - g([Xv Y]LiEJ Z) + g(X? [Yv Z]Lie)

= 2g8(VXY.Z)+ H(X,Y,2)
= non-symmetric Ricci tensor
Ry = Rﬁc _ %ViLcHﬂi _ ‘_1‘ HlmiHijm R— gijgikglekI
= gravity action (closed string effective action) after partial integration:

1
Sg o 167TGN

1 .
/ dix/—g (RLC - EH,-,-kH'Jk>

Khoo, Vysoky, Jurco, Boffo, PS



Graded/generalized geometry and gravity

This formulation consistently combines all approaches of Einstein:
Non-symmetric metric, Weitzenbock and Levi-Civita connections,
without any of the usual drawbacks.

The dilaton ¢(x) rescales the generalized tangent bundle. The
deformation can be formulated in terms of vielbeins

e/ 1 0 aape [ —30i0 0

Going through the same steps as before we find in d = 10

1
. / 30 e /=g (R~ LH + 4(V6)?)

Boffo, PS



Graded Geometry and Gravity

Quantization

x' pi, 0 xi ~ differential ops on v(x,0) € A®* T*M (spinors):
p ~ O X ~ Op = iy X~ X 0 ~~ ON

0, x: finite dimensional representation by ~-matrices:
Vs gy =V, [voywly = G(V, W) ete.

Symmetry Lie algebra generators: Ma5£a£B
M'; picks up trM "anomaly” after quantization

A*T*M ~> N*T*M @ det? TM

requiring the introduction of the dilaton field ¢ for covariance.



Interaction via deformation

Interaction via deformation as an alternative (slight generalization) of
minimal coupling, covariant derivatives, gauge theory.

» classical: deformed Poisson structure
» quantum: deformed operator algebra (CCR)

[¢(x), 9(2)] =0, [6(x), (x)] # O
(non-)commutativity <+ causality
A :e equal time CRs: [¢(x), d(x)] ~ id(x — x')
single particle QM version: [x;, p;] ~ idj;
— deform these CCRs to introduce interactions
» gauge fields: recovered via Moser's lemma
» U(1) case: closed expression for SW map, global NC line bundle
» here: adapt the approach to gravity



Link to gauge theory

deformation of symplectic form Q' ~~ gauge field A:

Moser's lemma

Let Q; = Q + tF, with Q; symplectic for t € [0, 1].

dQ: =0 = dF =0 = locally F =dA

Q' = Q1 and Q are related by a change of phase space coordinates

generated by the flow of a vector field V; defined up to gauge
transformations by the gauge field iy, Qs = A, i.e. Vi = 05(A, —).

Proof: Lv,Q: = iv,dQ: + d iy, Q: = 0+ dA = 2Q,. Moser 1965

Quantum and Poisson versions of the lemma exist based on equivalence
of star products and formality maps: Jurco, PS, Wess 2000-2002



More deformation

our initial example:
deformation by a gauge field A

Q' = dx' Adp; + 1F(x)dx" A dxl, dF =0, locally F = dA

Q=Q+tdA|, A=A(x)dx'

)
Ve = Ai(X)a_p o Lv,~palp)=p+A
{pisx/}e = 0]

{pi, pite = t Fii(x)

gauge transformation A = d\ <> dpja): canonical transformation
non-abelian versions: A%(x){,dx’ and A2 (x)67xpdx’

~> Abelian and non-abelian gauge theory



More deformation

deformation by a spin connection w

Q=dx' Adp;+ 3npd0® AdO® 07 =€, gj=ele/n

, w = wi(x,0)dx' = %w;ab(x)ﬂaebdxi
Ve =wibp, Ly, ~ prj(p) =p+w

{pix}e=6  {6°.0°)=n"

{pi, 07} = tPwipc(x) 6° wipe = —wich

{pi,pj}: =t Rj R=dw+twAw

gauge transformation dw = d\ <+ dpy,): canonical transformation

~+ Einstein-Cartan gravity



More deformation

deformation by a general connection I
Q = dx' Adp; +dO' A dy;
[Q=Q+tdl|, =Tk =)0 yudx’
Ve=Ti0p, Lv,~prp)=p+T
{Pian}t = 5{ {Xi,9j}t = 5{:
{pi,0'} = tTh6%  {pi,x;} = —tThxi
{pi.piye=tR 30" Ry =0Ty — 9Ty + TR, — TR,

gauge transformation 6" = dA <> dpr): canonical transformation

~~ General relativity and alternative gravity theories



Non-associativity, non-metricity, gravitipoles . ..

Non-associativity

The Jacobi identity playes a pivotal role; its violation has drastic effects:
> {p,,0% 6°} %0 = non-metricity of connection V
» {pa,ps.py} #0 = gravito-magnetic sources, mass quantization

Shifted orbit in the presence of a gravitipol:



mixed symmetry tensors, higher spin actions

Graded geometry is also a useful tool for mixed symmetry tensor theories:
Consider e.g. a bi-partite tensor

1 "1---J'q

= Jigt Cinin 0007 07X

Wp,q
and the natural -y duality transformation

Wpq — Wqp Via 0" 5y = n’jxj.
Introduce two differentials

d=0'0; and d='0;
and a generalized Hodge dual

1 o .
(oppa = (p g " ap where 5= 0%

Chatzistavrakidis, Khoo, Roest, PS (JHEP 2017)



spin < 2 kinetic terms

~~ natural and concise formalism for mixed symmetry tensor actions:

general kinetic term | Lyin(wp,q) :/ dw xdw| =
7X

1
2(D-1)!
1

A S
Livtaxwell(A1,0) = m/a nP2AddA = _ZFUFJ
. ’X

Lan(b00) = | Pedds = 3o00
sX

Leen(hp) = =5 (h',- OW, — 2h%,0,0; 7 + 20V Oh™ — by O h”)

1 o ) .
Lcurtright(wp2,17) =5 (aiwijalekll — 20;11%0 Wy — B 0wy, —

- 4w,—’|’8"8’wkj|, — 28,-wj"|f8’w’k|, + 28;wji|j3kwlk|/)
Chatzistavrakidis, Karagiannis, PS (CMP 2020)



spin < 2 interaction and mass terms, higher spin

general interaction term with up to second order field equations:

Nmax

Lcai(wp,q) Z(D ) / nP~* w (ddw)"1(dd @)"

higher gauge symmetry via higher Poincaré lemma: da(éw) = 0 implies

1 i Iy ko ~ k: k.
5wp,q = dlip_l’q + dK,p’q_l + c,-l,,.,-pkokl,,,kqel B e G

(locally, i.e. on a contractible patch)

mass term | Lmass(wp.q) = m2/ w*w| ~ Proca, Fierz-Pauli, etc.
0,x

application: standard and exotic dualizations “[p,q] <> [D — p — 2,q]"

for higher spin > 2: simply add further copies of fx-pairs. . .
Chatzistavrakidis, Karagiannis, PS (CMP 2020)



Conclusion

» deformation: combines best aspects of Lagrange and Hamilton

» graded/generalized geometry provides a perfect setting for the
formulation of theories of gravity

» approach is based on deformed graded geometry is algebraic in
nature: almost everything follows from associativity as unifying
principle (which can be generalized)

» more traditional approaches are based on the generalized metric
(with occasional covariance and uniqueness issues)

» non-associativity = non-metricity, gravitipoles, mass quantization
» graded geometry provides a powerful formalism for higher spins

Thanks for listening!



