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Research interests

Transition between quantum and classical theories

Quantum mechanics → classical mechanics.

Statistical mechanics of a quantum spin system → classical thermomechanics of a spin system.

Statistical mechanics of a quantum spin system on a finite lattice → statistical mechanics of an infinite
quantum spin system.

⇓

Main focus

Classical limit of quantum (spin) systems & Schrödinger operators.
. Prof. Valter Moretti (University of Trento)
. Dr. Simone Murro (University of Paris-Saclay)

Emergence, e.g. Spontaneous Symmetry Breaking (SSB).
. Prof. Klaas Landsman (Radboud University Nijmegen)
. Dr. Robin Reuvers (University of Rome 3)

⇓

Approach

Strict deformation quantization
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Basics on strict deformation quantization
Continuous bundle of C∗- algebras

• Ingredients: sequence of C∗-algebras (A~)~∈I over locally compact Hausdorff space I , A0 = C0(X ) where X
a smooth Poisson manifold (possibly with boundary).

• Consider class of elements a := {a0, a~}~ ∈ Π~∈IA~ that is closed w.r.t. pointwise sums, products, the
adjoint, and such that

||a|| := sup~∈I{||a~||~} <∞, (1)

||aa∗|| = ||a||2. (2)

• By construction the set

A =

{
a = {a0, a~}~

∣∣∣∣ all conditions above are satisfied

}
, (3)

is a C∗- algebra with norm (1).

• A continuous bundle of C∗-algebras over I consists of a C∗- algebra A (constructed by (3)), a collection of
C∗-algebras (A~)~∈I and surjective homomorphisms φ~ : A→ A~, such that A 3 a := {a0, a~}~ satisfies

φ~(a) = a~. (4)

• Moreover, we require that for any f ∈ C0(I ) one has {f (~)a~}~ ∈ A.

• We furthermore demand the continuity property for the norm, in that for each a ∈ A one has

I 3 ~ 7→ ||a~||~ ∈ C0(I ), (5)

• If all these conditions are satisfied, the continuous cross-sections are then maps I 3 ~ 7→ a~ ∈ A~, i.e.,
elements of A.
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Basics on strict deformation quantization
Strict deformation quantization

Definition (Strict deformation quantization of a Poisson manifold X )

- Continuous bundle of C∗-algebras (A~)~∈I over I with A0 = C0(X );

- A dense Poisson subalgebra Ã0 ⊂ C∞(X ) ⊂ A0 (on which {·, ·} is defined);

- Quantization maps Q~ : Ã0 → A~ such that Q0 is the inclusion map Ã0 → A0, each Q~ is linear, and the
next conditions (1)− (4) hold:

1. Q~(1X ) = 1A~ (if unital) .

2. Q~(f ∗) = Q~(f )∗.

3. For each f ∈ Ã0 the following map

0 7→ f ;
~ 7→ Q~(f ), (~ > 0)

is a continuous section of the bundle.

4. For all f , g ∈ Ã0 one has the Dirac-Groenewold-Rieffel condition:

lim
~→0
||
i

~
[Q~(f ),Q~(g)]− Q~({f , g})||~ = 0.
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Examples
Berezin quantization on R2n

• Consider

A0 = C0(R2n) (~ = 0);

A~ = B∞(L2(Rn)) (~ > 0),

where R2n is equipped with thet standard symplectic Poisson structure.

⇒ A0 and A~ form fibers of a continuous bundle of C∗- algebras over I = [0, 1].

• Quantization maps: for any ~ ∈ (0, 1] define

Q~ : C∞c (R2n)→ B∞(L2(Rn));

Q~(f ) =

∫
R2n

dnpdnq

(2π~)n
f (p, q)|φ(p,q)

~ 〉〈φ(p,q)
~ |,

where for each ~ ∈ I the operator |φ(p,q)
~ 〉〈φ(p,q)

~ | is the projection onto the subspace spanned by the unit

vector φ
(p,q)
~ ∈ L2(Rn), also called a Schrödinger coherent state.
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Examples
Berezin quantization on two sphere S2 ⊂ R3

• Consider

A′0 = C (S2), (1/N = 0);

A′1/N = MN+1(C), (1/N > 0).

⇒ A′0 and A′1/N form fibers of a continuous bundle of C∗- algebras over I = 1/N ∪ {0}.

• Poisson structure: {f , g}(x) =
∑3

a,b,c=1 εabcxc
∂f
∂xa

∂g
∂xb

(x ∈ S2)), with f , g restrictions of smooth

functions to S2 → dense subspace Ã′0 ⊂ A′0 made of polynomials in three real variables restricted to S2.

• Quantizations maps: for any 1/N ∈ 1/N:

Q′1/N : Ã′0 → MN+1(C);

Q′1/N (p) =
N + 1

4π

∫
S2

dµ(Ω)p(Ω)|ΩN〉〈ΩN |.

|ΩN〉〈ΩN | is the projection onto the linear span of the vector ΩN , called a spin coherent state.
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Examples
Quantization of the algebraic state space of M2(C) (Landsman, Moretti, v. d. Ven, 2020)

• Consider

A0 = C (S(M2(C))) ' C (B3), (1/N = 0);

A1/N =
⊗N

n=1 M2(C), (1/N > 0).

⇒ A0 and A1/N are the fibers of a continuous bundle of C∗- algebras over I = 1/N ∪ {0}.

• Poisson structure on S(M2(C)) ' B3: {f , g}(x) =
∑3

a,b,c=1 εabcxc
∂f
∂xa

∂g
∂xb

(x ∈ B3), with f , g restrictions

of smooth functions to B3.

• It can be shown that the continuous cross-sections of the bundle with fibers (A0,A1/N ) are precisely given by
the quasi-symmetric sequences which uniquely identify this bundle (Landsman, 2017).

⇓

Quantizations maps must be defined by (quasi)-symmetric sequences.

• Quasi-symmetric seqeunces ↔ macroscopic observables. These can start in any finite way, but their infinite
tails consist of averaged observables, and therefore they asymptotically commute.
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Intermezzo
Symmetrization and quasi-symmetric sequences

• Symmetrization operator SN : A1/N → A1/N , defined as the unique linear continuous extension of the
following map on elementary tensors:

SN (a1 ⊗ · · · ⊗ aN ) =
1

N!

∑
σ∈P(N)

aσ(1) ⊗ · · · ⊗ aσ(N). (6)

• For N ≥ M define a bounded operator SM,N : A1/M → A1/N , by linear and continuous extension of

SM,N (b) = SN (b ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
N−Mtimes

), b ∈ A1/M . (7)

• Sequences A 3 a = (a0, a1/N )N∈N are called symmetric if there exist M ∈ N and a1/M ∈ A1/M such that

a1/N = SM,N (a1/M ) for all N ≥ M, (8)

• They are called quasi-symmetric if a1/N = SN (a1/N ) if N ∈ N, and for every ε > 0, there is a symmetric
sequence (b1/N )N∈N as well as M ∈ N such that

‖a1/N − b1/N‖ < ε for all N > M. (9)
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Examples
Quantization of the algebraic state space of M2(C) (Landsman, Moretti, v. d. Ven, 2020)

• Subspace Z ⊂
⊕∞

M=0 M2(C)⊗M made of symmetric tensor products → map χ : Z → C (S(M2(C)))
defined by linear extension of the map

χ(bj1 ⊗s · · · ⊗s bjL )(ω) = ω
N (bj1 ⊗s · · · ⊗s bjL ) = ω(bj1 ) · · · ω(bjL ),

where ib1, ib2, ib3 form a basis of the Lie algebra of SU(2), where ω ∈ S(M2(C)) and
ω(bji ) = xji (j1, ..., jL ∈ {1, 2, 3}).

• χ is a well-defined linear injective map → χ(Z ) ⊂ C (S(M2(C))) is dense, and elements of χ(Z ) are
polynomials.

• Hence, each polynomial p of degree L uniquely corresponds to a polynomial of symmetric elementary tensors
of the form bj1 ⊗s · · · ⊗s bjL .

• Define Ã0 := χ(Z ), and for pL = χ(bj1 ⊗s · · · ⊗s bjL ) the quantization maps

Q1/N : Ã0 ⊂ C (B3)→ M2(C)⊗N are defined as the unique continuous and linear extensions of the maps

Q1/N (pL) =

{
SL,N (bj1 ⊗s · · · ⊗s bjL ), if N ≥ L,
0, if N < L,

Q1/N (1) = I2 ⊗ · · · ⊗ I2︸ ︷︷ ︸
N times

. (10)

• Note that the quantization maps indeed define symmetric (hence macroscopic) observables. No coherent
states involved!
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Bulk-boundary asymptotic equivalence

• Existence of invariant (N + 1)-dimensional symmetric subspace SymN (C2) ⊂
⊗N

n=1 C
2 for operators

Q1/N (p) ∈
⊗N

n=1 M2(C).

⇓

Q1/N (p)|SymN (C2) ∈ B(SymN (C2)) ' MN+1(C).

⇓

Theorem (M, v.d. V, 2020)

For any polynomial p ∈ Ã0 (the complex vector space of polynomials in three real variables on the closed unit

ball S(M2(C)) ∼= B3), one has

||Q′1/N (p|S2 )− Q1/N (p)|SymN (C2)||N → 0, as N →∞, (11)

the (operator) norm being the one on B(SymN (C2)).
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Applications
mean-field theories

• Consider collection of N two-level atoms corresponding to a spin chain of N sites described by a mean-field
Hamiltonian HN .

• Example: quantum Curie-Weiss spin Hamiltonian defined on HN =
⊗N

n=1 C
2:

HN ≡ HCW
N = −

J

2N

N∑
i,j=1

σ3(i)σ3(j)− B
N∑
i=1

σ1(i), (12)

with B magnetic field and J a coupling constant .

• HN typically leaves the subspace SymN (C2) ⊂
⊗N

n=1 C
2 invariant.

• (HN )N defines a quasi-symmetric sequence ⇒ relation with SDQ of S(M2(C)) ' B3:

lim
N→∞

||HN − Q1/N (h)||N = 0, (13)

for some polynomial h ∈ C (B3) (called the classical CW model).

• By the theorem limN→∞ ||HN |SymN (C2) − Q′1/N (h|S2 )||N = 0, → the restricted mean-field spin system is

represented by quantization of the Bloch sphere in the semiclassical limit 1/~ := N →∞.
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Study: classical limit of quantum theories and SSB

• Study: asymptotic properties of vectors in Hilbert space H~; e.g. think of eigenvectors (ψ~)~ of quantum
operators (H~)~, as ~→ 0.

Difficulty: behaviour of (ψ~)~ in H~ is hard to capture
⇓

Algebraic approach helpful
⇓

Algebraic vector states ω~(·) := 〈ψ~, (·)ψ~〉.

• Question: Which set of physical observables makes the sequence (ω~) ’converge’ as ~→ 0?
⇓

Strict deformation quantization
⇓

Observables defined by quantization maps Q~(f ), (f ∈ C0(X )).

• Existence of classical limit, does

ω0(f ) := lim
~→0

ω~(Q~(f )), (f ∈ C0(X )); (14)

exists as a state ω0 on A0 = C0(X )?

• SSB: natural emergent phenomenon typically occuring in thermodynamic/classical limit.
⇓

Difficulty: proving existence of SSB in such limits
⇓

Strict deformation quantization
⇓

Existence of classical limit

Rigorous notion of SSB in the classical limit: pure ground states are not invariant, whilst invariant ground
states are not pure.
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Applications
Classical limit: Schrödinger operators and mean-field quantum spin systems

• 1-dimensional Schrodinger operator h~ = −~2 d2

dx2 + V (x), with V a symmetric double well potential,

h~ψ
(0)
~ = λ

(0)
~ ψ

(0)
~ where λ

(0)
~ minimal.

• One can show that the Berezin quantization on R2 induces the existence of the classical limit on C0(R2):

lim
~→0
〈ψ(0)

~ ,Q~(f )ψ
(0)
~ 〉 =

1

2
(ω

(0)
+ (f ) + ω

(0)
− (f )). (15)

where ω
(0)
± are Dirac measures localized in the minima of both wells (Lansdman 2017).

Theorem (L, M, v.d.V)

Let HCW
N be the Curie-Weiss quantum spin model defined on a chain of N sites. Then the sequence of unique

(up to phase) ground state eigenvectors (ψ
(0)
N )N admits a classical limit on X2 := S(M2(C)) ∼= B3, in the sense

that

lim
N→∞

〈ψ(0)
N ,Q1/N (f )ψ

(0)
N 〉 =

1

2
(f (Ω−) + f (Ω+)), (f ∈ C0(X2)); (16)

where Ω± denote the minima of the classical CW Hamiltonian hCW on B3:

hCW (x, y , z) = −(
J

2
z2 + Bx), ((x, y , z) ∈ B3). (17)

• Proof Idea: Localization of eigenvectors ψ
(0)
N of HCW

N (N →∞) only depends on properties of hCW .
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Applications
SSB: mean-field theories

• Existence of spontaneous symmetry breaking (SSB) in the classcial limit: pure ground states are not
invariant, whilst invariant ground states are not pure.

• The (pure) ground state eigenvector Ψ
(0)
N of the quantum Curie-Weiss model is invariant under Z2- reflexion

symmetry for any N.
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Applications
SSB: mean-field theories

• In the limit N →∞ the ground state eigenvector Ψ
(0)
N ’decomposes’ into two parts corresponding to the

invariant (but not pure) state 1
2 (ω

(0)
+ (f ) + ω

(0)
− (f )).
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Some results: classical limit and SSB

Theorem (v.d.V)

If (λ
(i)
N )N is a sequence of eigenvalues corresponding to a mean-field quantum spin Hamiltonian HN such that

λ
(i)
N converges to some energy E , as N →∞. Then the corresponding sequence of eigenvectors ψ

(i)
N of HN

admits a classical limit, in that

lim
N→∞

〈ψ(i)
N ,Q

′
1/N (f )ψ

(i)
N 〉 =

1

n

n∑
i=1

f (Ωi ), (f ∈ C(S2)); (18)

where Ωi are distinct points in h−1
0 (E) ⊂ S2 and h0 is the ’classical’ analog of the operator HN , i.e. a

polynomial on S2.

• Joint work with Murro: ‘Injective tensor products in strict deformation quantization’.

→ Natural frame work for many-body quantum systems.

→ Application to quantum spin systems with nearest neighbor interactions.

→ Application to Schrödinger operators affiliated with the resolvent algebra.

• Joint work with Landsman, Groenenboom, Reuvers: ‘Quantum spin systems versus Schroedinger operators:
A case study in spontaneous symmetry breaking (Scipost, 2019)’.

→ Spontaneous symmetry breaking: small perturbations of quantum system should yield a pure state for
finite but large N → explanation for symmetry breaking in real materials: only pure states (i.e. physical
states) are found. (Generalization of work by Barry Simon, Jona-Lasinio, Martinelli and Scoppola)
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Research in progress

� Which states admit a classical limit? (Think e.g. of pure (vector) states, local Gibbs states, β-KMS states).

� Generalize methods to more complicated many-body quantum systems and prove existence of SSB in the
classical/thermodynamic limit:

Spin systems with nearest neighbor interactions, e.g. Heisenberg model.

Schrödinger operators and potentials with continuous symmetry, e.g. SO(2) → Publication in preparation
[Moretti, v.d. Ven]

� Small perturbations in many body quantum systems → model symmetry breaking in real materials.

� Quantization of ’commutative’ resolvent algebra → model unbounded operators (Buchholz & Grundling,
2008).

� SDQ → quantum versus classical dynamics.

� Not every classical theory is related to a underlying quantum theory. Only few pairs of a classical and a
quantum C∗-algebra are known to connect in this way → open topic.

Thank you for your attention!
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Examples
Berezin quantization of R2n and of S2

• Consider

A0 = C0(R2n) (~ = 0);

A~ = B∞(L2(Rn)) (~ > 0),

⇒ fibers of a continuous bundle of C∗- algebras over I = [0, 1]. Quantization maps Q~: for any
~ ∈ (0, 1]

Q~ : C∞c (R2n)→ B∞(L2(Rn));

Q~(f ) =

∫
R2n

dnpdnq

(2π~)n
f (p, q)|φ(p,q)

~ 〉〈φ(p,q)
~ |.

• Consider

A′0 = C(S2), (1/N = 0);

A′
1/N

= MN+1(C), (1/N > 0),

⇒ fibers of a continuous bundle of C∗- algebras over I = 1/N ∪ {0}. Quantizations maps Q1/N :
for any 1/N ∈ 1/N

Q′1/N : Ã′0 → MN+1(C);

Q′1/N(p) =
N + 1

4π

∫
S2

dµ(Ω)p(Ω)|ΩN〉〈ΩN |.
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Basics on strict deformation quantization
Continuous bundle of C∗- algebras

• Ingredients: sequence of C∗-algebras (A~)~∈I over locally compact Hausdorff space I ,
A0 = C0(X ) where X a smooth Poisson manifold (possibly with boundary).

• Consider class of elements a := {a0, a~}~ that is closed w.r.t. pointwise sums, products, the
adjoint, and such that

||a|| := sup~∈I {||a~||~} <∞, (19)

||aa∗|| = ||a||2. (20)

• By construction the set

A =

{
a = {a0, a~}~

∣∣∣∣ all conditions above are satisfied

}
, (21)

is a C∗- algebra with norm (19).
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Basics on strict deformation quantization
Continuous bundle of C∗- algebras

• A continuous bundle of C∗-algebras over I consists of a C∗- algebra A (constructed by (21)), a
collection of C∗-algebras (A~)~∈I and surjective homomorphisms φ~ : A→ A~, such that
A 3 a := {a0, a~}~ satisfies

φ~(a) = a~. (22)

• Moreover, we require that for any f ∈ C0(I ) one has {f (~)a~}~ ∈ A.

• We furthermore demand the continuity property for the norm, in that for each a ∈ A one has

I 3 ~ 7→ ||a~||~ ∈ C0(I ), (23)

• If all these conditions are satisfied, the continuous cross-sections are then maps
I 3 ~ 7→ a~ ∈ A~, i.e., elements of A.
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Poisson bracket

{f , g}(x) =
n∑

a,b,c=1

C c
a,bxc

∂f (x)

∂xa

∂g(x)

∂xb
,

with structure constants coming from the Lie- algebra of SU(k).
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SSB

• The non-degenerate states (ψ
(0)
N , ψ

(1)
N ) converge (in algebraic sense) to mixed classical states,

i.e.,

lim
N→∞

ψ
(0)
N = lim

N→∞
ψ

(1)
N = ω

(0)
0 ,

where ω
(0)
0 = 1

2
(ω+

0 + ω−0 ).

• In contrast, the localized pure ground states

ψ±N =
1
√

2
(ψ

(0)
N + ψ

(1)
N ),

converge (in algebraic sense) to pure classical states, i.e.,

lim
N→∞

ψ±N = ω±0 .
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Continuous bundle of C ∗-algebras

Definition

Let I be a locally compact Hausdorff space. A continuous bundle of C∗-algebras over I consists
of a C∗-algebra A, a collection of C∗-algebras (A~)~∈I with norms || · ||~, and surjective
homomorphisms ϕ~ : A→ A~ for each ~ ∈ I , such that

1. The function ~ 7→ ||ϕ~(a)||~ is in C0(I ) for all a ∈ A.

2.The norm for any a ∈ A is given by

||a|| = sup~∈I ||ϕ~(a)||~. (24)

3. For any f ∈ C0(I ) and a ∈ A, there is an element fa ∈ A such that for each ~ ∈ I ,

ϕ~(fa) = f (~)ϕ~(a). (25)
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• A continuous (cross-) section of the bundle in question is a map ~ 7→ a(~) ∈ A~, (~ ∈ I ), for

which there exists an a ∈ A such that a(~) = ϕ~(a) for each ~ ∈ I .
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Algebraic ground states and SSB

Definition

Let A be a C∗-algebra with time evolution, i.e., a continuous homomorphism α : R→ Aut(A). A
ground state of (A, α) is a state ω on A such that:

1. ω is time independent, i.e., ω(αt(a)) = ω(a) ∀a ∈ A ∀t ∈ R.
2. The generator hω of the ensuing continuous unitary representation

t 7→ ut = e ithω (26)

of R on Hω has positive spectrum, i.e., σ(hω) ⊂ R+, or equivalently 〈ψ, hωψ〉 ≥ 0 (ψ ∈ D(hω)).

• The set of ground states forms a compact convex subset of S(A), and we denote this set by
S0(A). We moreover assume that pure ground states are pure states as well as ground states.
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Definition

Suppose we have a C∗-algebra A, a time evolution α, a group G , and a homomorphism
γ : G → Aut(A), which is a symmetry of the dynamics α in that

αt ◦ γg = γg ◦ αt (g ∈ G , t ∈ R). (27)

The G -symmetry is said to be spontaneously broken (at temperature T = 0) if

(∂eS0(A))G = ∅, (28)

• Here S G = {ω ∈ S | ω ◦ γg = ω ∀g ∈ G}, defined for any subset S ∈ S(A), is the set of G -
invariant states in S . (28) means that there are no G -invariant pure ground states. This means
also that if spontaneous symmetry breaking occurs, then invariant ground states are not pure.
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