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» Planck scale gives natural length scale for “new physics”
» Physical equations become inconsistent

@ ultraviolet divergences of QFT
@ quantum fluctuations give rise to microscopic black holes,

» Consider lattice system, for simplicity 2d
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Usual way to set up equations:
» Replace derivatives by difference quotients

0 =0¢(t, x) := (A1—t)2 (qb(t + At x) — 2¢(t, x) + ¢(t — At, x))

_ (A1—x)2 (qb(t, X + Ax) — 2¢(t, x) + ¢(t, x — Ax))

» Gives evolution equation, proceed time step by time step
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Drawback of this approach:
» Ad hoc: Why square lattice, why difference quotients?
» Is not background-free: What is lattice spacing?

» Not invariant under general coordinate transformations,
not compatible with the equivalence principle

Basic question: Can one formulate equations without referring
to the nearest neighbor relation and lattice spacing?
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» Consider wave functions 1, ...,y on lattice (f < o)
» Introduce scalar product; orthonormalize,

(ki) = 0k
gives f-dim Hilbert space (I, (.|.))-
important object: for any lattice point (f, x) introduce

local correlation operator F(t, x) : H — H
» define matrix elements by
(F(ta X) lk = w/(t X)l/Jk(t’ X)

basis invariant:

(U, F(t,x) d)ac = ¥(t, x)o(t, X) forall,¢ € H
» Hermitian matrix
» Has rank at most one, is positive semi-definite

F(t,x)=¢€e"e  with e:H—->C, ¢v—=y(x)



F = {F Hermitian, rank one, positive semi—definite}

M
general idea:

» disregard objects on the left
(nearest neighbors, lattice spacing)
» work instead with the objects on the right
(only local correlation operators)
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How to set up equations in this setting?
Explain idea in simple example:

» local correlation operators Fy,...,Fy € F

» product F; F; tells about correlation of wave functions
at different spacetime points

» Tr(F;F;) is real number
> minimize
N
S=) Tr(FiF)
ij=1
under suitable constraints.
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Causal fermion systems

Definition (Causal fermion system)

Let (7, (.|.)sc) be Hilbert space
Given parameter n € N (“spin dimension”)

&= {x € L(3{) with the properties:
» x is self-adjoint and has finite rank
» x has at most n positive
and at most n negative eigenvalues }

p a measure on F (“‘universal measure”)

N
AN - dp
oo
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Causal fermion systems

Definition (Causal fermion system)

Let (K, (.].)sc) be Hilbert space
Given parameter n € N (“spin dimension”)

&= {x € L(3{) with the properties:
» X is self-adjoint and has finite rank
» x has at most n positive

and at most n negative eigenvalues }

p a measure on F (“‘universal measure”)

M :=supp p spacetime
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Causal action principle

Let x,y € F. Then x and y are linear operators.

x-y € L(H):

@ rank < 2n

@ in general not self-adjoint: (x-y)* =y-x #x-y
thus non-trivial complex eigenvalues A}, ..., A3}
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Causal action principle

. . . Xy Xy
Nontrivial eigenvalues of xy: A{",..., \57 € C

2n
. 1 2
Lagrangian  L(x,y) = £~ > (A1 - AT >0
=
action S= ff L(x,y) dp(x) dp(y) € [0, ]
FxF

Minimize S under variations of p, with constraints

volume constraint: p(F) = const

trace constraint: / tr(x) dp(x) = const
F

2n
boundedness constraint: H > NP dp(x)dp(y) < C
FxF i=1

» F.F., “Causal variational principles on measure spaces,”’
J. Reine Angew. Math. 646 (2010) 141-194
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Example: Dirac spinors in Minkowski space

spacetime is Minkowski space, signature (+ — — —)

» free Dirac equation (iVk0 —m)y =0
» probability density oty = 1704,
gives rise to a scalar product:

(]6) = /t:mst(wgb)(t, %) d%

time independent due to current conservation
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Example: Dirac spinors in Minkowski space

» Choose H as a subspace of the solution space,

j{ — Span(l/}h- . 71/}1‘)

For simplicity in presentation assume: v; continuous.
» To x € R* associate a local correlation operator

(WIF(X)9) = —v(x)o(x) VY, peH
Is self-adjoint, rank < 4,
at most two positive and at most two negative eigenvalues
» Thus F(x) € F where
F = {F € L(H) with the properties:

> F is self-adjoint and has rank < 4
> F has at most 2 positive

and at most 2 negative eigenvalues }
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Example: Dirac spinors in Minkowski space

We obtain mapping x— F(x) e ¥ C L(K)
F C L(H)

t F
— =

» push-forward measure dp := F.(d*x), is measure on J.
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Example: the Minkowski vacuum

Specify vacuum:

» Choose H as the space of all negative-energy solutions,
hence “Dirac sea”

®
\ /-4ﬁcles

k

Dirac sea
anti—particles

Fixes length scale (“Compton length”)

» Introduce ultraviolet regularization
Fixes length scale ¢ (“Planck length”)

[This is a minimizer of the causal action (in a well-defined sense).]
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General setting

» Two minimizing causal fermion systems
e (3,7, p) describing vacuum
(.’H F, p) describing the interacting spacetime
@ corresponding spacetimes:

M :=supp p, M :=suppp S~

» Goal: Compare p and p at time .
X 5 M
ML
t SE
Jlt
- =

)

>
X
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Nonlinear surface layer integrals

» Basic object: Nonlinear surface layer integral
o identify Hilbert spaces by choosing V : H — F unitary

(.p) = / di(x) [ dply) L(xy) E— j
Qt mQ! e —

K / dp(x) / dp(y) L(x,y) 2 ‘
i\t Qt |
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Freedom in identifying the Hilbert spaces
~
vix 2 X
v— UV

Ly &
» identification of Hilbert spaces: whe W I ”Wg

@ Choose V : H — K unitary
@ Work exclusively in H
@ But: identification is not canonical, gives freedom

p—=Up, (Up)(Q) = p(U~'QU)

» This freedom is treated by integrating over U

@ Let § C U(HK) be compact subgroup
@ ug normalized Haar measure on §
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The partition function

» symmetrized nonlinear surface layer integral

(5, Up) = / dp X)/ p(y) £(x, uyu=")

/Qtdpx)/ L(ux &, l}

¥ (B, p) = 7[7 (5, Up) dpg()
v §

can be arranged to vanish for all t (Greene-Shiohama)
» partition function

2(8,5) = ]éem(ﬁ +(5.Up) ) dus (W)
where f free parameter (maybe discuss at the end)
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How to “test” the interacting spacetime?

» Interacting spacetime can be arbitrarily complicated
(interacting quantum fields, entanglement, collapse)

» describe by objects in the vacuum spacetime:
free fields, wave functions, ...

» use insertions:
1 t ~
> ]é("')eXp (8+'(5.p) ) dug(u)

e formal analogy to path integral formalism
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Bosonic Fields in the Vacuum

» linearized field equations: For all u € J*,

(u,Av)(x) =0  forallue J=
(u, Av)(X) := V, < /M (V1o + Vo) La(X,y) dp(y) = Vo 5)

» surface layer integrals:

ol Jp, X Jp, 2 R (symplectic form)

ag(u,n) :/ dP(X)/ dp(¥) (V1uVap — Vo, Vi) L(X,Y)
Qf M\Q!

()5 + 3p, xJp, >R (surface layer inner product)
(u,n)é = / dP(X)/ dp(¥) (V1uVie — VauVae)L(X,Y)
at mQt

» assume non-interacting
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Bosonic Fields in the Vacuum

» give rise to complex structure:
o(u,v) =(u, Tv)
Ji= (-T2 T, J=-d S=-1

Complexify and decompose:

hol

v = yhol | yah

On holomorphic jets introduce scalar product

(L) =ob(.J.) Tt x il ¢

Completion gives complex Hilbert space (b, (.].)}).
» Cauchy problem: Existence and uniqueness proven.

F.F. and N. Kamran, “Complex Structures on Jet Spaces and Bosonic
Fock Space Dynamics for Causal Variational Principles,”
arXiv:1808.03177 [math-ph], to appear in Pure Appl. Math. Q. (2021)

C. Dappiaggi and F.F., “Linearized Fields for Causal Variational
Principles: Existence Theory and Causal Structure,”
arXiv:1811.10587 [math-ph], Methods Appl. Anal. 27 1-56 (2020)
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Fermionic Fields in the Vacuum

» dynamical wave equation:

/ QU(x.y) w(y) =
M

» scalar product defined as surface layer integral:

wiolh = —2i ([ dotx [ dply) - /M dp(x) [ doly))

M\Q! Qt

x <p(x) | QY (x,¥) (¥)-x

is conserved in time,
gives extended Hilbert space H, O K.

» Cauchy problem: Existence and uniqueness proven.

F.F., N. Kamran and M. Oppio, “The Linear Dynamics of Wave
Functions in Causal Fermion Systems,” arXiv:2101.08673 [math-ph]
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Field Operators in the Vacuum

» Canonical commutation/anti-commutation relations
for z,z € hand 4,4’ € K}, C K,

@ independent of time
@ generate unital x-algebra o
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Construction of the Quantum State

» Quantum state w! at time t:
w! s — C linear and positive, i.e.

Wi(A*A) >0 forall Ac o

» More concretely, represented on Fock space:
@ With a density operator:

w!'(A) =trz (o' A)
@ As an expectation value (pure state):
wi(A) = (V]AW)
» General structure:

W) = o /9(- ) e (01) gug)

How do the insertions look like?
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Bosonic insertions

» physical picture:

“Measurement” in M with objects in M,
using the identification given by U
» associate z to a linearized field Z in M:

P,oUCTy =B perturbation map
Dl 3y = 3

» perturb nonlinear surface layer integral:

Ds+'(5,Up),  Dsy'(5,Up)
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Fermionic insertions

» Work with scalar product (.|.>fj in vacuum.
» Map wave functions from M to M:

b= gl () = ,LS—X) [ ity by dty)

(0= [ 1 dity)
» Gives subspace 7!, ;7 C 7,
m  HP — 7l - H orthogonal projection
u PP

» one-particle measurement: (¢ | xf ¢),
» multi-particle measurement:

l Z (_1)sign(a)+sign(a’)
|

" 0,0'€Sp

< Gy | 7 L)+ ooy |l o))

Pauli exclusion principle arises
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Definition of the state

DEFINITION

The state w! at time t is defined by
Wt(faT(Z%) - al(zp) W) - vi(g))

« ) a2 5 )

1 1 ; S
- Spir — 1 sign(o)+sign(o”’)
Z57 ol o, )

X /9 (Bo(ty |7 Bor1y = (Bor) | T o (1))

x Dy~ (p,Up) - - - Dz (5, Up)
~ ~ t(~
X Dz’yt(p,u;)) . D§q7t(p> Up) &P (PUP) gyye(U)

» fixed number of fermions.
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Realization of insertions as functional derivatives

» Can the state be written as follows?

1 N
w2l 0

k derivatives

wf(. )
Short answer: Yes, up to rather subtle technical issues.

2'(8.7) = ]é exp (87! (7.Up) ) (W)
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Positivity of the Quantum State

The state w! is positive, i.e.

w'(A*A) >0  forallte RandA e o

The proof makes use of
» Canonical commutation/anti-commutation relations
» Positivity of (.[.)}, and (.|.)]
» Positivity of insertions:

Dsv'(7,Up) - Ds7'(5,Up) = | D5~ (5. Up)|* > 0

(|m g, >0 and (¥](1—m{)¥), >0

F.F., N. Kamran, “Fermionic Fock spaces and quantum states for causal
fermion systems,” arXiv:2101.10793 [math-ph]
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Representations of the Quantum State

» GNS representation.
@ Introduce scalar product on ¢ by

(AAY) = W (A'A) + of x of — C

Forming the completion gives a Hilbert space.
@ o has a natural representation on this Hilbert space.
o Setting® =1,

(®|Ad) = wi(1" A1) = wi(A)

@ always exists, but in general not a Fock representation
» Representation on the Fock space of vacuum
@ choose F as the Fock space generated by acting with & on
vacuum state (Dirac sea vacuum)
@ construct density operator ¢! on F with

th(A) =trr (Ut A)
@ inductive construction for states involving finite number of
particles and anti-particles

@ in general diverges (inequivalent Fock vacua, .. .)
@ makes connection to perturbative description
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QOutlook: Dynamics of the quantum state

» Construction so far gives w! for all t

» Next steps:
@ Construct time evolution for the density operator

Efo c o ot
@ Is there a unitary time evolution on the Fock space?
t_ gtk )1
w' = U, w® (Uto)

» Will be objective of follow-up paper
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Outlook: Connection to collapse models

General structure:

» Nonlinear dynamics of g (from causal action principle)

» Conservation laws hold
(current conservation, conserved symplectic form)

» Causality holds in the sense
“pairs of points with spacelike separation do not interact
in particular: no superluminal signalling

» In approximation (“approximation of inhomogeneous
fluctuating fields”) one gets
linear and unitary time evolution

Uy - F = F
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Outlook: Connection to collapse models

As observed by Johannes Kleiner, this seems to indicate that
causal fermion systems are an effective collapse theory.

A. Bassi, D. Durr, G. Hinrichs, “Uniqueness of the equation for quantum
state vector collapse,” Phys. Rev. Lett. 111, 210401 (2013)

» No faster-than-light signalling
» Time evolution Markovian and homogeneous in time

— collapse theory

Can this be adapted to causal fermion systems?
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www.causal-fermion-system.com

Thank you for your attention!
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Outlook: Holographic Mixing

» V:H — CO(M, SM) wave evaluation operator
describing Minkowski vacuum,

(ig—mWw =0
» Decompose into holographic components:
V,(x) = WV(x) B, with B, € L(H)

» Perturb each holographic component by electromagnetic
potential A,,
Awa = Sm Aa v Ba

» Gives rise to microscopic fluctuations
@ scaling behavior can be computed explicitly

» Approximation of inhomogeneous fluctuating fields
gives bosonic loop diagrams
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Quantum Entanglement

» Holographic components can be decoherent

» Choosing different U makes different holographic
components “visible”

)= 6676 au

. S . . .
» U-dependence gives correlations between insertions
» This gives rise to entangled state.
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