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INTRODUCTION
OVERVIEW

 Anomalies are violations of symmetries in quantum field theory 

which hold in classical theories. 

 By the mid 1960’s, it was observed that the dominant decay 

mode of the neutral pion 𝜋0 → 2𝛾, was different than the 

expected (theoretical) one.

 In 1969, Jackiw and Bell found out that the source of this 

disagreement was the violation of the chiral symmetry.



INTRODUCTION
TYPES OF ANOMALIES

 The chiral anomaly is the quantum mechanical violation of the 

classically conserved chiral current 𝑗𝜇, i.e. 𝜕𝜇𝑗𝜇 ≠ 0.

 Conformal (or trace) anomalies occur when the classical 

conformal invariance of a certain theory is broken by quantum 

effects.



INTRODUCTION
METHODS TO CALCULATE  ANOMALIES

 Fujikawa Method: it recognizes the anomaly as arising from the non-

invariance of the path integral measure.

 Heat Kernel Expansion: the anomaly is written in terms of the the

HaMiDeW coefficients of the trace of the heat kernel.

 Hadamard Subtraction: the anomaly is calculated by using point 

splitting and then subtracting the Hadamard parametrix.

 Feynman Diagrams Calculation: direct calculation using expectation 

values.



TRACE ANOMALY
OVERVIEW

 Conformal or trace anomalies are manifested by the trace of 

the stress-energy tensor.

 In four dimensions, the conformal anomaly takes the form [1]

𝓐 = 𝑎ℰ4 + 𝑏𝑅 + 𝑐𝐶𝜇𝜈𝜌𝜎𝐶𝜇𝜈𝜌𝜎 + 𝑑𝑅∗𝑅 + 𝑒ϵ𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌σ𝑅 𝜌𝜎
𝛼𝛽

Where ℰ4 is the Euler invariant and 𝐶𝜇𝜈𝜌𝜎 is the Weyl tensor.



INTRODUCTION
HISTORY OF  TRACE  ANOMALY

 Trace anomaly was discovered in 1973 by British physicists 

Michael Duff and Derek Capper.

 They announced their discovery at The First Oxford Quantum 

Gravity Conference held in Chilton, UK in 1974.

 The physics community rejected these findings by large. 

“Something is wrong”, said Christensen while Adler, Liberman and 

Ng asserted: “We find no evidence of conformal trace anomalies”.



INTRODUCTION
EXAMPLE: TRACE ANOMALY DRIVEN INFLATION

 As proposed by Alen Guth in 1981 [2], inflation seems to be the most 

convincing (if not the only) explanation of some observed features of our 

universe.

 In1984, Starobinsky suggested that inflation is driven by the trace anomaly 

of a large number of matter fields [3].

 We take the semi-classical Einstein equation

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = 8𝜋𝐺 𝑇𝜇𝜈



INTRODUCTION
EXAMPLE: TRACE ANOMALY DRIVEN INFLATION

We work in de Sitter space where 𝑅𝜇𝜈ρ𝜎 = 𝐻2 𝑔𝜇𝜌𝑔𝜈𝜎 − 𝑔𝜇𝜎𝑔𝜈𝜌 , and 

take 𝑇𝜇𝜈 =
1

4
𝑔𝜇𝜈𝑔

𝜌𝜎 𝑇𝜌𝜎 =
1

4
𝑔𝜇𝜈𝒜.

The Einstein equations now read: 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = 2𝜋𝐺𝑔𝜇𝜈𝑔

𝜌𝜎 𝑇𝜌𝜎 .

 Using the value of 𝒜 we computed: Inflation exists.

 Trace-anomaly driven inflation has been supported by recent 

cosmological data [4][5][6][7].You can read more about it in [8].



TRACE  ANOMALY FOR CHIRAL FERMIONS
MOTIVATION

- Bonora et al. (2014) claim that an imaginary term appears in the trace 

of the renormalized stress tensor [9].

- Bastianelli and Martelli (2016) recovered the standard results using Pauli-

Villars regularization and Fujikawa’s method [10].

- Bonora et. al. (2017, 2018) hit back, pointing out some possible 

inconsistencies in Bastianelli and Martelli’s work, and re-derive the same 

result they originally had, using dimensional regularization [11][12].

- M. Fröb and J. Zahn (2019) do the same calculation using Hadamard 

subtraction, and show that the imaginary term vanishes [13].

- Bonora et. al. (2019) comment on that [14].

𝑯 = න𝑻𝟎𝟎 𝒙 𝒅𝟒𝒙



TRACE  ANOMALY FOR CHIRAL FERMIONS
DISCUSSION 1

𝓐 = 𝑎ℰ4 + 𝑏𝑅 + 𝑐𝐶𝜇𝜈𝜌𝜎𝐶𝜇𝜈𝜌𝜎 + 𝑑𝑅2 + 𝑒ϵ𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌σ𝑅 𝜌𝜎
𝛼𝛽

Claim: The Pontryagin density should vanish.

Applying a CPT transformation to the trace should leave it invariant:

𝐶𝑃𝑇 𝒜 𝐶𝑃𝑇 −1 =

𝑎∗ℰ4 + 𝑏∗𝑅 + 𝑐∗𝐶𝜇𝜈𝜌𝜎𝐶𝜇𝜈𝜌𝜎 + 𝑑∗𝑅2 − 𝑒∗ϵ𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌σ𝑅 𝜌𝜎
𝛼𝛽

= 𝒜.

This gives

𝑎∗ = 𝑎, 𝑏∗ = 𝑏, 𝑐∗ = 𝑐, 𝑑∗ = 𝑑, 𝑒∗ = −𝑒.

⇒ 𝑒 should vanish.



TRACE  ANOMALY FOR CHIRAL FERMIONS
DISCUSSION II

- Problem: dimensional regularization and chiral theories:

𝛾𝜇 , 𝛾∗ = 0 only in 𝑛 = 4 dimensions.

- Solution 1: Thompson and Yu’s proposal [15]: 

Non-vanishing expression for {𝛾𝜇 , 𝛾∗}.

- Solution 2: Breitenlohner-Maison scheme [16]:

- Split the n-dimensional Minkowski space into a product of a four- and 

an 𝑛 − 4 -dimensional one.

- Denote four-dimensional quantities by a bar, and 𝑛 − 4 -dimensional 

ones by a hat.

- 𝛾𝜇 , 𝛾∗ = ො𝛾𝜇 , 𝛾∗ = 2 Ƹ𝜂𝜇𝜈



TRACE  ANOMALY FOR CHIRAL FERMIONS
CALCULATION

- Aim: compute the trace anomaly for chiral fermions: 𝓐 = 𝑔𝜇𝜈 𝑇𝜇𝜈

- Method:

- We work in n dimensions and use dimensional regularization.

- Start from the curved space action of  Weyl fermions.

- Calculate 𝑇𝜇𝜈 by evaluating the metric variation of the action.

- Expand 𝑇𝜇𝜈 and 𝑆 to second order around flat spacetime.

- Calculate the interacting expectation value 𝑇𝜇𝜈 .

- Compute 𝑔𝜇𝜈 𝑇𝜇𝜈 .



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: STRESS TENSOR

 We start from the action of  Weyl fermions in curved spacetime

𝑆 = −න ത𝜓𝑃−𝛾
𝜇∇𝜇𝑃+𝜓 −𝑔𝑑4𝑥

where ∇𝜇≡ 𝜕𝜇 +
1

4
𝜔𝜇𝜌𝜎𝛾

𝜌𝜎 is the spinor covariant derivative and 𝑃∓ are the chiral 

projectors which satisfy 𝜓 = 𝑃+𝜓 and ത𝜓 = ത𝜓𝑃−.

 We compute the stress-energy tensor

𝑇𝜇𝜈 ≡
2

−𝑔

𝛿𝑆

𝛿𝑔𝜇𝜈
,

and get

𝑇𝜇𝜈 =
1

2
ത𝜓𝛾(𝜇ി∇𝜈)𝑃+𝜓 +

1

2
𝑔𝜇𝜈 ∇𝜇 ത𝜓𝛾

𝜇𝑃+𝜓 − ത𝜓𝑃−𝛾
𝜇∇𝜇𝜓 .



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: EXPANSION

 Expand 𝑇𝜇𝜈 and S to second order around flat spacetime, using: 

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝜅ℎ𝜇𝜈

𝑔𝜇𝜈 = 𝜂𝜇𝜈 − 𝜅ℎ𝜇𝜈 + 𝜅2ℎ 𝛼
𝜇
ℎ𝛼𝜈 + 𝑂(𝜅3)

𝑒𝜇
𝑎 = 𝑒𝜌

𝑎(𝜂𝜌𝜇 −
1

2
𝜅ℎ𝜌𝜇 +

3

8
𝜅2 ℎ 𝛼

𝜇
ℎ𝜌𝛼) + 𝑂(𝜅3)



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: EXPANSION

 The following was obtained, with 𝚿𝝁𝝂 = ത𝜓𝛾𝜇𝜕𝜈𝜓 − 𝜕𝜈 ത𝜓𝛾𝜇𝜓 and 𝒋𝝁 = ത𝜓𝛾𝜇𝜓.

𝑻𝝁𝝂 =

𝑺 =

1

2
Ψ(𝜇𝜈) −

1

2
𝜂𝜇𝜈Ψ 𝛼

𝛼 + 𝜿
1

2
ℎ𝜇𝜈Ψ 𝛼

𝛼 −
1

4
ℎ𝛼(𝜈Ψ𝛼

𝜇)
−
1

2
ℎ 𝛼
(𝜈

Ψ𝜇)𝛼 +
1

4
𝜂𝜇𝜈ℎ𝛼𝛽Ψ

𝛼𝛽 +
1

4
𝑗𝛼𝛽(𝜇𝜕𝛽ℎ 𝛼

𝜈)

+ 𝜿𝟐 ቆ

ቇ

−
1

2
ℎ𝜇𝛽ℎ 𝛽

𝜈 Ψ 𝛼
𝛼 +

3

16
ℎ 𝛽
𝛼 ℎ𝛽(𝜇Ψ𝛼

𝜈)
+
1

2
ℎ𝛼𝛽ℎ

𝛽(𝜇Ψ𝜈)𝛼 −
1

8
𝑗𝛼𝛽

𝛿ℎ𝛼(𝜇𝜕𝛿ℎ
𝜈)𝛽 +

1

16
𝜂𝜇𝜈ℎ𝛼𝛽𝑗𝛽𝛿𝜆𝜕

𝜆ℎ𝛼
𝛿

+
1

32
𝑗 𝛽𝛿
(𝜈

−4ℎ𝜇)𝛼𝜕𝛿ℎ𝛼
𝛽
+ 2𝜕𝛼ℎ

𝜇)𝛿ℎ𝛼𝛽 − 2𝜕𝛿ℎ 𝛼
𝜇)

ℎ𝛼𝛽 − 𝜕𝜇)ℎ𝛼
𝛿ℎ𝛼𝛽

+
1

4
−ℎ𝛼𝛽ℎ

𝜇𝜈 + ℎ 𝛽
(𝜇

ℎ 𝛼
𝜈)

−
3

4
𝜂𝜇𝜈ℎ𝛼

𝛿ℎ𝛽𝛿 𝛹𝛼𝛽

නቈ



−
1

2
Ψ 𝛼
𝛼 + 𝜿 −

1

4
ℎ 𝛽
𝛽
Ψ 𝛼
𝛼 +

1

4
ℎ𝛼𝛽Ψ

𝛼𝛽

+ 𝜿𝟐
1

8
ℎ𝛽𝛿ℎ

𝛽𝛿Ψ 𝛼
𝛼 −

1

16
ℎ 𝛽
𝛽
ℎ 𝛿
𝛿 Ψ 𝛼

𝛼 −
3

16
ℎ𝛼

𝛿ℎ𝛽𝛿Ψ
𝛼𝛽 +

1

8
ℎ𝛼𝛽ℎ 𝛿

𝛿 Ψ𝛼𝛽 +
1

16
ℎ𝛼𝛽𝑗𝛽𝛿𝜆𝜕

𝜆ℎ𝛼
𝛿 d𝑛𝑦



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: EXPANSION

 The expectation value of the stress-energy tensor was evaluated using the Gell-Mann and 

Low theorem:

𝑇𝜇𝜈 𝑥 int =
𝑇𝜇𝜈𝑒i𝑆int𝐷𝜓𝐷 ത𝜓

 𝑒i𝑆int𝐷𝜓𝐷 ത𝜓
=

𝑇𝜇𝜈𝑒
i𝑆int

0

𝑒i𝑆int 0

and the following was obtained:

𝑇𝜇𝜈(𝑥) = 𝑇𝜇𝜈
(0)

+

𝜅 𝑇𝜇𝜈
1

+ i 𝑇𝜇𝜈
0
𝑆 1 − i 𝑇𝜇𝜈

0
𝑆 1 +

𝜅2

1

2
𝑇𝜇𝜈

1
𝑆(1)

2
− 𝑇𝜇𝜈

0
𝑆 1 2

−
1

2
𝑇𝜇𝜈

0
𝑆 1 2

+ 𝑇𝜇𝜈
0
𝑆 1 𝑆 1 −

i 𝑇𝜇𝜈
0

𝑆(2) + i 𝑇𝜇𝜈
0
𝑆 2 + i 𝑇𝜇𝜈

1
𝑆 1 − i 𝑇𝜇𝜈

1
𝑆 1 + 𝑇𝜇𝜈

2



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT FIRST ORDER

The trace anomaly at first order reads

𝓐(1) = 𝑔𝜇𝜈 𝑇𝜇𝜈 𝑥 (1)

where

𝑇𝜇𝜈 𝑥 (1) = 𝑇𝜇𝜈
1

+ i 𝑇𝜇𝜈
0
𝑆 1 − i 𝑇𝜇𝜈

0
𝑆 1



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ONE-POINT FUNCTIONS

▪ One-Point Function:

Ψ𝜇𝜈 = ത𝜓(𝑥)𝛾𝜇𝜕𝑥
𝜈𝜓(𝑥) − 𝜕𝑥

𝜈 ത𝜓(𝑥)𝛾𝜇𝜓(x)

= ത𝜓𝑎(𝑥)𝑃−𝑎𝑏𝛾𝑏𝑐
𝜇
𝜕𝑥
𝜈𝑃+𝑐𝑑𝜓𝑑(𝑥) − 𝜕𝑥

𝜈 ത𝜓𝑎 𝑥 𝑃−𝑎𝑏𝛾𝑏𝑐
𝜇
𝑃+𝑐𝑑𝜓𝑑 𝑥

= lim
𝑥′→𝑥

𝜕𝑥′
𝜈 𝑃−𝑎𝑏𝛾𝑏𝑐

𝜇
𝑃+𝑐𝑑

ത𝜓𝑎(𝑥)𝜓𝑑(𝑥
′) − lim

𝑥→𝑥′
𝜕𝑥
𝜈 𝑃−𝑎𝑏𝛾𝑏𝑐

𝜇
𝑃+𝑐𝑑

ത𝜓𝑎(𝑥)𝜓𝑑(𝑥
′)

= −𝑖 lim
𝑥′→𝑥

𝜕𝑥′
𝜈 𝑃−𝑎𝑏𝛾𝑏𝑐

𝜇
𝑃+𝑐𝑑𝐺𝑑𝑎 𝑥′, 𝑥 + 𝑖 lim

𝑥→𝑥′
𝜕𝑥
𝜈 𝑃−𝑎𝑏𝛾𝑏𝑐

𝜇
𝑃+𝑐𝑑𝐺𝑑𝑎 𝑥′, 𝑥

= −𝑖 lim
𝑥′→𝑥

𝜕𝑥′
𝜈 𝑡𝑟 𝑃−𝛾

𝜇𝑃+𝐺 𝑥′, 𝑥 + 𝑖 lim
𝑥→𝑥′

𝜕𝑥
𝜈 𝑡𝑟 𝑃−𝛾

𝜇𝑃+𝐺 𝑥′, 𝑥



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ONE-POINT FUNCTIONS

In Fourier space

𝐺 𝑥′, 𝑥 = න ෨𝐺 𝑝 𝑒𝑖𝑝 𝑥′−𝑥
d𝑛𝑝

2𝜋 𝑛
where ෨𝐺 𝑝 = i

𝛾𝜈𝑝𝜈
𝑝2

.

This gives

Ψ𝜇𝜈 = i tr 𝑃−𝛾
𝜇𝑃+𝛾

𝜌 න
𝑝𝜌𝑝

𝜈

𝑝2
𝑑𝑛𝑝

2𝜋 𝑛
+ (second term).

This integral vanishes in dimensional regularization, so we are left with:

Ψ𝜇𝜈 = 0



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ONE-POINT FUNCTIONS

The expectation value of the stress-energy tensor can be now written as 

𝑇𝜇𝜈(𝑥) = 𝜅 i 𝑇𝜇𝜈
0
𝑆 1 + 𝜅2 −

1

2
𝑇𝜇𝜈

0
𝑆 1 𝑆 1 + i 𝑇𝜇𝜈

0
𝑆 2 + i 𝑇𝜇𝜈

1
𝑆 1



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: TWO-POINT FUNCTIONS

▪ Two-Point Functions:

Ψ𝜇𝜈(𝑥)Ψ𝛼𝛽(𝑦) = ത𝜓 𝑥 𝛾𝜇𝜕𝑥
𝜈𝜓 𝑥 − 𝜕𝑥

𝜈 ത𝜓 𝑥 𝛾𝜇𝜓(x) ( ത𝜓 𝑦 𝛾𝛼𝜕𝑦
𝛽
𝜓 𝑦 − 𝜕𝑦

𝛽 ത𝜓 𝑦 𝛾𝛼𝜓(y))

Ψ𝜇𝜈(𝑥)j𝛼𝛽𝜆(𝑦) = ത𝜓 𝑥 𝛾𝜇𝜕𝑥
𝜈𝜓 𝑥 − 𝜕𝑥

𝜈 ത𝜓 𝑥 𝛾𝜇𝜓(x) ( ത𝜓 𝑦 𝛾𝛼𝛽𝜆𝜓 𝑥

Following the same steps as before, we get

Ψ𝜇𝜈(𝑥)Ψ𝛼𝛽(𝑦) = 2tr 𝑃+𝛾
𝜌𝑃−𝛾

𝜇𝑃+𝛾
𝜎𝑃−𝛾

𝛼 න𝐼 𝑞 𝑒i𝑞 𝑥−𝑦 𝐴 𝜌𝜎
𝜈𝛽

(𝑞)
d𝑛𝑞

2𝜋 𝑛

Ψ𝜇𝜈 𝑥 j𝛼𝛽𝜆 𝑦 = 2i tr 𝑃−𝛾
𝜇𝑃+𝛾

𝜌𝑃−𝛾
𝛼𝛽𝜆𝑃+𝛾

𝜎 න𝐼 𝑞 𝑒i𝑞 𝑥−𝑦 𝐵 𝜌𝜎
𝜈 𝑞

d𝑛𝑞

2𝜋 𝑛



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: TWO-POINT FUNCTIONS

where

𝐼 𝑞 = 
1

𝑝2 𝑞 + 𝑝 2

d𝑛𝑝

2𝜋 𝑛
,

and

tr 𝑃+𝛾
𝜌𝑃−𝛾

𝜇𝑃+𝛾
𝜎𝑃−𝛾

𝛼 naive =
1

2
tr 𝛾𝜌𝛾𝜇𝛾𝜎𝛾𝛼 +

1

2
tr 𝛾∗𝛾

𝜌𝛾𝜇𝛾𝜎𝛾𝛼 ,

tr 𝑃+𝛾
𝜌𝑃−𝛾

𝜇𝑃+𝛾
𝜎𝑃−𝛾

𝛼 BM = tr 𝑃+𝛾
𝜌𝑃−𝛾

𝜇𝑃+𝛾
𝜎𝑃−𝛾

𝛼 naive + 2( ҧ𝜂𝛼𝜌 ҧ𝜂𝜇𝜎 − 𝜂𝛼𝜌𝜂𝜇𝜎 +

ҧ𝜂𝛼𝜎 ҧ𝜂𝜇𝜌 − 𝜂𝛼𝜎𝜂𝜇𝜌 + ҧ𝜂𝛼𝜇 ҧ𝜂𝜌𝜎 − 𝜂𝛼𝜇𝜂𝜌𝜎)



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: TWO-POINT FUNCTIONS

Solving 𝐼 𝑞 gives:

𝐼 𝑞 =
i

4𝜋
𝑛
2

Γ
4 − 𝑛
2

Γ
𝑛 − 2
2

2

Γ(𝑛 − 2)
(𝑞2−i휀)

𝑛−4
2

Expanding around 𝑛 = 4 to first order, we get:

𝐼 𝑞 =
i

4𝜋 2
−

2

𝑛 − 4
+ 2 − 𝛾 + ln 4𝜋 − ln 𝜇2 − ln

𝑞2 − i휀

𝜇2
+ 𝑂(𝑛 − 4)

𝐼 𝑞 = 
1

𝑝2 𝑞 + 𝑝 2

d𝑛𝑝

2𝜋 𝑛



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT FIRST ORDER

Reminder: 𝑇𝜇𝜈(𝑥) = 𝜅 i 𝑇𝜇𝜈
0
𝑆 1 + 𝜅2 −

1

2
𝑇𝜇𝜈

0
𝑆 1 𝑆 1 + i 𝑇𝜇𝜈

0
𝑆 2 + i 𝑇𝜇𝜈

1
𝑆 1

𝑇𝜇𝜈 𝑥 (1) = i 𝑇𝜇𝜈
0
𝑆 1

= i
1

2
Ψ(𝜇𝜈) −

1

2
𝜂𝜇𝜈Ψ 𝛼

𝛼 න −
1

4
ℎ 𝛽
𝛽
Ψ 𝛼
𝛼 +

1

4
ℎ𝛼𝛽Ψ

𝛼𝛽 d𝑛𝑦

=
i

8
නℎ𝛼𝛽 𝑦 Ψ 𝜇𝜈 − 𝜂𝜇𝜈Ψ 𝛼

𝛼 −𝜂𝛼𝛽Ψ 𝛿
𝛿 +Ψ𝛼𝛽 d𝑛𝑦

=
i

16
නℎ𝛼𝛽 𝑦 Ψ(𝜇𝜈)(𝑥)Ψ𝛼𝛽(𝑦) d𝑛𝑦



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT FIRST ORDER

Plugging everything in we obtain

𝑇𝜇𝜈 𝑥 reg
1

=
i

8
tr 𝑃+𝛾

𝜌𝑃−𝛾
𝜇𝑃+𝛾

𝜎𝑃−𝛾
𝛼 නℎ𝛼𝛽 𝑦 න 𝐼 𝑞 𝑒i𝑞 𝑥−𝑦 𝐴 𝜌𝜎

𝜈𝛽
(𝑞)

d𝑛𝑞

2𝜋 𝑛
d𝑛𝑦

We renormalize using the MS scheme by subtracting the divergent part then replacing 
𝑛 by 4 in the expression

𝑇𝜇𝜈 𝑥 ren
1

= 𝑇𝜇𝜈 𝑥 reg
1
− 𝑇𝜇𝜈 𝑥 div

1

𝐼 𝑞 =
i

4𝜋 2
−

2

𝑛 − 4
+ 2 − 𝛾 + ln 4𝜋 − ln 𝜇2 − ln

𝑞2 − i휀

𝜇2



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT FIRST ORDER

𝑇𝜇𝜈 𝑥 div
1
= −

1

960𝜋2 𝑛 − 4
ඵ(3𝑞4ℎ𝜇𝜈 − 6𝑞2𝑞𝛼𝑞(𝜇 ℎ 𝛼

𝜈)
+ 𝑞2𝑞𝜇𝑞𝜈ℎ

+ 2𝑞𝛼𝑞𝛽𝑞𝜇𝑞𝜈ℎ𝛼𝛽 − 𝜂𝜇𝜈𝑞4ℎ 𝛼
𝛼 + 𝜂𝜇𝜈𝑞2𝑞𝛼𝑞𝛽ℎ𝛼𝛽)𝑒

i𝑞 𝑥−𝑦 d𝑛𝑞

2𝜋 𝑛 d
𝑛𝑦.

Solving, then contracting with 𝑔𝜇𝜈 , we get

𝒜div
1
= 𝑔𝜇𝜈 𝑇𝜇𝜈 𝑥 div

1
= −

1

960π2
∇2R

With which we find the renormalized trace anomaly at first order to be the same up 
to sign:

𝒜ren
1

=
1

960π2
∇2R



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT SECOND ORDER

At second order, the trace anomaly reads:

𝓐(2) = 𝜂𝜇𝜈 𝑇𝜇𝜈 (2) + ℎ𝜇𝜈 𝑇𝜇𝜈 (1)

= 𝜂𝜇𝜈 −
1

2
𝑇𝜇𝜈

0
𝑆 1 2

+ i 𝑇𝜇𝜈
0
𝑆 2 + i 𝑇𝜇𝜈

1
𝑆 1 + ℎ𝜇𝜈i 𝑇

𝜇𝜈 0
𝑆 1 .
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CALCULATION: ANOMALY AT SECOND ORDER



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT SECOND ORDER

ℎ𝛼
𝛿 𝑦 ℎ𝛽𝛿 𝑦 Ψ𝜇𝜈 𝑥 Ψ𝛼𝛽 𝑦 = lim

𝑥′→𝑥
𝑦′→𝑦

𝜕𝑥′
𝜈 𝜕

𝑦′
𝛽
𝛾𝜇𝛾𝛼ℎ𝛼

𝛿 𝑦 ℎ𝛽𝛿 𝑦 𝐺 𝑦′, 𝑥 𝐺(𝑥′, 𝑦)

x y

𝛼
𝛿

𝛼𝛽

න d𝑛𝑦



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: THREE-POINT FUNCTIONS

 Three-Point Functions:

Ψ𝜇𝜈(𝑥)Ψ𝛼𝛽(𝑦)Ψ𝜌𝜎(𝑧) = i 𝒯𝜇𝜆𝜎𝛿𝛼𝜏 + 𝒯𝜇𝜏𝛼𝛿𝜎𝜆 ම
1

𝑞2 𝑞 + 𝑝 2 𝑞 − 𝑘 2

× C 𝛿𝜆𝜏
𝛽𝜈𝜌

𝑝, 𝑘 𝑒i𝑝 𝑥−𝑦 𝑒i𝑘 𝑥−𝑧
d𝑛𝑝

2𝜋 𝑛

d𝑛𝑘

2𝜋 𝑛

d𝑛𝑞

2𝜋 𝑛

where

C 𝛿𝜆𝜏
𝛽𝜈𝜌

𝑝, 𝑘 = 𝑝𝛽 + 2𝑞𝛽 𝑞𝛿 𝑝𝜆 + 𝑞𝜆 𝑘𝜈 − 𝑝𝜈 − 2𝑞𝜈 𝑘𝜌 − 2𝑞𝜌 𝑘𝜏 − 𝑞𝜏

and

𝒯𝜇𝜆𝜎𝛿𝛼𝜏 = tr 𝑃−𝛾
𝜇𝑃+𝛾

𝜆𝑃−𝛾
𝜎𝑃+𝛾

𝛿𝑃−𝛾
𝛼𝑃+𝛾

𝜏 =
1

2
tr ҧ𝛾𝜇 ҧ𝛾𝜆 ҧ𝛾𝜎 ҧ𝛾𝛿 ҧ𝛾𝛼 ҧ𝛾𝜏 −

1

2
tr ҧ𝛾∗ ҧ𝛾𝜇 ҧ𝛾𝜆 ҧ𝛾𝜎 ҧ𝛾𝛿 ҧ𝛾𝛼 ҧ𝛾𝜏



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: THREE-POINT LOOP INTEGRALS

Expanding the momenta in C 𝛿𝜆𝜏
𝛽𝜈𝜌

𝑝, 𝑘 will give us integrals of the form

න𝑝𝛼1 …𝑝𝛼𝑟 𝑒i𝑝 𝑥−𝑦
d𝑛𝑝

2𝜋 𝑛
න𝑘𝛽1 …𝑘𝛽𝑠 𝑒i𝑘 𝑥−𝑧

d𝑛𝑘

2𝜋 𝑛
න

𝑞𝜇1 …𝑞𝜇𝑡

𝑞2 𝑞 + 𝑝 2 𝑞 − 𝑘 2

d𝑛𝑞

2𝜋 𝑛
.

So we will need to evaluate three-point loop integrals of the form

𝐼𝜇1…𝜇𝑡 (𝑝, 𝑘) = න
𝑞𝜇1 …𝑞𝜇𝑡

𝑞2 𝑞 + 𝑝 2 𝑞 − 𝑘 2

d𝑛𝑞

2𝜋 𝑛



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: THREE-POINT LOOP INTEGRALS

 One way to evaluate such integrals is using a recursive method first introduced 
by Davidychev [17][18] and further developed by Godazgar and Nicolai [19].

 We developed a simpler method using Feynman parameters

1

𝐴1…𝐴𝑘
= 𝑘 − 1 !න

0

0

…න
0

1 𝛿 𝑥1 +⋯+ 𝑥𝑘−1
𝑥1𝐴1 +⋯+ 𝑥𝑘𝐴𝐾

𝑘
d𝑥1…d𝑥𝑘

with which we express the integrals as

𝐼𝜇1…𝜇𝑘 (𝑝, 𝑘) = 2න
0

1

න
0

1−𝑦

න
𝑞 + 𝑦𝑝 + 𝑥𝑘 𝜇1 … 𝑞 + 𝑦𝑝 + 𝑥𝑘 𝜇𝑘

𝑞2 + 𝑦 1 − 𝑦 𝑝2 + 𝑥 1 − 𝑥 𝑘2 − 2𝑥𝑦(𝑝𝑘) 3

d𝑛𝑞

2𝜋 𝑛 d𝑥d𝑦



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: THREE-POINT LOOP INTEGRALS



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: THREE-POINT LOOP INTEGRALS

With

𝐹𝑎𝑏 𝑝, 𝑘 = න
0

1

න
0

𝑦−1 𝑥𝑎𝑦𝑏

𝑦 1 − 𝑦 𝑝2 + 𝑥 1 − 𝑥 𝑘2 − 2𝑥𝑦(𝑝𝑘)
d𝑥d𝑦

𝐺𝑎𝑏 𝑝, 𝑘 = න
0

1

න
0

𝑦−1

𝑥𝑎𝑦𝑏ln
𝑦 1 − 𝑦 𝑝2 + 𝑥 1 − 𝑥 𝑘2 − 2𝑥𝑦(𝑝𝑘)

𝜇2
d𝑥d𝑦

and

𝒟 = −
2

𝑛 − 4
+ ln 4𝜋 − 𝛾 − ln(𝜇2)



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT SECOND ORDER

Recall:

𝓐(2) = 𝜂𝜇𝜈 −
1

2
𝑇𝜇𝜈

0
𝑆 1 2

+ i 𝑇𝜇𝜈
0
𝑆 2 + i 𝑇𝜇𝜈

1
𝑆 1 + ℎ𝜇𝜈i 𝑇

𝜇𝜈 0
𝑆 1 .

Plugging everything in, we find after a very long computation:

𝒜𝑟𝑒𝑛
2

𝑥 =
1

720 4𝜋 2
−11ℰ4 + 18𝐶𝜇𝜈𝜌𝜎𝐶𝜇𝜈𝜌𝜎 + 12𝛻2𝑅 ,

which is exactly half the trace anomaly for a Dirac spinor.
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