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Reissner-Nordstroem Metric Basics

Asymptotically �at, Lorentzian 4-M�d. (M, g) w/ topology
S2 × R2

g stationary, radial sym. w/ signature (+,−,−,−)

g = ∆
r2
dt ⊗ dt − r2

∆dr ⊗ dr − r2dθ ⊗ dθ − r2 sin θdφ⊗ dφ

∆(r) = r2 − 2Mr + Q2, two roots at r± = M ±
√
M2 − Q2

when Q < M



Penrose Diagram



Eddington-Finkelstein-Coord

Get rid of coord. singularities at r± by using tortoise coord. r∗

dr∗
dr = r2

∆ ⇒ r + A ln(r − r−)− B ln(r − r+)

Compute E-F-Coord. from tangent vectors associated to

principal null geodesics - (png)

t = ±r∗ + C , with ”− ” ingoing and ” + ” outgoing rays

De�ne new time coord. τ := t + r∗ − r . Then τ is a Cauchy

time function



Tetrad-Formalism Basics

pointwise orthonormal vector �elds - (VF)

One VF is time-like, the other three are space-like

At each point of the space-time (ST) set a basis of four

contra-variant vectors eµ(a) with a, µ ∈ {0, 1, 2, 3}

η(a)(b) := eµ(a)e(b)µ constant, sym. matrix for lowering tetrad

indices

Project arbitrary tensor, i.e. Tµ
να, onto the tetrad frame:

T
(a)
(b)(c) = e

(a)
µ eν(b)e

α
(c)T

µ
να



Ricci-Rotation Coe�cients

Intrinsic derivative is de�ned:

T(a)|(b) := T(a),(b) − η(m)(n)γ(n)(a)(b)T(m)

γ(a)(b)(c) describes the Ricci rotation coe�cients, also often

called scalar �elds

When implying orthogonal tetrad in local Minkowski space

γ(a)(b)(c) = −γ(b)(a)(c). Therefore, 24 independent, real scalar

�elds

Evaluation of Ricci rotation coe�. does not involve the

evaluation of covariant derivatives.



Newman-Penrose-Formalism Basics

Four null vectors {lµ, nµ,mµ, m̄µ} with normalization

conditions lµnµ = 1 and mµm̄µ = −1

eµ(0) = lµ, eµ(1) = nµ, eµ(2) = mµ and eµ(3) = m̄µ

De�ne 12 complex spin coe�cients in the NP-Formalism due

to the Ricci rotation coe�cients.

κ = γ(2)(0)(0) = 1

2
(λ(2)(0)(0) + λ(0)(2)(0) − λ(0)(0)(2))

λ(a)(b)(c) := e(b)µ,ν(eµ(a)e
ν
(c) − eν(a)e

µ
(c))



Lorentz Transformations

Most time ST has not enough local structure to de�ne four

vectors for a complete tetrad.

In NP-Formalism: lµ and nµ are determined by pngs. mµ and

m̄µ are unit space-like VF, orthogonal to itself, lµ and nµ.

Therefore, it exists a two dim. gauge freedom which is

described by the two param. subgroup of the Lorentz Group -

sometimes denoted by rotations of class III, leaving the

direction of lµ and nµ unchanged.

Generated by boosts lµ −→ rlµ, nµ −→ r−1nµ and rotations

mµ −→ e iαmµ



The Spin Frame Basics

ST of GR is locally Minkowskian. Therefore, de�ne locally

tetrad basis for spinors ζA(a) and ζA
′

(a′)

A and A′ are spinor indices where A corresponds to the

fundamental and A′ to the anti-fundamental representation

Sometimes convenient use special symbols ζA(0) = σA and

ζA(1) = ιA

εAB skew-symmetric metric: εABζ
A
(a)ζ

B
(b) = ζ(a)Bζ

B
(b) = ε(a)(b)



Generalized Pauli Spin-Matrices

Spinors and their complex conjugate determine

{lµ, nµ,mµ, m̄µ} by the correspondence

lµ ↔ σAσ̄B
′
, nµ ↔ ιAῑB

′
mµ ↔ σAῑB

′
and m̄µ ↔ ιAσ̄B

′

Due to this representation one can de�ne the hermitian

matrices (generalized Pauli spin-matrices) σµAB′ :

σµAB′ =
1√
2

[
lµ mµ

m̄µ nµ

]
, σAB′µ =

1√
2

[
lµ −mµ

−m̄µ nµ

]



Connection to NP-Formalism

This null tetrad ful�ls the normalization conditions:

lµnµ = σµ
AB′σ

AB′µ︸ ︷︷ ︸
δµµ=1

σAσ̄B′
ιAῑB′ = 1

mµm̄µ = σµ
AB′σ

AB′µ︸ ︷︷ ︸
δµµ=1

σAῑB
′
ιAσ̄B′ = −1

Dyad basis determine four null vectors which can be used as a

basis for the NP-Formalism



Dyad Spin Coe�cients

Covariant derivative of a spinor �eld satis�es the Leibnitz rule,

is a real operator and based on correspondences:

∇µ ↔ ∇AB′ , ∇µXν ↔ ∇AB′XCD′

De�ne analogous an intrinsic derivative for the dyad

components ξ(a) of a spinor along (a)(b′):

ξ(c)|(a)(b′) = (∇AB′ξC ζ
C
(c))ζ

A
(a)ζ

B′

(b)

⇔ ξ(c)|AB′ = (∇AB′ξC ζ
C
(c))

⇒ ξ(a)|BC ′ = ξ(a),BC ′ + Γ(d)(a)BC ′ξ(d)



Dyad Spin Coe�cients II

12 independent complex coe�cients

One can show with one Lemma from Friedman ( states an

alternative rep. of Γ(a)(b)CD′) following theorem:

Theorem:

It is possible to express the dyad spin coe�cients Γ(a)(b)CD′ in

terms of the covariant derivatives of the basis null vectors

{lµ, nµ,mµ, m̄µ} and therefore show that they are in

agreement with the coe�cients γ(a)(b)(c).



Spin Coe�cients in Reissner-Nordstroem

Use tangent vectors associated to the png to de�ne null tetrad

Let (ψ,U) be a local param. of M with p ∈ U ⊂ M,

ψ(p) = (t, r , θ, φ).
{∂t , ∂r , ∂θ, ∂φ} is the induced canonical basis of TpM and

{dt, dr , dθ, dφ} of TpM
∗.

lµ =
1

|∆|
(r2∂t + ∆∂r ), nµ =

sign(∆)

2r2
(r2∂t −∆∂r )

mµ =
1√
2r

(∂θ + i csc(θ)∂φ), m̄µ =
1√
2r

(∂θ − i csc(θ)∂φ)



Spin Coe�cients in Reissner-Nordstroem II

Class III Lorentz transformation: r =
√
|∆|
2r2

and α = 0

Re-write in Eddington-Finkelstein-Coordinates τ = t + r∗ − r

Additionally Class III Lorentz transformation: r
′

=

√
|∆|
r+

and

α
′

= 0

l
′′

=
1√
2rr+

[(
2r2 −∆

)
∂τ + ∆∂r

]
l
′′
D =

1√
2rr+

[
∆dτ +

(
∆− 2r2

)
dr

]



Spin Coe�cients in Reissner-Nordstroem III

Compute Spin coe�cients in NP-Formalism for

Reissner-Nordstroem ST. Six coe�cients are distinct from

zero.

π′′ = τ ′′ = κ′′ = σ′′ = ν ′′ = λ′′ = 0

α′′ = −β′′ =
1

23/2
cot(θ)

r
, γ′′ = − r+

23/2
1

r2

ε′′ =
1

23/2r+

(
1− Q2

r2

)
, ρ′′ = − 1√

2r+

∆

r2

µ′′ = − r+√
2

1

r2

Consistent with results from C. Röken for a Kerr ST in the

limit a −→ 0.



General Dirac Equation

Got spin coe�cients in the NP-Formalism. But where is the

connection with the Dirac-Eq.?

(M, g) is an arbitrary 4-dim. curved ST, S = P ×τ ∆4 the

associated spinor bundle, τ : Spin(4) −→ GL(∆4) and (P,F )
the spin structure. Ψ ∈ Γ(S) ' C4 is a Dirac four spinor and

m its invariant fermion rest mass.[
γµ∇S

µ + im

]
Ψ(xµ) = 0 with {γµ, γν} = 2gµν

1
C
4×4

γµ general relativist Dirac matrices and ∇S being the metric

connection in the spinor bundle



General Dirac Equation in Spinor Rep.

Two spinor rep. of Ψ =

(
PA

Q̄B′

)
γµ = γµ =

√
2

[
0C
2×2

σµAB′

σµ
AB′ 0C

2×2

]
with σµ

AB′ the generalized Pauli

matrices

∇AB′PA +
im√
2
Q̄C ′

εC ′B′ = 0

∇AB′QA +
im√
2
P̄C ′

εC ′B′ = 0



General Dirac Equation in Spinor Rep. II

Example calculation for B
′

= 0: ∇A0′P
A +

im√
2
Q̄1

′
ε1′0′ = 0



General Dirac Equation in Spinor Rep. II



General Dirac Equation in Spinor Rep. III

Substituting: F0 = P0, F1 = P1, G0 = Q̄1
′
and G1 = −Q̄0

′

(
D + ε− ρ

)
F0 +

(
δ̄ + π − α

)
F1 =

im√
2
G0(

δ + β − τ
)
F0 +

(
∆ + µ− γ

)
F1 =

im√
2
G1(

D + ε̄− ρ̄
)
G1 −

(
δ + π̄ − ᾱ

)
G0 =

im√
2
F1(

∆ + µ̄− γ̄
)
G0 −

(
δ̄ + β̄ − τ̄

)
G1 =

im√
2
F0



Separation of the Dirac Equation

Ansatz: Fi = e i(ωτ+kφ)Hi (r , θ) and Gi = e i(ωτ+kφ)Ji (r , θ)

De�ne:

χ(r ,Q) :=
1

2r2
(Q2 + r(3r − 4M))

Ln := ∂θ + n cot(θ) + k csc(θ)

Looking at the �rst ODE:
1

r+

[
iω(2r2 −∆) + ∆∂r + χ

]
H0(r , θ) + L1/2H1 = imrJ0(r , θ)



Separation of the Dirac Equation II

Separation Ansatz:

H0 = R+(r)S+(θ), H1 = R−(r)S−(θ)

J0 = R−(r)S+(θ), J1 = R+(r)S−(θ)

These ansatz results in following equation:(
1

r+

[
iω(2r2 −∆) + ∆∂r + χ(r , θ)

]
R+(r)− imrR−(r)

)
S+(θ) +

L 1

2

S−(θ)R−(r) = 0

Therefore, following must be satis�ed:

−λS+(θ) = L 1

2

S−(θ)

λR−(r) =
1

r+

[
iω(2r2 −∆) + ∆∂r + χ(r , θ)

]
R+(r)− imrR−(r)

with λ being the constant of separation.



Separation of the Dirac Equation III

Analogue for the other three equations. Resulting in four

ODEs:

Two radial equations:[
∆∂r + χ(r ,Q) + iω(2r2 −∆)

]
R+(r) = r+(λ+ imr)R−(r)

r+
(
∂r +

1

r
− iω

)
R−(r) = (λ− imr)R+(r)

Two angular equations:

L 1

2

S−(θ) = −λS+(θ)

L†1
2

S+(θ) = λS−(θ)
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