The Dirac equation and its separation in the Reissner-Nordstroem geometry

Christoph Krpoun, HU-Berlin

14.01.2021

Overview

- Reissner-Nordstroem Metric
- Tetrad-Formalism
- Newman-Penrose-Formalism
- The Spin Frame
- Spin Coefficients and Dirac Equation
- Separation of the Dirac Equation

Reissner-Nordstroem Metric Basics

- Asymptotically flat, Lorentzian 4-Mfld. (M, g) w/ topology $S^{2} \times \mathbb{R}^{2}$
- g stationary, radial sym. w/ signature $(+,-,-,-)$
- $g=\frac{\Delta}{r^{2}} \mathrm{~d} t \otimes \mathrm{~d} t-\frac{r^{2}}{\Delta} \mathrm{~d} r \otimes \mathrm{~d} r-r^{2} \mathrm{~d} \theta \otimes \mathrm{~d} \theta-r^{2} \sin \theta \mathrm{~d} \phi \otimes \mathrm{~d} \phi$
- $\Delta(r)=r^{2}-2 M r+Q^{2}$, two roots at $r_{ \pm}=M \pm \sqrt{M^{2}-Q^{2}}$ when $Q<M$

Penrose Diagram

- Get rid of coord. singularities at $r_{ \pm}$by using tortoise coord. r_{*}
- $\frac{\mathrm{d} r_{*}}{\mathrm{~d} r}=\frac{r^{2}}{\Delta} \Rightarrow r+A \ln \left(r-r_{-}\right)-B \ln \left(r-r_{+}\right)=\sigma_{*}$
- Compute E-F-Coord. from tangent vectors associated to principal null geodesics - (png)
- $t= \pm r_{*}+C$, with " -" ingoing and " + " outgoing rays
- Define new time coord. $\tau:=t+r_{*}-r$. Then τ is a Cauchy time function

Tetrad-Formalism Basics

- pointwise orthonormal vector fields - (VF)
- One VF is time-like, the other three are space-like
- At each point of the space-time (ST) set a basis of four contra-variant vectors $e_{(a)}^{\mu}$ with $a, \mu \in\{0,1,2,3\}$
- $\eta_{(a)(b)}:=e_{(a)}^{\mu} e_{(b)_{\mu}}$ constant, sym. matrix for lowering tetrad indices
- Project arbitrary tensor, i.e. $T_{\nu \alpha}^{\mu}$, onto the tetrad frame:

$$
T_{(b)(c)}^{(a)}=e_{\mu}^{(a)} e_{(b)}^{\nu} e_{(c)}^{\alpha} T_{\nu \alpha}^{\mu}
$$

Ricci-Rotation Coefficients

$$
\gamma_{(a)(b)(c)}:=\left(\nabla_{\mu} e_{(b) \beta}\right) e_{(c)}^{N} e_{(a)}^{\beta}
$$

- Intrinsic derivative is defined:

$$
T_{(a) \mid(b)}:=T_{(a),(b)}-\eta^{(m)(n)} \gamma_{(n)(a)(b)} T_{(m)}
$$

- $\gamma_{(a)(b)(c)}$ describes the Ricci rotation coefficients, also often called scalar fields
- When implying orthogonal tetrad in local Minkowski space $\gamma_{(a)(b)(c)}=-\gamma_{(b)(a)(c)}$. Therefore, 24 independent, real scalar fields
- Evaluation of Ricci rotation coeff. does not involve the evaluation of covariant derivatives.

Newman-Penrose-Formalism Basics

- Four null vectors $\left\{I^{\mu}, n^{\mu}, m^{\mu}, \bar{m}^{\mu}\right\}$ with normalization conditions $I^{\mu} n_{\mu}=1$ and $m^{\mu} \bar{m}_{\mu}=-1$
- $e_{(0)}^{\mu}=I^{\mu}, e_{(1)}^{\mu}=n^{\mu}, e_{(2)}^{\mu}=m^{\mu}$ and $e_{(3)}^{\mu}=\bar{m}^{\mu}$
- Define 12 complex spin coefficients in the NP-Formalism due to the Ricci rotation coefficients.
$\kappa=\gamma_{(2)(0)(0)}=\frac{1}{2}\left(\lambda_{(2)(0)(0)}+\lambda_{(0)(2)(0)}-\lambda_{(0)(0)(2)}\right)$
- $\lambda_{(a)(b)(c)}:=e_{(b) \mu, \nu}\left(e_{(a)}^{\mu} e_{(c)}^{\nu}-e_{(a)}^{\nu} e_{(c)}^{\mu}\right)$
or by def: $\alpha=e^{N}\left(\nabla_{N} l_{\alpha}\right) m^{\alpha}$
- Most time ST has not enough local structure to define four vectors for a complete tetrad.
- In NP-Formalism: I^{μ} and n^{μ} are determined by pngs. m^{μ} and \bar{m}^{μ} are unit space-like VF, orthogonal to itself, I^{μ} and n^{μ}.
- Therefore, it exists a two dim. gauge freedom which is described by the two param. subgroup of the Lorentz Group sometimes denoted by rotations of class III, leaving the direction of I^{μ} and n^{μ} unchanged.
- Generated by boosts $I^{\mu} \longrightarrow r^{\mu}, n^{\mu} \longrightarrow r^{-1} n^{\mu}$ and rotations $m^{\mu} \longrightarrow e^{i \alpha} m^{\mu}$

The Spin Frame Basics

- ST of GR is locally Minkowskian. Therefore, define locally tetrad basis for spinors $\zeta_{(a)}^{A}$ and $\zeta_{\left(a^{\prime}\right)}^{A^{\prime}}$
- A and A^{\prime} are spinor indices where A corresponds to the fundamental and A^{\prime} to the anti-fundamental representation
- Sometimes convenient use special symbols $\zeta_{(0)}^{A}=\sigma^{A}$ and $\zeta_{(1)}^{A}=\iota^{A}$
- $\epsilon_{A B}$ skew-symmetric metric: $\epsilon_{A B} \zeta_{(a)}^{A} \zeta_{(b)}^{B}=\zeta_{(a) B} \zeta_{(b)}^{B}=\epsilon_{(a)(b)}$

Generalized Pauli Spin-Matrices

- Spinors and their complex conjugate determine $\left\{I^{\mu}, n^{\mu}, m^{\mu}, \bar{m}^{\mu}\right\}$ by the correspondence
- $I^{\mu} \leftrightarrow \sigma^{A} \bar{\sigma}^{B^{\prime}}, n^{\mu} \leftrightarrow \iota^{A} \bar{\iota}^{B^{\prime}} m^{\mu} \leftrightarrow \sigma^{A} \bar{\iota}^{B^{\prime}}$ and $\bar{m}^{\mu} \leftrightarrow \iota^{A} \bar{\sigma}^{B^{\prime}}$
- Due to this representation one can define the hermitian matrices (generalized Pauli spin-matrices) $\sigma_{A B^{\prime}}^{\mu}$:
- $\sigma_{A B^{\prime}}^{\mu}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}I^{\mu} & m^{\mu} \\ \bar{m}^{\mu} & n^{\mu}\end{array}\right], \quad \sigma_{A B^{\prime} \mu}=\frac{1}{\sqrt{2}}\left[\begin{array}{cc}I_{\mu} & -m_{\mu} \\ -\bar{m}_{\mu} & n_{\mu}\end{array}\right]$

Connection to NP-Formalism

- This null tetrad fulfils the normalization conditions:

$$
\begin{aligned}
I^{\mu} n_{\mu} & =\underbrace{\sigma_{A B^{\prime}}^{\mu} \sigma^{A B^{\prime} \mu}}_{\delta_{\mu}^{\mu}=1} \sigma^{A} \bar{\sigma}^{B^{\prime}}{ }_{\iota A} \bar{l}_{B^{\prime}}=1 \\
m^{\mu} \bar{m}_{\mu} & =\underbrace{\sigma_{A B^{\prime}}^{\mu} \sigma^{A B^{\prime} \mu}}_{\delta_{\mu}^{\mu}=1} \sigma^{A} \bar{\iota}^{B^{\prime}}{ }_{\iota}{ }_{A} \bar{\sigma}_{B^{\prime}}=-1
\end{aligned}
$$

- Dyad basis determine four null vectors which can be used as a basis for the NP-Formalism

Dyad Spin Coefficients

- Covariant derivative of a spinor field satisfies the Leibnitz rule, is a real operator and based on correspondences:

$$
\nabla_{\mu} \leftrightarrow \nabla_{A B^{\prime}}, \quad \nabla_{\mu} X_{\nu} \leftrightarrow \nabla_{A B^{\prime}} X_{C D^{\prime}}
$$

- Define analogous an intrinsic derivative for the dyad components $\xi_{(a)}$ of a spinor along $(a)\left(b^{\prime}\right)$:

$$
\begin{aligned}
\xi_{(c) \mid(a)\left(b^{\prime}\right)} & =\left(\nabla_{A B^{\prime}} \xi_{C} \zeta_{(c)}^{C}\right) \zeta_{(a)}^{A} \zeta_{(b)}^{B^{\prime}} \\
\Leftrightarrow \xi_{(c) \mid A B^{\prime}} & =\left(\nabla_{A B^{\prime}} \xi_{C} \zeta_{(c)}^{C}\right) \\
\Rightarrow \xi_{(a) \mid B C^{\prime}} & =\xi_{(a), B C^{\prime}}+\Gamma_{(d)(a) B C^{\prime}} \xi^{(d)}
\end{aligned}
$$

Dyad Spin Coefficients II

- 12 independent complex coefficients
- One can show with one Lemma from Friedman (states an alternative rep. of $\Gamma_{\left.(a)(b) C D^{\prime}\right)}$ following theorem:
Theorem:
It is possible to express the dyad spin coefficients $\Gamma_{(a)(b) C D^{\prime}}$ in terms of the covariant derivatives of the basis null vectors $\left\{I^{\mu}, n^{\mu}, m^{\mu}, \bar{m}^{\mu}\right\}$ and therefore show that they are in agreement with the coefficients $\gamma_{(a)(b)(c) \text {. }}$

$$
\Gamma_{0000)}=\psi=X_{(2)(6)(6)}=\frac{1}{2}\left(\lambda_{(2)(0)(0)}+\lambda_{(0)(2)(0)}-\lambda_{(0)(0)(2)}\right)
$$

- Use tangent vectors associated to the png to define null tetrad
- Let (ψ, U) be a local param. of M with $p \in U \subset M$, $\psi(p)=(t, r, \theta, \phi)$.
$\left\{\partial_{t}, \partial_{r}, \partial_{\theta}, \partial_{\phi}\right\}$ is the induced canonical basis of $T_{p} M$ and $\{\mathrm{d} t, \mathrm{~d} r, \mathrm{~d} \theta, \mathrm{~d} \phi\}$ of $T_{p} M^{*}$.
-

$$
\begin{aligned}
I^{\mu} & =\frac{1}{|\Delta|}\left(r^{2} \partial_{t}+\Delta \partial_{r}\right), \quad n^{\mu}=\frac{\operatorname{sign}(\Delta)}{2 r^{2}}\left(r^{2} \partial_{t}-\Delta \partial_{r}\right) \\
m^{\mu} & =\frac{1}{\sqrt{2} r}\left(\partial_{\theta}+i \csc (\theta) \partial_{\phi}\right), \quad \bar{m}^{\mu}=\frac{1}{\sqrt{2} r}\left(\partial_{\theta}-i \csc (\theta) \partial_{\phi}\right)
\end{aligned}
$$

- Class III Lorentz transformation: $r=\sqrt{\frac{|\Delta|}{2 r^{2}}}$ and $\alpha=0$
- Re-write in Eddington-Finkelstein-Coordinates $\tau=t+r_{*}-r$
- Additionally Class III Lorentz transformation: $r^{\prime}=\frac{\sqrt{|\Delta|}}{r_{+}}$and $\alpha^{\prime}=0$

$$
\begin{aligned}
& \prime^{\prime \prime}=\frac{1}{\sqrt{2} r r_{+}}\left[\left(2 r^{2}-\Delta\right) \partial_{\tau}+\Delta \partial_{r}\right] \\
& I_{D}^{\prime \prime}=\frac{1}{\sqrt{2} r r_{+}}\left[\Delta \mathrm{d} \tau+\left(\Delta-2 r^{2}\right) \mathrm{d} r\right]
\end{aligned}
$$

- Compute Spin coefficients in NP-Formalism for Reissner-Nordstroem ST. Six coefficients are distinct from zero.

$$
\begin{aligned}
& \pi^{\prime \prime}=\tau^{\prime \prime}=\kappa^{\prime \prime}=\sigma^{\prime \prime}=\nu^{\prime \prime}=\lambda^{\prime \prime}=0 \\
& \alpha^{\prime \prime}=-\beta^{\prime \prime}=\frac{1}{2^{3 / 2}} \frac{\cot (\theta)}{r}, \quad \gamma^{\prime \prime}=-\frac{r_{+}}{2^{3 / 2}} \frac{1}{r^{2}} \\
& \epsilon^{\prime \prime}=\frac{1}{2^{3 / 2} r_{+}}\left(1-\frac{Q^{2}}{r^{2}}\right), \quad \rho^{\prime \prime}=-\frac{1}{\sqrt{2} r_{+}} \frac{\Delta}{r^{2}} \\
& \mu^{\prime \prime}=-\frac{r_{+}}{\sqrt{2}} \frac{1}{r^{2}}
\end{aligned}
$$

- Consistent with results from C. Röken for a Kerr ST in the limit $a \longrightarrow 0$.

General Dirac Equation

- Got spin coefficients in the NP-Formalism. But where is the connection with the Dirac-Eq.?
- (M, g) is an arbitrary 4-dim. curved ST, $\mathcal{S}=P \times_{\tau} \Delta_{4}$ the associated spinor bundle, $\tau: \operatorname{Spin}(4) \longrightarrow \mathrm{GL}\left(\Delta_{4}\right)$ and (P, F) the spin structure. $\Psi \in \Gamma(\mathcal{S}) \simeq \mathbb{C}^{4}$ is a Dirac four spinor and m its invariant fermion rest mass.
- $\left[\gamma^{\mu} \nabla_{\mu}^{S}+i m\right] \Psi\left(x^{\mu}\right)=0$ with $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu} \mathbb{1}_{4 \times 4}^{\mathbb{C}}$
- γ^{μ} general relativist Dirac matrices and ∇^{S} being the metric connection in the spinor bundle

General Dirac Equation in Spinor Rep.

- Two spinor rep. of $\psi=\binom{P^{A}}{\bar{Q}_{B^{\prime}}}$
- $\gamma^{\mu}=\gamma^{\mu}=\sqrt{2}\left[\begin{array}{cc}0_{2 \times 2}^{\mathbb{C}} & \sigma^{\mu A B^{\prime}} \\ \sigma_{A B^{\prime}}^{\mu} & 0_{2 \times 2}^{\mathbb{C}}\end{array}\right]$ with $\sigma_{A B^{\prime}}^{\mu}$ the generalized Pauli matrices
-

$$
\begin{aligned}
& \nabla_{A B^{\prime}} P^{A}+\frac{i m}{\sqrt{2}} \bar{Q}^{C^{\prime}} \epsilon_{C^{\prime} B^{\prime}}=0 \\
& \nabla_{A B^{\prime}} Q^{A}+\frac{i m}{\sqrt{2}} \bar{P}^{C^{\prime}} \epsilon_{C^{\prime} B^{\prime}}=0
\end{aligned}
$$

General Dirac Equation in Spinor Rep. II

- Example calculation for $B^{\prime}=0: \nabla_{A 0^{\prime}} P^{A}+\frac{i m}{\sqrt{2}} \bar{Q}^{1^{\prime}} \underbrace{\epsilon_{1} 0^{\prime}}_{=-1}=0$

$$
\begin{aligned}
& \nabla_{O B} P^{0}+\nabla_{10}, P^{1}=\frac{i m}{\sqrt{2}} \bar{Q}^{11}
\end{aligned}
$$

$$
\begin{aligned}
& D=e^{\mu} \partial_{\mu}=\sigma_{00}^{N} \partial_{\mu}=\partial_{0 \Delta 1} \\
& \left(D-\Gamma_{1001^{1}}-\Gamma_{0011}\right) P^{0}+\left(\bar{\delta}+\Gamma_{1001}-\Gamma_{0110}\right) P^{1}=\frac{i m}{\sqrt{2}} \hat{Q}^{11}
\end{aligned}
$$

General Dirac Equation in Spinor Rep. II

$$
(D+\epsilon-\rho) P^{0}+(\bar{\delta}+\pi-\alpha) P^{1}=\frac{i m}{\sqrt{2}} \bar{Q}^{11}
$$

General Dirac Equation in Spinor Rep. III

- Substituting: $\mathcal{F}_{0}=P^{0}, \mathcal{F}_{1}=P^{1}, \mathcal{G}_{0}=\bar{Q}^{1^{\prime}}$ and $\mathcal{G}_{1}=-\bar{Q}^{0^{\prime}}$

$$
\begin{aligned}
(D+\epsilon-\rho) \mathcal{F}_{0}+(\bar{\delta}+\pi-\alpha) \mathcal{F}_{1} & =\frac{i m}{\sqrt{2}} \mathcal{G}_{0} \\
(\delta+\beta-\tau) \mathcal{F}_{0}+(\Delta+\mu-\gamma) \mathcal{F}_{1} & =\frac{i m}{\sqrt{2}} \mathcal{G}_{1} \\
(D+\bar{\epsilon}-\bar{\rho}) \mathcal{G}_{1}-(\delta+\bar{\pi}-\bar{\alpha}) \mathcal{G}_{0} & =\frac{i m}{\sqrt{2}} \mathcal{F}_{1} \\
(\Delta+\bar{\mu}-\bar{\gamma}) \mathcal{G}_{0}-(\bar{\delta}+\bar{\beta}-\bar{\tau}) \mathcal{G}_{1} & =\frac{i m}{\sqrt{2}} \mathcal{F}_{0}
\end{aligned}
$$

Separation of the Dirac Equation

- Ansatz: $\mathcal{F}_{i}=e^{i(\omega \tau+k \phi)} \mathcal{H}_{i}(r, \theta)$ and $\mathcal{G}_{i}=e^{i(\omega \tau+k \phi)} \mathcal{J}_{i}(r, \theta)$
- Define:

$$
\begin{aligned}
\chi(r, Q) & :=\frac{1}{2 r^{2}}\left(Q^{2}+r(3 r-4 M)\right) \\
\mathcal{L}_{n} & :=\partial_{\theta}+n \cot (\theta)+k \csc (\theta)
\end{aligned}
$$

- Looking at the first ODE:

$$
\frac{1}{r_{+}}\left[i \omega\left(2 r^{2}-\Delta\right)+\Delta \partial_{r}+\chi\right] \mathcal{H}_{0}(r, \theta)+\mathcal{L}_{1 / 2} \mathcal{H}_{1}=i m r \mathcal{J}_{0}(r, \theta)
$$

Separation of the Dirac Equation II

- Separation Ansatz:

$$
\begin{aligned}
\mathcal{H}_{0} & =R_{+}(r) S_{+}(\theta), & & \mathcal{H}_{1}=R_{-}(r) S_{-}(\theta) \\
\mathcal{J}_{0} & =R_{-}(r) S_{+}(\theta), & & \mathcal{J}_{1}=R_{+}(r) S_{-}(\theta)
\end{aligned}
$$

- These ansatz results in following equation:

$$
\begin{aligned}
& \left(\frac{1}{r_{+}}\left[i \omega\left(2 r^{2}-\Delta\right)+\Delta \partial_{r}+\chi(r, \theta)\right] R_{+}(r)-i m r R_{-}(r)\right) S_{+}(\theta)+ \\
& \mathcal{L}_{\frac{1}{2}} S_{-}(\theta) R_{-}(r)=0
\end{aligned}
$$

- Therefore, following must be satisfied:

$$
\begin{aligned}
-\lambda S_{+}(\theta) & =\mathcal{L}_{\frac{1}{2}} S_{-}(\theta) \\
\lambda R_{-}(r) & =\frac{1}{r_{+}}\left[i \omega\left(2 r^{2}-\Delta\right)+\Delta \partial_{r}+\chi(r, \theta)\right] R_{+}(r)-i m r R_{-}(r)
\end{aligned}
$$

with λ being the constant of separation.

Separation of the Dirac Equation III

- Analogue for the other three equations. Resulting in four ODEs:
- Two radial equations:

$$
\begin{aligned}
& \quad\left[\Delta \partial_{r}+\chi(r, Q)+i \omega\left(2 r^{2}-\Delta\right)\right] R_{+}(r)=r_{+}(\lambda+i m r) R_{-}(r) \\
& r_{+}\left(\partial_{r}+\frac{1}{r}-i \omega\right) R_{-}(r)=(\lambda-i m r) R_{+}(r)
\end{aligned}
$$

- Two angular equations:

$$
\begin{aligned}
\mathcal{L}_{\frac{1}{2}} S_{-}(\theta) & =-\lambda S_{+}(\theta) \\
\mathcal{L}_{\frac{1}{2}}^{\dagger} S_{+}(\theta) & =\lambda S_{-}(\theta)
\end{aligned}
$$

[1] R. G. S. K. Chakrabarti and C. bin Liang, "Timelike curves of limited acceleration in general relativity," Journal of Mathematical Physics, vol. 24, no. 3, pp. 597-598, 1983.
[2] S. Chandrasekhar, The Mathematical Theory of Black Holes. Walton Street, Oxford OX2 6DP: Oxford University Press, 1 ed., 1983.
[3] R. P. R. Geroch and A. Held, "A space-time calculus based on paris of null directions," Journal of Mathematical Physics, vol. 14, no. 7, pp. 874-881, 1973.
[4] Z. Ahsan, The Potential of Fields in Einstein's Theory of Gravitation.
152 Beach Road, 21-01/04 Gateway East, Singapore 189721, Singapore: Springer, 1 ed., 2019.

References II

[5] C. Röken, "The massive dirac equation in kerr geometry: separability in eddington-finkelstein-type coordinates and asymptotics," General Relativity and Gravitation, vol. 49, Feb 2017.
[6] "Spinors in 1+3 dimensions," 2015.
"Online erhältlich unter https:
//www.physik.uni-muenchen.de/lehre/vorlesungen/ wise_15_16/tv_qm2/vorlesung/Spinors-4D.pdf; abgerufen am 04. Januar 2021.".

