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@ Reissner-Nordstroem Metric
o Tetrad-Formalism

Newman-Penrose-Formalism

The Spin Frame

Spin Coefficients and Dirac Equation

Separation of the Dirac Equation



Reissner-Nordstroem Metric Basics

e Asymptotically flat, Lorentzian 4-Mfld. (M, g) w/ topology
5?2 x R?

@ g stationary, radial sym. w/ signature (4, —, —, —)
o g =4dt@dt — Zdr@dr—r2dd ®d — r’sin6do ® dop

o A(r) =r?—2Mr + @2, two roots at ry = M+ /M2 — Q2
when Q < M



Penrose Diagram

(=0




Eddington-Finkelstein-Coord

o Get rid of coord. singularities at ri by using tortoise coord. r,

2
° ‘ff: :’K:>r—i—AIn(r—r_)—BIn(r—rJr)-,—_u;

Compute E-F-Coord. from tangent vectors associated to
principal null geodesics - (png)

o t=+r+ C, with” —" ingoing and " + " outgoing rays

@ Define new time coord. 7:=t+ r, — r. Then 7 is a Cauchy
time function



Tetrad-Formalism Basics

@ pointwise orthonormal vector fields - (VF)
@ One VF is time-like, the other three are space-like

@ At each point of the space time (ST) set a basis of four
contra-variant vectors e( ) with a, u € {0,1,2,3}

® N(a)(b) = e(’;)e(b)u constant, sym. matrix for lowering tetrad
indices

@ Project arbitrary tensor i.e. T/w, onto the tetrad frame:

() @)
Tib)(e) = & €(b)&(c) T



Ricci-Rotation Coefficients

‘= [
o™ (Geap) e
o Intrinsic derivative is defined:

T@)ie) = Ta)e) = 1™ %)) (6) T(m)

® (a)(b)(c) describes the Ricci rotation coefficients, also often
called scalar fields

@ When implying orthogonal tetrad in local Minkowski space
Y(a)(b)(c) = —V(b)(a)(c)- |herefore, 24 independent, real scalar
fields

o Evaluation of Ricci rotation coeff. does not involve the
evaluation of covariant derivatives.



Newman-Penrose-Formalism Basics

e Four null vectors {/*, n* m* mH} with normalization

conditions /#n, =1 and m*m, = —1
L | VN N Y e 7} Ko mp
° € ¥, eq) =M, g =m and ez = m

@ Define 12 complex spin coefficients in the NP-Formalism due
to the Ricci rotation coefficients.

£ =72)00) = 3(A2)0)0) + A0©)(0) ~ 20)0)©)
® Aa)(b)(c) = &by (€5)ele) — &(3)%(c))

or by &d- = ¢/(V ¢L)w*



Lorentz Transformations

@ Most time ST has not enough local structure to define four
vectors for a complete tetrad.

@ In NP-Formalism: /* and n* are determined by pngs. m* and
mt are unit space-like VF, orthogonal to itself, /* and n*.

@ Therefore, it exists a two dim. gauge freedom which is
described by the two param. subgroup of the Lorentz Group -
sometimes denoted by rotations of class Ill, leaving the
direction of /* and n* unchanged.

1

e Generated by boosts /# — rl*, n* — r~*n* and rotations

mt — el*mh



The Spin Frame Basics

@ ST of GR is locally Minkowskian. Therefore, define locally
tetrad basis for spinors ((Aa) and Cé’,)

@ A and A’ are spinor indices where A corresponds to the
fundamental and A’ to the anti-fundamental representation

@ Sometimes convenient use special symbols ((/3) = o” and

@) ="
@ epp skew-symmetric metric: GABC C = ((a) B( = €(a)(b)



Generalized Pauli Spin-Matrices

@ Spinors and their complex conjugate determine
{I*, n* mt m*} by the correspondence

_p/ _p/ _p/ _ -
o M & gAGB, nt 5 L ATB mt 5 0ATB and MMt s AGE

@ Due to this representation one can define the hermitian
matrices (generalized Pauli spin-matrices) o/,

p L[ m 1
® Tap = 5 ) OAB'n = —7=

by —my
V2 L V2

—-m, n,



Connection to NP-Formalism

@ This null tetrad fulfils the normalization conditions:

’ _npr o _

"n, = UZB,JAB P oG5B ate =1
sh=1

AB

m'm, = oo PoATB L ace = —1

sl=1

@ Dyad basis determine four null vectors which can be used as a
basis for the NP-Formalism



Dyad Spin Coefficients

@ Covariant derivative of a spinor field satisfies the Leibnitz rule,
is a real operator and based on correspondences:

Vi< Vap, V Xy < Vap Xcpr

@ Define analogous an intrinsic derivative for the dyad
components &,y of a spinor along (a)(b'):
Sen@w) = (VA €l
& Lo = (Vasécy)

= &) ec = &a).8¢ T Ty a)pcrEl



Dyad Spin Coefficients |l

@ 12 independent complex coefficients

@ One can show with one Lemma from Friedman ( states an
alternative rep. of I'(,)p)cp’) following theorem:
Theorem:
It is possible to express the dyad spin coefficients I'(,yp)cpr in
terms of the covariant derivatives of the basis null vectors
{I*,n* mt mt} and therefore show that they are in
agreement with the coefficients v(a)(p)(c)-

r,oom CH (Y @) exs) ™ (>{a(o)(o) >[07(?«)(0) B >(0)/<>)(2>>



Spin Coefficients in Reissner-Nordstroem

@ Use tangent vectors associated to the png to define null tetrad

@ Let (¢, U) be a local param. of M with p € U C M,
Y(p) = (t,r,0,9).
{0¢,0r, 09,04} is the induced canonical basis of T,M and
{dt,dr,d0,d¢} of T,M*.

°
1 sign(A)
B_ 2 H = 2 -
/ | |(r O+ A0y), n 52 (r°oy — AO,)
mt = \ér (Og + icsc(8)0y), mt = \gr (0p — i csc(6)0g)



Spin Coefficients in Reissner-Nordstroem ||

1A

@ Class Ill Lorentz transformation: r = 52 and a =0

@ Re-write in Eddington-Finkelstein-Coordinates 7 =t + r, — r

Al
ry

and

o Additionally Class Il Lorentz transformation: r' =

a =0

1’ 1
I = 2r — A 6T+A8,}
V2rry [( ' )

1

1
In = —— |Adr+ [ A —2r% )d
b= o B (827 o]



Spin Coefficients in Reissner-Nordstroem ||

@ Compute Spin coefficients in NP-Formalism for
Reissner-Nordstroem ST. Six coefficients are distinct from

Zero.
°
A= = =g ==\ =0

o = " _ 1 COt(e) " 5 l
23/2  p 23/2 f2
" __ 1 1_ Cﬁ p// _ _Lé
23/2y, r2 )’ V2ry 12

o 1

Var?

o Consistent with results from C. Roken for a Kerr ST in the
limit a — 0.



General Dirac Equation

@ Got spin coefficients in the NP-Formalism. But where is the
connection with the Dirac-Eq.?

e (M, g) is an arbitrary 4-dim. curved ST, § = P x, A4 the
associated spinor bundle, 7 : Spin(4) — GL(A4) and (P, F)

the spin structure. W € [(S) ~ C* is a Dirac four spinor and
m its invariant fermion rest mass.

° [’y“Vﬁ + im] W(xH) =0 with {y#, "} = 2g"15, ,

@ /" general relativist Dirac matrices and V° being the metric
connection in the spinor bundle



General Dirac Equation in Spinor Rep.

PA
@ Two spinor rep. of ¥ = (— )
Qs

C uAB’
o Y =nt=1/2 [03}2 OE)C ] with o4 5, the generalized Pauli
Y:% 2x2

matrices

im =
VAB/PA —|— 72QC €Ec'pr = 0

V2

im =~/
Vag @ + —2PC ecrp =0

7



General Dirac Equation in Spinor Rep. I

. / im =
o Example calculation for B' = 0: V 49/ PA + I—Ql €1y =0

V2 e
=14
\ /P@* ,? W 5=1)
oo’ /10 “—Z—Gg
> Qo L y — 4 ?’ fuw A

\%}7? P Ve ¥+ P lpior = =

— n—
D A = nW—

\/naoo‘ o (K

~ oo’

® = QNB/«/ = O‘;Z) a/./ = a@@

(D“ \¢s c)o/w)?o (gﬂ - )7{: % %"

1100) 0440



General Dirac Equation in Spinor Rep. I

__4)

(D+e-g)P°~ (&4 )= \'% &



General Dirac Equation in Spinor Rep. IlI

o Substituting: Fo = P°, 1 = P, Go = Q' and G1 = — Q"
o

(D+e—p).7—"o+(5+7r—oz)]:1:ﬂgo

72
(6+B8-—7)Fo+ (A+p—7)FA 791
(D+e—p)G1— (0+7—&)Go fol
(A+u—"y)go—(5+5—7‘)gl—%fo



Separation of the Dirac Equation

o Ansatz: F; = e/ “Ttk0)(r, 0) and G; = e/THKO) 7i(r, 0)

o Define;

X(r, Q) 1= 5 5(Q7 + r(3r — 4M))
L, := 0y + ncot(0) + kcsc(h)

@ Looking at the first ODE:
liw(2r® = A) + A0, + x| Ho(r,0) + Ly 2H1 = imrTo(r, 0)



Separation of the Dirac Equation |l

@ Separation Ansatz:

Mo = Ri(r)Sp(0),  Hi=R_(r)S_()
Jo=R(NS:(6),  Ji=Ri(r)S_()

@ These ansatz results in following equation:
(L [iw(2r® — A) + NS, + x(r,0)| Ry(r) — imrR_(r)) S+(0) +

ry

£35S (B)R(r) =0

@ Therefore, following must be satisfied:

AR_(r) = i[iw(2r2 ~A) £ D8, + X(r,0)] Ry (r) — imrR_(r)

with \ being the constant of separation.



Separation of the Dirac Equation IlI

@ Analogue for the other three equations. Resulting in four
ODEs:

@ Two radial equations:
[AD, + x(r, Q) + iw(2r? — D) Ry(r) = re(A+ imr)R_(r)
ri(0r + % — iw)R_(r) = (A — imr)Ry(r)

@ Two angular equations:

L15_(0) = —\S.(6)

2

£1S(0) = AS_(0)

2
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