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My Goal

In my talk

o | will give you a rough idea of the problem of localization in Quantum
Mechanics.

@ | will introduce a novel type of PDE estimates for wave equations in
Minkowski space.
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Localization in Quantum Mechanics

What does it mean for a quantum system to be localized in a particular
volume at a particular time?

@ ¢; a normalized time-dependant state vector
@ Assume there is a self adjoint operator N(V)

o (¢¢, N(V)¢:) probability of finding particle in V at t

Definition: A particle state is said to be localized in V' at time t if the

probability of finding the particle in V is 1. It is said to be not in V at
time t if the probability is 0.



Introduction Localization in Quantum Mechanics

Localization in the Relativistic Setting
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Hegerfeldt's Theorem

Causality Condition If at time tg = 0 a particle state is localized in V/,
then there is a constant r = r;, such that, at time t > 0, the particle,
when translated by &, |a] > r; is not in V.



AL
Hegerfeldt's Theorem

Causality Condition If at time tg = 0 a particle state is localized in V/,
then there is a constant r = r;, such that, at time t > 0, the particle,
when translated by &, |a] > r; is not in V.

Theorem (Hegerfeldt 1974) In a relativistic theory there is no one-particle
state localized in the finite space region V satisfying the causality
condition.



Dirac Particles

Dirac equation & Wave equation have solutions with compact spatial
support.
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Dirac Particles

Dirac equation & Wave equation have solutions with compact spatial
support.

Hegerfeldts theorem is based on the assumption that the Hamiltonian of
the system is positive definite. = does not apply to Dirac equation.

Hegerfeldt implies that solutions of hyperbolic partial differential equations
in d + 1-dimensional Minkowski space which have spatially compact
support cannot be composed purely of positive (or similarly negative)
frequencies.



Set Up

Let By = (—1,1). We consider the Cauchy problem for the scalar wave
equation with smooth, compactly supported initial data in By,
(0F — 07)(t, X) = 0,
¢le=0 = o € (5°(B1) (1)
Otdli—0 = ¢1 € C3°(By) -

We denote the energy of the solution by

E@) =5 [ (00 + (0.0)) (1) . )



Set Up

Taking the spatial spatial Fourier transform
ot k) = | ¢(t,x) e ™ dx,
By

we can split

~

¢(t7 k) = $+(tv k) + ng(ta k)
with 1 .
bt k) = 5 ¥ (o(k) £ = a(K)) .

where w > 0 denotes the absolute value of the frequency, i.e.

w = w(k) = |k|.



Frequenc y Splitting

Set Up

By Plancherel’s theorem

E(¢):2/ dk( 2 do(k) \2+|¢A51(k)\2) (7)

_/_OOZ: 2(\¢+tk\+|¢ tk|> (8)

Therefore

E(@) = E(@) +E(6-)  with  E(os)i= [ 552 |dule o]’



Apriory Bounds

6(x) = (Kof)(x) = / Ko(x. ) f(y) d%+1y (10)

M

Taking the Fourier transform, the convolution in (10) becomes a
multiplication in momentum space, i.e.

~ S

&(p) = Ko(p) f(p) , where Ko(p) = c5((p,p)) (8(p°) —O(=p%) (11)
We choose the following family of source functions
fo(x) = g(x) exp (= i¢ (xX° +x1)) = fe(p) = &(p° — C. P +C. PP, pY)
with a fixed test function g and a real parameter (.

im El9=0d) _ g im E0=0) _ (13)

=00 E(¢4¢) (=00 E(d4¢)




Frequency Splitting

Apriory Bounds

FicUurg 1. Shifting fC in momentum space. The shaded region indi-
cates the neighborhood around the maximum of va outside of which
f¢ decays rapidly.



Main Theorem
Main Theorem

Theorem (F. Finster — C.F.P.) Assume that at a time ty a wave ¢(t,x) is
supported inside a ball of radius 1 further assume, the inequality

E(p-) < e E(4)

holds for given € > 0. This implies an a-priori estimate of the frequency
distribution of ¢ of the form

~

[o(w, )], < gle,w) VE(9).



Main Theorem
Constant Bound

Define

Then we get the first bound.

Lemma For all w € RT,

(14)

(15)



Main Theorem
Proof

According to the definition of b

(0] = 1601 < 3 (16l +1B:0) < = (ko410

The obtained Fourier transforms can be estimated pointwise by

Ik do(k)| < ‘ /B Bydo(x) e dx

< /51 | 0o (x)| dx < V2 ||Oxcboll 28y

|d1(K)| < ‘ ; p1(x) e * dx

< /B1 |d1(x)| dx < V2 ||l 12(my) -

Comparing with the definition of the energy evaluated at time t = 0 gives
the result.



Frequency Splitting Main Theorem

Taylor Expansion

For 1 + 1d we introduce the parity decomposition
3, x) = 6%"(t,x) + ¢°%(t,x) ,
and get again a split of the energies
E(d+) = E(¢2°") + E(637).

Since the initial data is compactly supported, its Fourier transform is real
analytic and we can thus perform a Taylor expansion around w =0

h*(w) = Za:, Ww" Rt - C (16)
n=0



Main Theorem
A First Bound on Coefficients

Proposition The coefficients in the power series for h®(w) are bounded by

‘a°|§7\/E(¢.)

n!



Main Theorem
A First Bound on Coefficients

Proposition The coefficients in the power series for h®(w) are bounded by

E()

(]
‘an| S n!

Proof Differentiating we get

’q’z;(n) ‘ / IX e~ dx

In particular, setting k = 0 we obtain

/ 160x)] dx < V2 ]l 28 -

|an| 0 = [(0)] < V2 112, »

Further

: V2
ik d(k Zd K" with[dn| < = (00l 2s)



Frequency Splitting Main Theorem

Proof
sy < L 198 ez e | < L 10067 ey
SV RN ¢TI TR el =5 T e+ 1)
poia | < L1008 ey e o 1 198" ey
2042 ﬁ 20+ 2)! ,

20+1 7\TW'

We thus obtain the simple bound in terms of the energy

lap| <

- 5 max {1003 2(s- I98lli2en) |

] E ¢.
= n! 7 \/H8X¢0H 12(By) + H¢ ”L2(31) #



Frequency Splitting Main Theorem

Improved Bound on Coefficients

We decompose the Taylor series into a Taylor polynomial of degree N and
the remainder term,

N o0
/“1; _ /A77v+ RY with A,°V(w) = Z:a;wn7 Ry(w) := Z ayw".
n=0 n=N+1
(17)



Frequency Splitting Main Theorem

Improved Bound on Coefficients

Lemma Let #(w) be a real polynomial of degree at most N with N € Ny,
PW)=a+aw+--+aywl.

Then for any w1 > 0, the highest coefficient of & satisfies the following
inequalities:

1 (2 /4\V 1
lan| < N \/; (w1> |2 1le2q0.apy (1 + ﬁ(N» (18)

1 4\
<o (o) 120 (49)



Frequency Splitting Main Theorem

Bounding the Remainder

Lemma Given ¢ € [0,1] and N € Ny, we choose

1
wy = (52 (N + 1)!2(2N+3)> e (20)
Then the remainder term is bounded on [0, w1] by

RN (@) 2(j0,0]) < 4e VE(9°) -



Main Theorem
Proof

We can estimate the remainder by

[RR(w)] < Z _\/ (#*)

e y
~ (N+1) <1+N+2+(N+2)N+3 VE(
wNJrl [e'¢)

n=0
(21)

Using this pointwise bound, the L?-norm can be estimated by

Wi y2N+2 16 E(¢°) 2N
2 - < +3
IRR (@) F2(0,0) < 16E(¢* )/0 N+ )R = (N+ 12N +3)




Frequency Splitting Main Theorem

Improved Coefficient Bound

Proposition Assume that
E(¢?) <& E(¢%).

Then the Taylor coefficients are bounded for all n € Ng by

n+1 n!

6 4"
EMES Norenir i VE($*).



Main Theorem
Proof

~

he

2(jow]) T HRKIHB([OM])

< 1B N 2o ey + 1Rl 2oty < /7 E@) + IRR 2o
< e/TE(¢*) + 4 VE(9*) < 6 VE(¢°) .

Applying the previous Lemma to the polynomial IAv,‘V gives the bound

1B )l 2oy = [|% — Rl 20 o) =

atl < — ()" 6= VE@)

Wl w1

_ €2N+3 4N (N + 1)~ NS (2N +3)~ s 6/ E(¢°).



Frequency Splitting Main Theorem

Coefficient wise estimate

Proposition (F.Finster — C.F.P.) Assume that the energy of the positive
frequency component is bounded in terms of the total energy by

E(¢+) <eE(¢).

Then the even and odd components of the initial data in momentum space
are bounded pointwise for all k € R by

A(K)| < [k do(K)| + |d1(K)| < 12 VE(@) |4k 2 g(41K]),  (22)

where g is the series

> 1 (4w)”+% 2
= n . 2
B) =Y g 23)



Frequency Splitting Main Theorem

Simple Estimate

Theorem (F.Finster—C.F.P.) Assume that the energy of the positive
frequency component is bounded in terms of the total energy by

E(¢p+) < E(9).

Then the even and odd components of the initial data in momentum space
are bounded pointwise for all k € R by

h(K)| < |k do(k)| + |dr(k)| < 62 _VEO)

2elTog()] 24



Frequency Splitting Main Theorem

Simple Estimate

Theorem (F.Finster—C.F.P.) Assume that the energy of the positive
frequency component is bounded in terms of the total energy by

E(¢p+) < E(9).

Then the even and odd components of the initial data in momentum space
are bounded pointwise for all k € R by

h(K)| < |k do(k)| + |dr(k)| < 62 _VEO)

2elTog()] 24

Improvement over constant bound as long as

3
<1

V4e|log(e)| ' (25)



Frequency Splitting Main Theorem

Proof

o0 o0 n
L N <\F Z,/ G-
n:0\/2n+1 n! - V2 e 2n+3 nl

o0 n

3 / 3 2 4
< n ~ x“loge w
_\/>n€[000)|: 2n—¢—352 +3] 20 \/;XSGUIRP+ [xe } .

where in the last step we set x = 1/2/(2n+ 3). In order to estimate the
last supremum, we set y = v/— logex,

1 1
sup y e -y

V—loge yer+ \/2e |log ¢|

2
sup |:X X Iog5:| —
x€RT



Main Theorem
L? Weight

It follows immediately that

h(k)

. <% E(¢) and Hﬁ(k)

[0,wmax(€)]

< SE(9). (26)

By Plancherel we know that the L? norm of a function is conserved under
Fourier transform and hence we know that

> gE@p). (27)

It is clear that wmax () is monotone decreasing in ¢ € (0, 1] with
lim: 0 Wmax(g) =00



Frequency Splitting Main Theorem

Best Estimate

It turns out that we can write g as a solution to a Goursat problem and
obtain the following bound

Proposition (F.Finster — C.F.P.) g(a, b) is bounded by

3 1 eV
< a3a ~ 2 _
lg(a, b)| S e’ exp <2Im Yo+ V2b <2Imyo Imyo)) NG Erfi(v)
5a

1
=e2 exp <i Im? yo + V2b <2 imyo Imy0)> e~ Erfi(v) ,

where Im yo and v are given by

V2b =3 Im yp + 2€2? Im yg elm*yo

2
v=e2emy

where a(e) and b(w)



Main Theorem
Sketch of Proof

Differentiating the function g(a, b) with respect to a and b gives

o0

1 1 b
0,g(a, b) = — —— (2n+3 e(2n+3)a—2n+3
(0.5 = s 0+
o 1 1 2n—|—3 2n+3)a— -2
003 a,bzg — — eCrtdans — _g(a,b).
b0ag(2; b) 2l 2n+1( 2n—i—3) g(a.b)

Hence g is a solution of the PDE

(9,05 +1)g = 0. (30)



Frequency Splitting Main Theorem

Goursat Problem

Introducing the coordinates

T=ath, X=a—b
1 1
8T:§(8a+8b), 8X:§(8a_8b)7

the equation takes the more familiar form
(07 — 0% +1)g=0.

This PDE comes with initial conditions at b = 0 given by the series
=1 1
=g(a,0) =) — ——— @3 31
gO(a) g(aa ) ;) nl \/m € ( )

Moreover, Lebesgue's monotone convergence theorem implies that

l = i =0. 2
Jim g(a,b) = lim g(a,b)=0 (32)



Main Theorem
3+1 Dimensions

Assume that for € € (0,1], the energy of the negative-frequency
component is bounded in terms of the total energy by

E(¢-) < E(9).

Then the L?-norm of the spatial Fourier transform on a sphere of radius w
is bounded for all w € R by

[5 Jd(0,6.0) di(9,0) < 625d5 CE(6) (40) " gF(w.e)

where C is the constant

e 4146
= (21 +1)dP™ < o0 (33)
1=0
(and the d; are given by d| := 7 (2/+1 (2/“1)” )



Thanks

Thank you for your attention.



	Introduction
	Localization in Quantum Mechanics
	Hegerfeldt's Theorem

	Frequency Splitting
	Main Theorem

	Outlook

