Incompatibility of Frequency Splitting and Spatial Localization: A quantitative analysis of Hegerfeldt's theorem

> Claudio Paganini^{*,†} funded by the SNSF grant P2SKP2_178198

> > joint work with: Felix Finster[†]

[†]Mathematische Fakultät, Universität Regensburg *Albert Einstein Institut, Potsdam, Germany

November 20, 2020

In my talk

• I will give you a rough idea of the problem of localization in Quantum Mechanics.

• I will introduce a novel type of PDE estimates for wave equations in Minkowski space.

Outline

Introduction

- Localization in Quantum Mechanics
- Hegerfeldt's Theorem

Prequency Splitting

Main Theorem

Localization in Quantum Mechanics

What does it mean for a quantum system to be localized in a particular volume at a particular time?

Localization in Quantum Mechanics

What does it mean for a quantum system to be localized in a particular volume at a particular time?

- ϕ_t a normalized time-dependant state vector
- Assume there is a self adjoint operator N(V)
- $(\phi_t, N(V)\phi_t)$ probability of finding particle in V at t

Localization in Quantum Mechanics

What does it mean for a quantum system to be localized in a particular volume at a particular time?

- ϕ_t a normalized time-dependant state vector
- Assume there is a self adjoint operator N(V)
- $(\phi_t, N(V)\phi_t)$ probability of finding particle in V at t

Definition: A particle state is said to be localized in V at time t if the probability of finding the particle in V is 1. It is said to be not in V at time t if the probability is 0.

Localization in the Relativistic Setting

Hegerfeldt's Theorem

Causality Condition If at time $t_0 = 0$ a particle state is localized in V, then there is a constant $r = r_t$, such that, at time t > 0, the particle, when translated by \vec{a} , $|\vec{a}| \ge r_t$ is not in V.

Hegerfeldt's Theorem

Causality Condition If at time $t_0 = 0$ a particle state is localized in V, then there is a constant $r = r_t$, such that, at time t > 0, the particle, when translated by \vec{a} , $|\vec{a}| \ge r_t$ is not in V.

Theorem (Hegerfeldt 1974) In a relativistic theory there is no one-particle state localized in the finite space region V satisfying the causality condition.

Dirac Particles

Dirac equation & Wave equation have solutions with compact spatial support.

Dirac Particles

Dirac equation & Wave equation have solutions with compact spatial support.

Hegerfeldts theorem is based on the assumption that the Hamiltonian of the system is positive definite. \implies does not apply to Dirac equation.

Dirac Particles

Dirac equation & Wave equation have solutions with compact spatial support.

Hegerfeldts theorem is based on the assumption that the Hamiltonian of the system is positive definite. \implies does not apply to Dirac equation.

Hegerfeldt implies that solutions of hyperbolic partial differential equations in d + 1-dimensional Minkowski space which have spatially compact support cannot be composed purely of positive (or similarly negative) frequencies.

Set Up

Let $B_1 = (-1, 1)$. We consider the Cauchy problem for the scalar wave equation with smooth, compactly supported initial data in B_1 ,

$$\begin{cases} (\partial_t^2 - \partial_x^2)\phi(t, \vec{x}) = 0, \\ \phi|_{t=0} = \phi_0 \in C_0^{\infty}(B_1), \\ \partial_t \phi|_{t=0} = \phi_1 \in C_0^{\infty}(B_1). \end{cases}$$
(1)

We denote the energy of the solution by

$$E(\phi) := \frac{1}{2} \int_{B_1} \left((\partial_t \phi)^2 + (\partial_x \phi)^2 \right) (t, x) \, dx.$$
 (2)

Set Up

Taking the spatial spatial Fourier transform

$$\hat{\phi}(t,k) = \int_{B_1} \phi(t,x) e^{-ikx} dx , \qquad (3)$$

we can split

$$\hat{\phi}(t,k) = \hat{\phi}_{+}(t,k) + \hat{\phi}_{-}(t,k)$$
 (4)

with

$$\hat{\phi}_{\pm}(t,k) := \frac{1}{2} e^{\mp i\omega t} \left(\hat{\phi}_0(k) \pm \frac{i}{\omega} \, \hat{\phi}_1(k) \right), \tag{5}$$

where $\omega \geq 0$ denotes the absolute value of the frequency, i.e.

$$\omega = \omega(k) := |k|. \tag{6}$$

Set Up

By Plancherel's theorem

$$E(\phi) = \frac{1}{2} \int_{-\infty}^{\infty} \frac{dk}{2\pi} \left(\omega^2 \left| \hat{\phi}_0(k) \right|^2 + \left| \hat{\phi}_1(k) \right|^2 \right)$$
(7)
=
$$\int_{-\infty}^{\infty} \frac{dk}{2\pi} \omega^2 \left(\left| \hat{\phi}_+(t,k) \right|^2 + \left| \hat{\phi}_-(t,k) \right|^2 \right).$$
(8)

Therefore

$$E(\phi) = E(\phi_{+}) + E(\phi_{-}) \quad \text{with} \quad E(\phi_{\pm}) := \int_{-\infty}^{\infty} \frac{dk}{2\pi} \, \omega^{2} \left| \hat{\phi}_{\pm}(t,k) \right|^{2}.$$
(9)

Apriory Bounds

$$\phi(x) := (K_0 f)(x) = \int_M K_0(x, y) f(y) d^{d+1}y$$
(10)

Taking the Fourier transform, the convolution in (10) becomes a multiplication in momentum space, i.e.

$$\hat{\phi}(p) = \hat{K}_0(p) \ \hat{f}(p) \ , \ \text{where} \ \hat{K}_0(p) = c \ \delta(\langle p, p \rangle) \ \left(\Theta(p^0) - \Theta(-p^0)\right) \ (11)$$

We choose the following family of source functions

$$f_{\zeta}(x) = g(x) \exp\left(-i\zeta\left(x^{0} + x^{1}\right)\right) \Rightarrow \hat{f}_{\zeta}(p) = \hat{g}\left(p^{0} - \zeta, p^{1} + \zeta, p^{2}, \dots, p^{d}\right)$$
(12)

with a fixed test function g and a real parameter ζ .

$$\lim_{\zeta \to \infty} \frac{E(\phi_{-,\zeta})}{E(\phi_{+,\zeta})} = 0 \qquad \lim_{\zeta \to -\infty} \frac{E(\phi_{-,\zeta})}{E(\phi_{+,\zeta})} = \infty$$
(13)

Apriory Bounds

FIGURE 1. Shifting \hat{f}_{ζ} in momentum space. The shaded region indicates the neighborhood around the maximum of \hat{f}_{ζ} , outside of which \hat{f}_{ζ} decays rapidly.

Main Theorem

Theorem (F. Finster – C.F.P.) Assume that at a time t_0 a wave $\phi(t, x)$ is supported inside a ball of radius 1 further assume, the inequality

 $E(\phi_{-}) \leq \varepsilon E(\phi_{+})$

holds for given $\varepsilon > 0$. This implies an a-priori estimate of the frequency distribution of ϕ of the form

$$\|\hat{\phi}(\omega,.)\|_* \leq g(\varepsilon,\omega)\sqrt{E(\phi)}.$$

Constant Bound

Define

$$\hat{h}(k) := \omega \,\hat{\phi}_{\pm}(k) \tag{14}$$

Then we get the first bound.

Lemma For all $\omega \in \mathbb{R}^+$,

$$|\hat{h}(\omega)| \le \sqrt{2E(\phi)}.$$
(15)

Proof

According to the definition of $\hat{\phi}_\pm$

$$ig| \hat{h}_{\pm}(k) ig| = |k \, \hat{\phi}_{\pm}(k)| \leq rac{1}{2} \left(|k \, \hat{\phi}_0(k)| + |\hat{\phi}_1(k)|
ight) \leq rac{1}{\sqrt{2}} \left(|k \, \hat{\phi}_0(k)|^2 + |\hat{\phi}_1(k)|^2
ight)^rac{1}{2}$$

The obtained Fourier transforms can be estimated pointwise by

$$\begin{aligned} \left| k \, \hat{\phi}_0(k) \right| &\leq \left| \int_{B_1} \partial_x \phi_0(x) \, e^{-ikx} \, dx \right| \leq \int_{B_1} \left| \partial_x \phi_0(x) \right| \, dx \leq \sqrt{2} \, \| \partial_x \phi_0 \|_{L^2(B_1)} \\ \left| \hat{\phi}_1(k) \right| &\leq \left| \int_{B_1} \phi_1(x) \, e^{-ikx} \, dx \right| \leq \int_{B_1} \left| \phi_1(x) \right| \, dx \leq \sqrt{2} \, \| \phi_1 \|_{L^2(B_1)} \, . \end{aligned}$$

Comparing with the definition of the energy evaluated at time t = 0 gives the result.

Taylor Expansion

For 1 + 1d we introduce the parity decomposition

$$\phi(t,x) = \phi^{even}(t,x) + \phi^{odd}(t,x) ,$$

and get again a split of the energies

$$E(\phi_{\pm}) = E(\phi_{\pm}^{even}) + E(\phi_{\pm}^{odd}).$$

Since the initial data is compactly supported, its Fourier transform is real analytic and we can thus perform a Taylor expansion around $\omega = 0$

$$h^{\bullet}(\omega) := \sum_{n=0}^{\infty} a_n^{\bullet} \omega^n : \mathbb{R}^+ \to \mathbb{C}$$
(16)

A First Bound on Coefficients

Proposition The coefficients in the power series for $h^{\bullet}(\omega)$ are bounded by

$$|a_n^{\bullet}| \leq \frac{\sqrt{E(\phi^{\bullet})}}{n!}$$
.

A First Bound on Coefficients

Proposition The coefficients in the power series for $h^{\bullet}(\omega)$ are bounded by

$$|a_n^{ullet}| \leq rac{\sqrt{E(\phi^{ullet})}}{n!}$$
.

Proof Differentiating we get

$$\left|\hat{\phi}^{(n)}(k)\right| \leq \left|\int_{B_1} (-ix)^n \,\phi(x) \, e^{-ikx} \, dx\right| \leq \int_{B_1} \left|\phi(x)\right| \, dx \leq \sqrt{2} \, \|\phi\|_{L^2(B_1)} \, .$$

In particular, setting k = 0 we obtain

$$|a_n| n! = |\hat{\phi}^{(n)}(0)| \le \sqrt{2} \|\phi\|_{L^2(B_1)},$$

Further

$$ik \hat{\phi}(k) = \sum_{n=1}^{\infty} d_n k^n$$
 with $|d_n| \leq \frac{\sqrt{2}}{n!} \|\partial_x \phi\|_{L^2(B_1)}$.

Proof

$$\begin{split} \left| \boldsymbol{a}_{2\ell}^{\text{even}} \right| &\leq \frac{1}{\sqrt{2}} \; \frac{\|\phi_{1}^{\text{even}}\|_{L^{2}(B_{1})}}{(2\ell)!} \; , \qquad \left| \boldsymbol{a}_{2\ell+1}^{\text{even}} \right| \leq \frac{1}{\sqrt{2}} \; \frac{\|\partial_{x}\phi_{0}^{\text{even}}\|_{L^{2}(B_{1})}}{(2\ell+1)!} \\ \left| \boldsymbol{b}_{2\ell+2}^{\text{odd}} \right| &\leq \frac{1}{\sqrt{2}} \; \frac{\|\partial_{x}\phi_{0}^{\text{odd}}\|_{L^{2}(B_{1})}}{(2\ell+2)!} \; , \qquad \left| \boldsymbol{b}_{2\ell+1}^{\text{odd}} \right| \leq \frac{1}{\sqrt{2}} \; \frac{\|\phi_{1}^{\text{odd}}\|_{L^{2}(B_{1})}}{(2\ell+1)!} \; . \end{split}$$

We thus obtain the simple bound in terms of the energy

$$\begin{aligned} |a_n^{\bullet}| &\leq \frac{1}{n!} \frac{1}{\sqrt{2}} \max\left\{ \|\partial_x \phi_0^{\bullet}\|_{L^2(B_1)}, \|\phi_1^{\bullet}\|_{L^2(B_1)} \right\} \\ &\leq \frac{1}{n!} \frac{1}{\sqrt{2}} \sqrt{\|\partial_x \phi_0^{\bullet}\|_{L^2(B_1)}^2 + \|\phi_1^{\bullet}\|_{L^2(B_1)}^2} = \frac{\sqrt{E(\phi^{\bullet})}}{n!} \end{aligned}$$

•

Improved Bound on Coefficients

We decompose the Taylor series into a Taylor polynomial of degree N and the remainder term,

$$\hat{h}_{\pm}^{\bullet} = \hat{h}_{N}^{\bullet} + R_{N}^{\bullet} \quad \text{with} \quad \hat{h}_{N}^{\bullet}(\omega) := \sum_{n=0}^{N} a_{n}^{\bullet} \omega^{n}, \quad R_{N}^{\bullet}(\omega) := \sum_{n=N+1}^{\infty} a_{n}^{\bullet} \omega^{n}.$$
(17)

Improved Bound on Coefficients

Lemma Let $\mathscr{P}(\omega)$ be a real polynomial of degree at most N with $N \in \mathbb{N}_0$,

$$\mathscr{P}(\omega) = a_0 + a_1 \, \omega + \cdots + a_N \, \omega^N$$
.

Then for any $\omega_1 > 0$, the highest coefficient of \mathscr{P} satisfies the following inequalities:

$$|\mathbf{a}_{N}| \leq \frac{1}{\sqrt{\omega_{1}}} \sqrt{\frac{2}{\pi}} \left(\frac{4}{\omega_{1}}\right)^{N} \|\mathscr{P}\|_{L^{2}([0,\omega_{1}])} \left(1 + \mathscr{O}\left(\frac{1}{N}\right)\right)$$
(18)
$$\leq \frac{1}{\sqrt{\omega_{1}}} \left(\frac{4}{\omega_{1}}\right)^{N} \|\mathscr{P}\|_{L^{2}([0,\omega_{1}])}.$$
(19)

Main Theorem

Bounding the Remainder

Lemma Given $\varepsilon \in [0, 1]$ and $N \in \mathbb{N}_0$, we choose

$$\omega_1 = \left(\varepsilon^2 \left(N+1\right)!^2 \left(2N+3\right)\right)^{\frac{1}{2N+3}}.$$

(20)

Then the remainder term is bounded on $[0, \omega_1]$ by

$$\|R_N^{\bullet}(\omega)\|_{L^2([0,\omega_1])} \leq 4\varepsilon \sqrt{E(\phi^{\bullet})}.$$

Proof

We can estimate the remainder by

$$\begin{aligned} |R_{N}^{\bullet}(\omega)| &\leq \sum_{n=N+1}^{\infty} \frac{\omega^{n}}{n!} \sqrt{E(\phi^{\bullet})} \\ &= \frac{\omega^{N+1}}{(N+1)!} \left(1 + \frac{\omega}{N+2} + \frac{\omega^{2}}{(N+2)(N+3)} + \cdots \right) \sqrt{E(\phi^{\bullet})} \\ &\leq c(\omega) \frac{\omega^{N+1}}{(N+1)!} \sqrt{E(\phi^{\bullet})} \quad \text{with} \quad c(\omega) := \sum_{n=0}^{\infty} \left(\frac{\omega}{N+2} \right)^{n}. \end{aligned}$$

$$(21)$$

Using this pointwise bound, the L^2 -norm can be estimated by

$$\|\mathcal{R}^{ullet}_{N}(\omega)\|^{2}_{L^{2}([0,\omega_{1}]}\leq 16E(\phi^{ullet})\int_{0}^{\omega_{1}}rac{\omega^{2N+2}}{(N+1)!^{2}}d\omega\leq rac{16\,E(\phi^{ullet})}{(N+1)!^{2}\,(2N+3)}\omega_{1}^{2N+3}.$$

Main Theorem

Improved Coefficient Bound

Proposition Assume that

$$E(\phi^{ullet}_{-}) \leq \varepsilon^2 E(\phi^{ullet})$$
.

Then the Taylor coefficients are bounded for all $n \in \mathbb{N}_0$ by

$$|a_n^{\bullet}| \leq \frac{6}{\sqrt{2n+1}} \frac{4^n}{n!} \varepsilon^{\frac{2}{2n+3}} \sqrt{E(\phi^{\bullet})}.$$

Proof

$$\begin{split} \|\hat{h}_{N}^{\bullet}(\omega)\|_{L^{2}([0,\omega_{1}])} &= \|\hat{h}_{\pm}^{\bullet} - R_{N}^{\bullet}\|_{L^{2}([0,\omega_{1}])} \leq \|\hat{h}_{\pm}^{\bullet}\|_{L^{2}([0,\omega_{1}])} + \|R_{N}^{\bullet}\|_{L^{2}([0,\omega_{1}])} \\ &\leq \|\hat{h}_{\pm}^{\bullet}\|_{L^{2}([0,\infty))} + \|R_{N}^{\bullet}\|_{L^{2}([0,\omega_{1}])} \leq \sqrt{\pi E(\phi^{\bullet})} + \|R_{N}^{\bullet}\|_{L^{2}([0,\omega_{1}])} \\ &\leq \varepsilon \sqrt{\pi E(\phi^{\bullet})} + 4\varepsilon \sqrt{E(\phi^{\bullet})} \leq 6\varepsilon \sqrt{E(\phi^{\bullet})} \,. \end{split}$$

Applying the previous Lemma to the polynomial \hat{h}^{\bullet}_N gives the bound

$$\begin{aligned} |a_N^{\bullet}| &\leq \frac{1}{\sqrt{\omega_1}} \left(\frac{4}{\omega_1}\right)^N 6\varepsilon \sqrt{E(\phi^{\bullet})} \\ &= \varepsilon^{\frac{2}{2N+3}} 4^N \left(N+1\right)!^{-\frac{2N+1}{2N+3}} \left(2N+3\right)^{-\frac{2N+1}{4N+6}} 6\sqrt{E(\phi^{\bullet})} \,. \end{aligned}$$

Coefficient wise estimate

Proposition (F.Finster – C.F.P.) Assume that the energy of the positive frequency component is bounded in terms of the total energy by

 $E(\phi_+) < \varepsilon E(\phi)$.

Then the even and odd components of the initial data in momentum space are bounded pointwise for all $k \in \mathbb{R}$ by

$$|\hat{h}(k)| \le |k\,\hat{\phi}_0(k)| + |\hat{\phi}_1(k)| \le 12\,\sqrt{E(\phi)}\,|4k|^{-\frac{3}{2}}\,g(4\,|k|)\,,$$
 (22)

where g is the series

$$g(\omega) := \sum_{n=0}^{\infty} \frac{1}{\sqrt{2n+1}} \frac{(4\omega)^{n+\frac{3}{2}}}{n!} \varepsilon^{\frac{2}{2n+3}}.$$
 (23)

Simple Estimate

Theorem (F.Finster–C.F.P.) Assume that the energy of the positive frequency component is bounded in terms of the total energy by

 $E(\phi_+) < \varepsilon E(\phi)$.

Then the even and odd components of the initial data in momentum space are bounded pointwise for all $k \in \mathbb{R}$ by

$$\left|\hat{h}(k)\right| \le \left|k\,\hat{\phi}_{0}(k)\right| + \left|\hat{\phi}_{1}(k)\right| \le 6^{\frac{3}{2}}\,\frac{\sqrt{E(\phi)}}{\sqrt{2e|\log(\varepsilon)|}}e^{4\omega}.\tag{24}$$

Simple Estimate

Theorem (F.Finster–C.F.P.) Assume that the energy of the positive frequency component is bounded in terms of the total energy by

 $E(\phi_+) < \varepsilon E(\phi)$.

Then the even and odd components of the initial data in momentum space are bounded pointwise for all $k \in \mathbb{R}$ by

$$\left|\hat{h}(k)\right| \le \left|k\,\hat{\phi}_{0}(k)\right| + \left|\hat{\phi}_{1}(k)\right| \le 6^{\frac{3}{2}}\,\frac{\sqrt{E(\phi)}}{\sqrt{2e|\log(\varepsilon)|}}e^{4\omega}.\tag{24}$$

Improvement over constant bound as long as

$$\frac{6^{\frac{3}{2}}e^{4\omega}}{\sqrt{4e|\log(\varepsilon)|}} \le 1.$$
(25)

Proof

$$\begin{split} &\sum_{n=0}^{\infty} \frac{1}{\sqrt{2n+1}} \, \frac{(4\omega)^n}{n!} \, \varepsilon^{\frac{2}{2n+3}} \leq \sqrt{\frac{3}{2}} \, \sum_{n=0}^{\infty} \sqrt{\frac{2}{2n+3}} \, \frac{(4\omega)^n}{n!} \, \varepsilon^{\frac{2}{2n+3}} \\ &\leq \sqrt{\frac{3}{2}} \max_{n \in [0,\infty)} \left[\sqrt{\frac{2}{2n+3}} \, \varepsilon^{\frac{2}{2n+3}} \right] \, \sum_{n=0}^{\infty} \frac{(4\omega)^n}{n!} \leq \sqrt{\frac{3}{2}} \, \sup_{x \in \mathbb{R}^+} \left[x \, e^{x^2 \log \varepsilon} \right] e^{4\omega} \, , \end{split}$$

where in the last step we set $x = \sqrt{2/(2n+3)}$. In order to estimate the last supremum, we set $y = \sqrt{-\log \varepsilon} x$,

$$\sup_{x \in \mathbb{R}^+} \left[x \ e^{x^2 \log \varepsilon} \right] = \frac{1}{\sqrt{-\log \varepsilon}} \ \sup_{y \in \mathbb{R}^+} y \ e^{-y^2} = \frac{1}{\sqrt{2e \left|\log \varepsilon\right|}}$$

L^2 Weight

It follows immediately that

$$\left\|\hat{h}(k)\right\|_{L^{1}_{[0,\omega_{\max}(\varepsilon)]}} < \frac{1}{4}\sqrt{E(\phi)} \quad \text{and} \quad \left\|\hat{h}(k)\right\|^{2}_{L^{2}_{[0,\omega_{\max}(\varepsilon)]}} < \frac{1}{8}E(\phi).$$
(26)

By Plancherel we know that the L^2 norm of a function is conserved under Fourier transform and hence we know that

$$E(\phi) \ge \left\| \hat{h}(k) \right\|_{L^2_{[\omega_{max}(\varepsilon),\infty)}}^2 > \frac{7}{8} E(\phi).$$
(27)

It is clear that $\omega_{max}(\varepsilon)$ is monotone decreasing in $\varepsilon \in (0, 1]$ with $\lim_{\varepsilon \to 0} \omega_{max}(\varepsilon) = \infty$

Best Estimate

It turns out that we can write g as a solution to a Goursat problem and obtain the following bound **Proposition** (F.Finster – C.F.P.) g(a, b) is bounded by

$$egin{aligned} |g(a,b)| \lesssim e^{3a} \, \exp\left(rac{3}{2} \, \mathrm{Im}^2 \, y_0 + \sqrt{2b} \left(rac{1}{2 \, \mathrm{Im} \, y_0} - \mathrm{Im} \, y_0
ight)
ight) \, \sqrt{rac{e^{-
u}}{\sqrt{
u}}} \, \mathrm{Erfi}(
u) \ &= e^{rac{5a}{2}} \, \exp\left(rac{5}{4} \, \mathrm{Im}^2 \, y_0 + \sqrt{2b} \left(rac{1}{2 \, \mathrm{Im} \, y_0} - \mathrm{Im} \, y_0
ight)
ight) \, \sqrt{e^{-
u} \, \mathrm{Erfi}(
u)} \, , \end{aligned}$$

where $\text{Im } y_0$ and ν are given by

$$\sqrt{2b} = 3 \, \text{Im} \, y_0 + 2e^{2a} \, \text{Im} \, y_0 \, e^{\text{Im}^2 \, y_0}$$
(28)
$$\nu = e^{2a} \, e^{\text{Im}^2 \, y_0} \, .$$
(29)

where $a(\varepsilon)$ and $b(\omega)$

Sketch of Proof

Differentiating the function g(a, b) with respect to a and b gives

$$\partial_{a}g(a,b) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{\sqrt{2n+1}} (2n+3) e^{(2n+3)a - \frac{b}{2n+3}}$$
$$\partial_{b}\partial_{a}g(a,b) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{\sqrt{2n+1}} \left(-\frac{2n+3}{2n+3}\right) e^{(2n+3)a - \frac{b}{2n+3}} = -g(a,b).$$

Hence g is a solution of the PDE

$$(\partial_a \partial_b + 1) g = 0.$$
 (30)

Goursat Problem

Introducing the coordinates

$$T = a + b , \qquad X = a - b$$

$$\partial_T = \frac{1}{2} (\partial_a + \partial_b) , \qquad \partial_X = \frac{1}{2} (\partial_a - \partial_b) ,$$

the equation takes the more familiar form

$$\left(\partial_T^2 - \partial_X^2 + 1\right)g = 0.$$

This PDE comes with initial conditions at b = 0 given by the series

$$g_0(a) := g(a,0) = \sum_{n=0}^{\infty} \frac{1}{n!} \frac{1}{\sqrt{2n+1}} e^{(2n+3)a}.$$
 (31)

Moreover, Lebesgue's monotone convergence theorem implies that

$$\lim_{b\to\infty} g(a,b) = \lim_{a\to-\infty} g(a,b) = 0.$$
 (32)

3+1 Dimensions

Assume that for $\varepsilon \in (0, 1]$, the energy of the negative-frequency component is bounded in terms of the total energy by

$$E(\phi_{-}) \leq \varepsilon^2 E(\phi)$$
.

Then the L^2 -norm of the spatial Fourier transform on a sphere of radius ω is bounded for all $\omega \in \mathbb{R}^+$ by

$$\int_{S^2} \left| \omega \, \hat{\phi}(\vartheta, \phi, \omega) \right|^2 \, d\mu_S^2(\vartheta, \varphi) \le 625 \, d_0^{\frac{10}{3}} \, C \, E(\phi) \, \left(4\omega\right)^{-\frac{6}{2}} g_0^2(\omega, \varepsilon) \; ,$$

where C is the constant

$$C := \sum_{l=0}^{\infty} (2l+1) d_l^{\frac{4l+6}{2l+5}} < \infty$$
(33)

(and the d_l are given by $d_l := \frac{4\pi}{\sqrt{6(2l+1)}} \frac{l!}{(2l-1)!!}$.)

Outlook

Thanks

Thank you for your attention.