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My Goal

In my talk

I will give you a rough idea of the problem of localization in Quantum
Mechanics.

I will introduce a novel type of PDE estimates for wave equations in
Minkowski space.
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Introduction Localization in Quantum Mechanics

Localization in Quantum Mechanics

What does it mean for a quantum system to be localized in a particular
volume at a particular time?

φt a normalized time-dependant state vector

Assume there is a self adjoint operator N(V )

(φt ,N(V )φt) probability of finding particle in V at t

Definition: A particle state is said to be localized in V at time t if the
probability of finding the particle in V is 1. It is said to be not in V at
time t if the probability is 0.
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Introduction Localization in Quantum Mechanics

Localization in the Relativistic Setting



Introduction Hegerfeldt’s Theorem

Hegerfeldt’s Theorem

Causality Condition If at time t0 = 0 a particle state is localized in V ,
then there is a constant r = rt , such that, at time t > 0, the particle,
when translated by ~a, |~a| ≥ rt is not in V .

Theorem (Hegerfeldt 1974) In a relativistic theory there is no one-particle
state localized in the finite space region V satisfying the causality
condition.
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Introduction Hegerfeldt’s Theorem

Dirac Particles

Dirac equation & Wave equation have solutions with compact spatial
support.

Hegerfeldts theorem is based on the assumption that the Hamiltonian of
the system is positive definite. =⇒ does not apply to Dirac equation.

Hegerfeldt implies that solutions of hyperbolic partial differential equations
in d + 1-dimensional Minkowski space which have spatially compact
support cannot be composed purely of positive (or similarly negative)
frequencies.
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Frequency Splitting

Set Up

Let B1 = (−1, 1). We consider the Cauchy problem for the scalar wave
equation with smooth, compactly supported initial data in B1,

(∂2t − ∂2x )φ(t, ~x) = 0,

φ|t=0 = φ0 ∈ C∞0 (B1) ,

∂tφ|t=0 = φ1 ∈ C∞0 (B1) .

(1)

We denote the energy of the solution by

E (φ) :=
1

2

∫
B1

(
(∂tφ)2 + (∂xφ)2

)
(t, x) dx . (2)



Frequency Splitting

Set Up

Taking the spatial spatial Fourier transform

φ̂(t, k) =

∫
B1

φ(t, x) e−ikx dx , (3)

we can split
φ̂(t, k) = φ̂+(t, k) + φ̂−(t, k) (4)

with

φ̂±(t, k) :=
1

2
e∓iωt

(
φ̂0(k)± i

ω
φ̂1(k)

)
, (5)

where ω ≥ 0 denotes the absolute value of the frequency, i.e.

ω = ω(k) := |k | . (6)



Frequency Splitting

Set Up

By Plancherel’s theorem

E (φ) =
1

2

∫ ∞
−∞

dk

2π

(
ω2
∣∣φ̂0(k)

∣∣2 +
∣∣φ̂1(k)

∣∣2) (7)

=

∫ ∞
−∞

dk

2π
ω2
(∣∣φ̂+(t, k)

∣∣2 +
∣∣φ̂−(t, k)

∣∣2) . (8)

Therefore

E (φ) = E (φ+) + E (φ−) with E (φ±) :=

∫ ∞
−∞

dk

2π
ω2
∣∣φ̂±(t, k)

∣∣2 .
(9)



Frequency Splitting

Apriory Bounds

φ(x) := (K0f )(x) =

∫
M
K0(x , y) f (y) dd+1y (10)

Taking the Fourier transform, the convolution in (10) becomes a
multiplication in momentum space, i.e.

φ̂(p) = K̂0(p) f̂ (p) , where K̂0(p) = c δ
(
〈p, p〉

) (
Θ(p0)−Θ(−p0)

)
(11)

We choose the following family of source functions

fζ(x) = g(x) exp
(
− iζ (x0 + x1)

)
⇒ f̂ζ(p) = ĝ

(
p0 − ζ, p1 + ζ, p2, . . . , pd

)
(12)

with a fixed test function g and a real parameter ζ.

lim
ζ→∞

E (φ−,ζ)

E (φ+,ζ)
= 0 lim

ζ→−∞

E (φ−,ζ)

E (φ+,ζ)
=∞ (13)



Frequency Splitting

Apriory Bounds



Frequency Splitting Main Theorem

Main Theorem

Theorem (F. Finster – C.F.P.) Assume that at a time t0 a wave φ(t, x) is
supported inside a ball of radius 1 further assume, the inequality

E (φ−) ≤ εE (φ+)

holds for given ε > 0. This implies an a-priori estimate of the frequency
distribution of φ of the form∥∥φ̂(ω, .)

∥∥
∗ ≤ g(ε, ω)

√
E (φ) .



Frequency Splitting Main Theorem

Constant Bound

Define
ĥ(k) := ω φ̂±(k) (14)

Then we get the first bound.

Lemma For all ω ∈ R+,

|ĥ(ω)| ≤
√

2E (φ). (15)



Frequency Splitting Main Theorem

Proof

According to the definition of φ̂±∣∣ĥ±(k)
∣∣ = |k φ̂±(k)| ≤ 1

2

(
|k φ̂0(k)|+|φ̂1(k)|

)
≤ 1√

2

(
|k φ̂0(k)|2+|φ̂1(k)|2

) 1
2
.

The obtained Fourier transforms can be estimated pointwise by

∣∣k φ̂0(k)
∣∣ ≤ ∣∣∣∣ ∫

B1

∂xφ0(x) e−ikx dx

∣∣∣∣ ≤ ∫
B1

∣∣∂xφ0(x)
∣∣ dx ≤ √2 ‖∂xφ0‖L2(B1)∣∣φ̂1(k)

∣∣ ≤ ∣∣∣∣ ∫
B1

φ1(x) e−ikx dx

∣∣∣∣ ≤ ∫
B1

∣∣φ1(x)
∣∣ dx ≤ √2 ‖φ1‖L2(B1) .

Comparing with the definition of the energy evaluated at time t = 0 gives
the result.



Frequency Splitting Main Theorem

Taylor Expansion

For 1 + 1d we introduce the parity decomposition

φ(t, x) = φeven(t, x) + φodd(t, x) ,

and get again a split of the energies

E (φ±) = E (φeven± ) + E (φodd± ).

Since the initial data is compactly supported, its Fourier transform is real
analytic and we can thus perform a Taylor expansion around ω = 0

h•(ω) :=
∞∑
n=0

a•n ω
n : R+ → C (16)



Frequency Splitting Main Theorem

A First Bound on Coefficients

Proposition The coefficients in the power series for h•(ω) are bounded by

|a•n| ≤
√
E (φ•)

n!
.

Proof Differentiating we get∣∣φ̂(n)(k)
∣∣ ≤ ∣∣∣∣ ∫

B1

(−ix)n φ(x) e−ikx dx

∣∣∣∣ ≤ ∫
B1

∣∣φ(x)
∣∣ dx ≤ √2 ‖φ‖L2(B1) .

In particular, setting k = 0 we obtain∣∣an∣∣ n! =
∣∣φ̂(n)(0)

∣∣ ≤ √2 ‖φ‖L2(B1) ,

Further

ik φ̂(k) =
∞∑
n=1

dn k
n with |dn| ≤

√
2

n!
‖∂xφ‖L2(B1) .
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Frequency Splitting Main Theorem

Proof

∣∣aeven
2`

∣∣ ≤ 1√
2

‖φeven
1 ‖L2(B1)

(2`)!
,

∣∣aeven
2`+1

∣∣ ≤ 1√
2

‖∂xφeven
0 ‖L2(B1)

(2`+ 1)!∣∣bodd
2`+2

∣∣ ≤ 1√
2

‖∂xφodd
0 ‖L2(B1)

(2`+ 2)!
,

∣∣bodd
2`+1

∣∣ ≤ 1√
2

‖φodd
1 ‖L2(B1)

(2`+ 1)!
.

We thus obtain the simple bound in terms of the energy

|a•n| ≤
1

n!

1√
2

max
{
‖∂xφ•0‖L2(B1), ‖φ

•
1‖L2(B1)

}
≤ 1

n!

1√
2

√
‖∂xφ•0‖2L2(B1)

+ ‖φ•1‖2L2(B1)
=

√
E (φ•)

n!
.



Frequency Splitting Main Theorem

Improved Bound on Coefficients

We decompose the Taylor series into a Taylor polynomial of degree N and
the remainder term,

ĥ•± = ĥ•N +R•N with ĥ•N(ω) :=
N∑

n=0

a•n ω
n , R•N(ω) :=

∞∑
n=N+1

a•n ω
n .

(17)



Frequency Splitting Main Theorem

Improved Bound on Coefficients

Lemma Let P(ω) be a real polynomial of degree at most N with N ∈ N0,

P(ω) = a0 + a1 ω + · · ·+ aN ω
N .

Then for any ω1 > 0, the highest coefficient of P satisfies the following
inequalities:

|aN | ≤
1
√
ω1

√
2

π

(
4

ω1

)N

‖P‖L2([0,ω1])

(
1 + O

( 1

N

))
(18)

≤ 1
√
ω1

(
4

ω1

)N

‖P‖L2([0,ω1]) . (19)



Frequency Splitting Main Theorem

Bounding the Remainder

Lemma Given ε ∈ [0, 1] and N ∈ N0, we choose

ω1 =
(
ε2 (N + 1)!2 (2N + 3)

) 1
2N+3

. (20)

Then the remainder term is bounded on [0, ω1] by

‖R•N(ω)‖L2([0,ω1]) ≤ 4ε
√
E (φ•) .



Frequency Splitting Main Theorem

Proof

We can estimate the remainder by

|R•N(ω)| ≤
∞∑

n=N+1

ωn

n!

√
E (φ•)

=
ωN+1

(N + 1)!

(
1 +

ω

N + 2
+

ω2

(N + 2)(N + 3)
+ · · ·

)√
E (φ•)

≤ c(ω)
ωN+1

(N + 1)!

√
E (φ•) with c(ω) :=

∞∑
n=0

( ω

N + 2

)n
.

(21)

Using this pointwise bound, the L2-norm can be estimated by

‖R•N(ω)‖2L2([0,ω1]
≤ 16E (φ•)

∫ ω1

0

ω2N+2

(N + 1)!2
dω ≤ 16 E (φ•)

(N + 1)!2 (2N + 3)
ω2N+3
1 .



Frequency Splitting Main Theorem

Improved Coefficient Bound

Proposition Assume that

E (φ•−) ≤ ε2 E (φ•) .

Then the Taylor coefficients are bounded for all n ∈ N0 by

|a•n| ≤
6√

2n + 1

4n

n!
ε

2
2n+3

√
E (φ•) .



Frequency Splitting Main Theorem

Proof

‖ĥ•N(ω)‖L2([0,ω1]) =
∥∥ĥ•± − R•N

∥∥
L2([0,ω1])

≤
∥∥ĥ•±∥∥L2([0,ω1])

+
∥∥R•N∥∥L2([0,ω1])

≤
∥∥ĥ•±∥∥L2([0,∞))

+
∥∥R•N∥∥L2([0,ω1])

≤
√
π E (φ•−) + ‖R•N‖L2([0,ω1])

≤ ε
√
π E (φ•) + 4ε

√
E (φ•) ≤ 6ε

√
E (φ•) .

Applying the previous Lemma to the polynomial ĥ•N gives the bound

|a•N | ≤
1
√
ω1

( 4

ω1

)N
6ε
√
E (φ•)

= ε
2

2N+3 4N (N + 1)!−
2N+1
2N+3 (2N + 3)−

2N+1
4N+6 6

√
E (φ•) .



Frequency Splitting Main Theorem

Coefficient wise estimate

Proposition (F.Finster – C.F.P.) Assume that the energy of the positive
frequency component is bounded in terms of the total energy by

E (φ+) < ε E (φ) .

Then the even and odd components of the initial data in momentum space
are bounded pointwise for all k ∈ R by∣∣ĥ(k)

∣∣ ≤ ∣∣k φ̂0(k)
∣∣+
∣∣φ̂1(k)

∣∣ ≤ 12
√

E (φ) |4k |−
3
2 g
(
4 |k |

)
, (22)

where g is the series

g(ω) :=
∞∑
n=0

1√
2n + 1

(4ω)n+
3
2

n!
ε

2
2n+3 . (23)



Frequency Splitting Main Theorem

Simple Estimate

Theorem (F.Finster–C.F.P.) Assume that the energy of the positive
frequency component is bounded in terms of the total energy by

E (φ+) < ε E (φ) .

Then the even and odd components of the initial data in momentum space
are bounded pointwise for all k ∈ R by

∣∣ĥ(k)
∣∣ ≤ ∣∣k φ̂0(k)

∣∣+
∣∣φ̂1(k)

∣∣ ≤ 6
3
2

√
E (φ)√

2e| log(ε)|
e4ω. (24)

Improvement over constant bound as long as

6
3
2 e4ω√

4e| log(ε)|
≤ 1. (25)
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Frequency Splitting Main Theorem

Proof

∞∑
n=0

1√
2n + 1

(4ω)n

n!
ε

2
2n+3 ≤

√
3

2

∞∑
n=0

√
2

2n + 3

(4ω)n

n!
ε

2
2n+3

≤
√

3

2
max

n∈[0,∞)

[√
2

2n + 3
ε

2
2n+3

] ∞∑
n=0

(4ω)n

n!
≤
√

3

2
sup
x∈R+

[
x ex

2 log ε
]
e4ω ,

where in the last step we set x =
√

2/(2n + 3). In order to estimate the
last supremum, we set y =

√
− log εx ,

sup
x∈R+

[
x ex

2 log ε
]

=
1√
− log ε

sup
y∈R+

y e−y
2

=
1√

2e | log ε|



Frequency Splitting Main Theorem

L2 Weight

It follows immediately that∥∥∥ĥ(k)
∥∥∥
L1
[0,ωmax (ε)]

<
1

4

√
E (φ) and

∥∥∥ĥ(k)
∥∥∥2
L2
[0,ωmax (ε)]

<
1

8
E (φ). (26)

By Plancherel we know that the L2 norm of a function is conserved under
Fourier transform and hence we know that

E (φ) ≥
∥∥∥ĥ(k)

∥∥∥2
L2
[ωmax (ε),∞)

>
7

8
E (φ). (27)

It is clear that ωmax(ε) is monotone decreasing in ε ∈ (0, 1] with
limε→0 ωmax(ε) =∞



Frequency Splitting Main Theorem

Best Estimate

It turns out that we can write g as a solution to a Goursat problem and
obtain the following bound
Proposition (F.Finster – C.F.P.) g(a, b) is bounded by

|g(a, b)| . e3a exp

(
3

2
Im2 y0 +

√
2b
( 1

2 Im y0
− Im y0

))√e−ν√
ν

Erfi(ν)

= e
5a
2 exp

(
5

4
Im2 y0 +

√
2b
( 1

2 Im y0
− Im y0

))√
e−ν Erfi(ν) ,

where Im y0 and ν are given by

√
2b = 3 Im y0 + 2e2a Im y0 e

Im2 y0 (28)

ν = e2a e Im
2 y0 . (29)

where a(ε) and b(ω)



Frequency Splitting Main Theorem

Sketch of Proof

Differentiating the function g(a, b) with respect to a and b gives

∂ag(a, b) =
∞∑
n=0

1

n!

1√
2n + 1

(2n + 3) e(2n+3) a− b
2n+3

∂b∂ag(a, b) =
∞∑
n=0

1

n!

1√
2n + 1

(
− 2n + 3

2n + 3

)
e(2n+3) a− b

2n+3 = −g(a, b) .

Hence g is a solution of the PDE

(∂a∂b + 1) g = 0 . (30)



Frequency Splitting Main Theorem

Goursat Problem

Introducing the coordinates

T = a + b , X = a− b

∂T =
1

2

(
∂a + ∂b

)
, ∂X =

1

2

(
∂a − ∂b

)
,

the equation takes the more familiar form(
∂2T − ∂2X + 1

)
g = 0 .

This PDE comes with initial conditions at b = 0 given by the series

g0(a) := g(a, 0) =
∞∑
n=0

1

n!

1√
2n + 1

e(2n+3) a . (31)

Moreover, Lebesgue’s monotone convergence theorem implies that

lim
b→∞

g(a, b) = lim
a→−∞

g(a, b) = 0 . (32)



Frequency Splitting Main Theorem

3+1 Dimensions

Assume that for ε ∈ (0, 1], the energy of the negative-frequency
component is bounded in terms of the total energy by

E (φ−) ≤ ε2 E (φ) .

Then the L2-norm of the spatial Fourier transform on a sphere of radius ω
is bounded for all ω ∈ R+ by∫

S2

∣∣ω φ̂(ϑ, φ, ω)
∣∣2 dµ2S(ϑ, ϕ) ≤ 625 d

10
3
0 C E (φ)

(
4ω
)− 6

2 g2
0

(
ω, ε
)
,

where C is the constant

C :=
∞∑
l=0

(2l + 1) d
4l+6
2l+5

l <∞ (33)

(and the dl are given by dl := 4π√
6 (2l+1)

l!
(2l−1)!! .)



Outlook

Thanks

Thank you for your attention.
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