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The mass of a static, asymptotically flat spacetime

Joint work with A. Platzer:

� F.F, A. Platzer,

“A positive mass theorem for static causal fermion systems,”

arXiv:1912.12995 [math-ph] (2019)
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The mass of a static, asymptotically flat spacetime

� Let M be a globally hyperbolic Lorentzian manifold,

always four-dimensional

� static: M = R× N ∋ (t , x)
∂t is Killing, orthogonal to Nt := {(t , x) | x ∈ N}

� g induced Riemannian metric on N

� asymptotically flat:
∃ diffeomorphism φ : N \ K → R3 \ BR(0)
in corresponding chart,

gαβ(x) = δαβ + aαβ(x) , x ∈ R
3 \ BR(0)

aαβ = O(1/|x |), ∂γaαβ = O(1/|x |2) and ∂γδaαβ = O(1/|x |3)
Then the total mass or ADM mass is defined by

MADM =
1

16π
lim

R→∞

3
∑

α,β=1

∫

SR

(∂βgαβ − ∂αgββ) ν
α dΩ

� SR coordinate sphere with normal ν and area measure dΩ
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The total mass abstractly

� Let G be a locally compact and σ-compact Hausdorff space

� Let L : G× G → R
+
0 be

symmetric: L(x , y) = L(y , x)
continuous and bounded (for simplicity of presentation)
of compact range (for simplicity of presentation), i.e.

L(x , .) has compact support ∀x ∈ G.

� Let µ and µ̃ be Radon measures on G (i.e. positive regular

Borel measure, µ(K ) <∞ for compact K ⊂ G)

� Denote the supports of the measures by

N := supp µ , Ñ := supp µ̃

supp µ :=
{

x ∈ G | ρ(U) 6= 0

for every open neighborhood U ⊂ N of x
}
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The total mass abstractly

Idea: “Compare µ and µ̃ asymptotically near infinity”

� Let (Ωn)n∈N be exhaustion of N by compact sets,

(Ω̃n)n∈N exhaustion of Ñ with

µ(Ωn) = µ̃(Ω̃n) ∀n

M := lim
n→∞

(
∫

Ω̃n

d µ̃(x̃)

∫

N\Ωn

dµ(y) L(x̃ , y)

−
∫

Ωn

dµ(x)

∫

Ñ\Ω̃n

d µ̃(ỹ) L(x , ỹ)
)

N

Ωn xM

Ñ
M̃

Ω̃n
x̃

y

ỹ
L

� Has structure of a surface layer integral
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Rewriting the surface layer integral as a volume term

A :=

∫

Ω̃n

d µ̃(x̃)

∫

N\Ωn

dµ(y)L(x̃ , y)−
∫

Ωn

dµ(x)

∫

Ñ\Ω̃n

d µ̃(ỹ)L(x , ỹ)

Moreover, using the symmetry of L,
∫

Ω̃n

d µ̃(x̃)

∫

Ωn

dµ(y) L(x̃ , y) −
∫

Ωn

dµ(x)

∫

Ω̃n

d µ̃(ỹ) L(x , ỹ) = 0

Add to obtain

A =

∫

Ω̃n

d µ̃(x̃)

∫

N

dµ(y) L(x̃ , y)−
∫

Ωn

dµ(x)

∫

Ñ

d µ̃(ỹ) L(x , ỹ)

=

∫

Ω̃n

ñ(x̃) d µ̃(x̃)−
∫

Ωn

n(x) dµ(x)

with

n(x) :=

∫

N

L(x , ỹ) d µ̃(ỹ) , ñ(x̃) :=

∫

N

L(x̃ , y) dµ(y) .

� analog of Gauß divergence theorem, but nonlinear
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The total mass abstractly

Thus the total mass becomes

M = lim
n→∞

(
∫

Ω̃n

ñ(x̃) d µ̃(x̃)−
∫

Ωn

n(x) dµ(x)

)

Use that the volumes of Ωn and Ω̃n are equal,

= lim
n→∞

(
∫

Ω̃n

(

ñ(x̃)− s
)

d µ̃(x̃)−
∫

Ωn

(

n(x)− s
)

dµ(x)

)

=

∫

Ñ

(

ñ(x̃)− s
)

d µ̃(x̃)−
∫

N

(

n(x)− s
)

dµ(x) ,

provided that the integrals exist, i.e.

n(x)− s ∈ L1(N,dµ) , ñ(x̃)− s ∈ L1(Ñ,d µ̃) .
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The total mass abstractly

Definition

The measures µ̃ and µ are asymptotically close if they are both

σ-finite with infinite total volume (i.e. µ̃(Ñ) = µ(N) = ∞), and for

a suitable constant s ≥ 0,

∫

N

∣

∣n(x)− s
∣

∣ dµ(x) <∞ and

∫

Ñ

∣

∣ñ(x̃)− s
∣

∣ d µ̃(x̃) <∞

where n(x) =

∫

Ñ

L(x , ỹ) d µ̃(ỹ) , ñ(x̃) =

∫

N

L(x̃ , y) dµ(y) .

Lemma

Under these assumptions, the total mass is well-defined and

finite and

M =

∫

Ñ

(

ñ(x̃)− s
)

d µ̃(x̃)−
∫

N

(

n(x)− s
)

dµ(x) .
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The causal variational principle

The causal variational principle is to minimize the action

S(µ) =
∫

G

dµ(x)

∫

G

dµ(y) L(x , y)

� Vary µ in the class of all regular Borel measures,

� keeping the total volume µ(G) fixed. (volume constraint).

Existence of minimizers is proven in this generality in

� F.F., C. Langer, “Causal variational principles in the σ-locally compact

setting: Existence of minimizers,” arXiv:2002.04412 [math-ph] (2020)
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The Euler-Lagrange equations

ℓ : G → R , ℓ(x) :=

∫

N

L(x , y) dµ(y)− s

Lemma

Let ρ be a minimizer of the causal action. Then, for a suitable

value s ≥ 0,

ℓ|N ≡ inf
G
ℓ = 0 .

ℓ

GN
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The Euler-Lagrange equations

Proof.

Given x0 ∈ supp µ, choose open neighborhood U ⊂ N of x0 with

0 < µ(U) <∞. Consider variation

µ̃τ = χN\U µ+ (1 − τ)χU µ+ τ µ(U) δy

with τ ∈ [0,1) and y ∈ G (where δy is the Dirac measure).

Then S(µ̃τ )− S(µ) is well-defined and finite. Moreover,

0 ≤ d

dτ
S(µ̃τ )

∣

∣

τ=0
= 2

∫

G

d ˙̃µτ
∣

∣

τ=0

∫

G

dµ L(x , y)

= 2

(

µ(U) ℓ(y) −
∫

U

ℓ(x)dµ(x)

)

=⇒ ℓ(y) ≥ 1

µ(U)

∫

U

ℓ(x)dµ(x)

Felix Finster Positive mass and causal fermion systems



“Asymptotically close” revisited

Rewrite the above definition using ℓ:

Definition

The measures µ̃ and µ are asymptotically close if they are both

σ-finite with infinite total volume (i.e. µ̃(Ñ) = µ(N) = ∞), but for

a suitable constant s ≥ 0,

∫

N

∣

∣ℓ̃(x)
∣

∣ dµ(x) <∞ and

∫

Ñ

∣

∣ℓ(x̃)
∣

∣ d µ̃(x̃) <∞

If µ and µ̃ are minimizing measures, then

ℓ̃(x) ≥ ℓ̃|
Ñ
≡ 0 , ℓ(x̃) ≥ ℓ|N ≡ 0

� Now measures are asymptotically close if

N and Ñ “approach each other near infinity”
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Example: Dirac spinors in space-time

Let M be a Lorentzian space-time,

for simplicity 4-dimensional, globally hyperbolic,

then automatically spin,

(SM,≺.|.≻) spinor bundle

� SpM ≃ C
4

� spin inner product

≺.|.≻p : SpM × SpM → C

is indefinite of signature (2,2)

(D − m)ψm = 0 Dirac equation
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Example: Dirac spinors in space-time

� Cauchy problem well-posed, global smooth solutions

(for example symmetric hyperbolic systems)

� finite propagation speed

C∞
sc (M,SM) spatially compact solutions

(ψm|φm)m := 2π

∫

N

≺ψm|/νφm≻x dµN(x) scalar product

completion gives Hilbert space (Hm, (.|.)m)
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Example: Dirac spinors in space-time

� Choose H as a subspace of the solution space,

H = span(ψ1, . . . , ψf )

� To x ∈ R
4 associate a local correlation operator

〈ψ|F (x)φ〉 = −≺ψ(x)|φ(x)≻x ∀ψ, φ ∈ H

Is self-adjoint, rank ≤ 4

at most two positive and at most two negative eigenvalues

� Here ultraviolet regularization may be necessary:

〈ψ|F (x)φ〉 = −≺(Rεψ)(x)|(Rεφ)(x)≻x ∀ψ, φ ∈ H

Rε : H → C0(M,SM) regularization operators

ε > 0 : regularization scale (Planck length)
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Example: Dirac spinors in space-time

� Thus F (x) ∈ F where

F :=
{

F ∈ L(H) with the properties:

⊲ F is self-adjoint and has rank ≤ 4

⊲ F has at most 2 positive

and at most 2 negative eigenvalues
}
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Example: Dirac spinors in space-time

We obtain mapping x 7→ F (x) ∈ F ⊂ L(H)

Ft

~x

F ⊂ L(H)

� push-forward measure ρ := F∗(µM), is measure on F,

ρ(U) := µM

(

F−1(U)
)

� support of the measure is closure of image of F .
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Causal fermion systems

Definition (Causal fermion system)

Let (H, 〈.|.〉H) be Hilbert space

Given parameter n ∈ N (“spin dimension”)

F :=
{

x ∈ L(H) with the properties:

� x is self-adjoint and has finite rank

� x has at most n positive

and at most n negative eigenvalues
}

ρ a measure on F (“universal measure”)

M
M := supp ρ space-time
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Static Causal Fermion Systems

� Assume that M is a static globally hyperbolic spacetime.

Then

M := supp ρ = R× N

dρ = dt dµ , N = supp µ .

� On the level of causal fermion systems,

one-parameter unitary group (Ut )t∈R on H

is a symmetry of ρ,

ρ
(

Ut ΩU
−1
t

)

= ρ(Ω) .

G := F/R

There is an explicitly given static Lagrangian

L : G× G → R
+
0 (more details later)

Felix Finster Positive mass and causal fermion systems



Correspondence to the ADM mass

� (H,F, ρ) CFS describing Minkowski vacuum

(H all negative energy solutions, regularization on scale ε)

� (H̃, F̃, ρ̃) CFS describing a static, asymptotically

Schwarzschild spacetime

� identify H and H̃ unitarily.

Arrange that measures are asymptotically close
Apart from this, identification is irrelevant

Theorem

M = c MADM

with the constant c given by

c =
1

4π

∫

R3

|y |2 L
(

0, y
)

d3(y) > 0 .
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Correspondence to the ADM mass

Remarks on the proof:

� Volume constraint µ(Ωn) = µ̃(Ω̃n) implies that the leading

contribution ∼ s drops out.

� It remains to compute the next-to-leading order ∼ c

independent of the volumes of the inner regions
only involves the metric near infinity

described by a linear surface layer integral, w ∈ Γ(N,TG)

M = lim
ΩրN

∫

Ω

dµ(x)

∫

N\Ω

dµ(y)
(

D1,w − D2,w

)

L(x , y)

� use perturbative methods (linearized gravity)

Compute the perturbation of all Dirac wave functions

Compute first variations of L
Compute the surface layer integral asymptotically on large
spheres
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The causal action principle

Let x , y ∈ F. Then x and y are linear operators.

x ·y ∈ L(H):

rank ≤ 2n

in general not self-adjoint: (x ·y)∗ = y ·x 6= x ·y
thus non-trivial complex eigenvalues λxy

1 , . . . , λ
xy
2n
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The causal action principle

Nontrivial eigenvalues of xy : λxy
1 , . . . , λ

xy
2n ∈ C

Lagrangian L(x , y) = 1

4n

2n
∑

i ,j=1

(

|λxy
i
| − |λxy

j
|
)2 ≥ 0

action S =
x

F×F

L(x , y) dρ(x) dρ(y) ∈ [0,∞]

Minimize S under variations of ρ, with constraints

volume constraint: ρ(F) = const

trace constraint:

∫

F

tr(x) dρ(x) = const

boundedness constraint:
x

F×F

2n
∑

i=1

|λxy
i
|2 dρ(x)dρ(y) ≤ C
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The static causal action principle

� Choose unitary group (Ut)t∈R acting on H.

� Vary in the class of static measures.

� Treat the boundedness constraint with a Lagrange

multiplier κ > 0,

Lκ(x , y) := L(x , y) + κ

2n
∑

i=1

|λxy
i |2 .

� Then the static causal action principle is to minimize

S(µ) =
∫

G

dµ(x)

∫

G

dµ(y) L(x , y)

where

L(x , y) :=
∫ ∞

−∞
Lκ

(

(t0, x), (t , y)
)

dt

(independent of t0 due to time symmetry)

� κ = κ(C) dimensionless parameter
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The positive mass theorem

Definition

The measure µ is κ-extendable if the following conditions hold:

(i) There is a family of measures (µτ )τ∈(−1,1) of the form

µτ = (Fτ )∗µ ,

each of which satisfies the EL equations with a

parameter κ(τ) and

F0 = idN and κ′(0) = −1 .

(ii) For every x ∈ N, the curve Fτ (x) is differentiable at τ = 0,

giving rise to a vector field

v :=
d

dτ
Fτ

∣

∣

∣

τ=0
∈ Γ(N,TG) .
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The positive mass theorem

� Assume that µ and µ̃ are κ-scalable. Then

M = lim
ΩրN

∫

Ω
dµ(x)

∫

N\Ω
dµ(y)

(

D1,w − D2,w

)

L(x , y)

with

w = g
(

ṽ − v
)

and g ∈ R, called the gravitational coupling constant.
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The positive mass theorem

Theorem (Positive mass theorem)

The total mass can be written as

M = g

∫

Ñ

(

ℓ̃− ℓ̃∞
)

d µ̃

If µ̃ satisfies the local energy condition

ℓ̃(x) ≥ ℓ̃∞ for all x ∈ Ñ

and the gravitational coupling constant g is positive, then the

total mass is non-negative,

M ≥ 0 .

� No smoothness assumptions. Definition of total mass

works similarly for discrete spacetimes or generalized

“quantum spacetimes.”
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Outlook

� Rigidity statement: M = 0 =⇒ ℓ̃ ≡ ℓ̃∞
Which measures have this property? Are they unique?

In which sense?

� Time-dependent setting: Ongoing work with J. Wurm

� Penrose inequality: Seems difficult; spinor methods do not

seem to apply

� Connection between area and black hole entropy:

Ongoing work with E. Curiel, J. Isidro, M. Lottner

� . . . . . .

www.causal-fermion-system.com
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www.causal-fermion-system.com

Thank you for your attention!
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Inherent structures of a causal fermion system

Let (H,F, ρ) be a causal fermion of spin dimension n,

space-time M := suppρ.

space-time points are linear operators on H

� For x ∈ M, consider eigenspaces of x .

� For x , y ∈ M,

consider operator products xy
project eigenspaces of x to eigenspaces of y

Gives rise to:

� quantum objects (spinors, wave functions)

� geometric structures (connection, curvature)

� causal structure, analytic structures
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Causal structure

Let x , y ∈ M. Then

x ·y ∈ L(H) has non-trivial complex eigenvalues λ
xy
1 , . . . , λ

xy
2n

Definition (causal structure)

The points x , y ∈ F are called























spacelike separated if |λxy
j | = |λxy

k | for all j , k = 1, . . . ,2n

timelike separated if λxy
1 , . . . , λ

xy
2n are all real

and |λxy
j
| 6= |λxy

k
| for some j , k

lightlike separated otherwise

� Lagrangian is compatible with causal structure:

Lagrangian L(x , y) =
1

4n

2n
∑

i,j=1

(

|λxy
i | − |λxy

j |
)2

≥ 0

thus x , y spacelike separated ⇒ L(x , y) = 0

“points with spacelike separation do not interact”
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Inherent structures of a causal fermion system

� Spinors

SxM := x(H) ⊂ H “spin space”, dimSxM ≤ 2n

≺u|v≻x := 〈u | x v〉H “spin scalar product”,

inner product of signature (≤ n,≤ n)

Hilbert space H

SxMSyM
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Inherent structures in space-time

� Physical wave functions

ψu(x) = πx u with u ∈ H physical wave function

πx : H → H orthogonal projection on x(H)

SxMSyM u

ψu(x)ψu(y)
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Fundamental Theories

of Physics 186

Springer, 2016

548+xi pages

arXiv:1605.04742 [math-ph]

In this limiting case one gets:

� interactions of the standard model

� classical gravity: Einstein equations modulo higher order

curvature corrections
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The continuum limit in Minkowski space

Specify vacuum:

� Choose H as the space of all negative-energy solutions,

hence “Dirac sea”
ω

k

anti−particles

particles

Dirac sea

Fixes length scale (“Compton length”)

� Introduce ultraviolet regularization

Fixes length scale δ (“Planck length”)

Fixes length scale ε (“regularization length”)

This is a minimizer of the causal action (in a well-defined sense).
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The continuum limit in Minkowski space

� Construct causal fermion system in gravitational field

(as outlined above)

� Consider the Euler-Lagrange equations of causal action

principle

� Analyze the asymptotics as εց 0

� One gets a statement of the form

EL equations are satisfied as εց 0

⇐⇒ linearized Einstein equations hold
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Total mass, area and matter flux

General question:

How does the causal action principle relate matter

to the geometry of space-time?

based on two papers:

� Erik Curiel, F.F., José M. Isidro, “Two-dimensional area and

matter flux in the theory of causal fermion systems,”

arXiv:1910.06161 [math-ph] (2019)

� F.F., Andreas Platzer, “A positive mass theorem for static

causal fermion systems,”

PhD thesis defended in July 2019, paper in preparation
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Static causal fermion systems

M

F

F

N
M = F (M)

Time translations realized by unitary group on H,

F (t +∆t ,x) = U(∆t) F (t ,x) U(∆t)−1

again work on the right side

decompose the space-time measure: dρ = dt dµ
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Two-dimensional area in the static case

N Ω ⊂ N

M
R× (N \ Ω)

x

yL

∂Ω ⊂ N

A(∂Ω) :=

∫

Ω
dµ(x)

∫

R×(N\Ω)
dρ(y) L(x , y)

� Make use of the fact that L(x , y) is of short range

(Compton scale)

� Is example of surface layer integral

(as developed with Johannes Kleiner 2014-17)
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The ADM mass

� static Lorentzian space-time, induced Riemannian metric g

on hypersurface g = const.

� gαβ = O2

(

1
r

)

mADM =
1

16π
lim

R→∞

3
∑

α,β=1

∫

SR

(∂βgαβ − ∂αgββ) ν
α dΩ

miso = lim sup
r→∞

2

A(r)

(

V (r)− 1

6
√
π

A(r)
3
2

)
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The total mass in the static case

Consider two jointly static measures

� dρ = dt dµ: vacuum

� d ρ̃ = dt d µ̃: asymptotically flat, static space-time
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The total mass in the static case

� Definition very general, no smoothness assumptions!

THEOREM

For causal fermion systems constructed from Dirac solutions in

a static, asymptoticaly flat space-time,

M = C MADM

THEOREM

Under suitable assumptions (asymptotic flat and κ-scalable),

M = g

∫

Ñ

(

ℓ̃− ℓ̃∞
)

d µ̃

� uses EL equations of causal action

� gives rise to a positive mass theorem
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Two-dimensional area in the dynamical case

� Choose local time function T : U ⊂ M → R,

gives foliation

Nt := T−1(t) .

� Decompose the measure as

dρ = dt dµt

� For Ω ⊂ Nt define area of its boundary by

A(∂Ω) :=

∫

Ω
dµt(x)

∫

R×(Nt\Ω)
dρ(y) L(x , y)

Nt

Ω ⊂ N

M

x

yL
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Area and area change

More convenient: consider flow by vector field v :

V

U

∂UτS

Sτ

v

A =

∫

U∩V

dρ(x)∇v

∫

M\V

dρ(y) Lκ(x , y)

=

∫

U∩V

dρ(x)

∫

M\V

dρ(y)
(

∇1,v ±∇2,v

)

Lκ(x , y)
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Area and area change

� jet v := (b, v)

� jet derivative ∇vg(x) := a(x)g(x) +
(

Dvg
)

(x)

� choose b as the divergence of the vector field,

b = div v :=
1

h
∂j

(

h v j
)

where dρ = h(x) d4x .

A =

∫

U∩V

dρ(x)∇v

∫

M\V

dρ(y) Lκ(x , y)

=

∫

U∩V

dρ(x)

∫

M\V

dρ(y)
(

∇1,v ±∇2,v

)

Lκ(x , y)
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Area and area change

Now one can compute the time derivative:

d

dτ
A(Sτ )

∣

∣

∣

τ=0

=

∫

U∩V

dρ(x)

∫

M\V

dρ(y)
(

∇1,v +∇2,v

)(

∇1,v −∇2,v

)

Lκ(x , y)

+

∫

U∩V

dρ(x)

∫

M\V

dρ(y) Lκ(x , y)
(

Dv div v(x)− Dv div v(y)
)

+

∫

U∩V

dρ(x)

∫

M\V

dρ(y)
(

∇1,v −∇2,v

)

Lκ(x , y)
(

div v(x) + div v(y)
)
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Symmetries and Killing fields

DEFINITION

A vector field v on M is called Killing field of the causal

fermion system if the following conditions hold:

(i) The divergence of v vanishes,

div v = 0

(ii) The directional derivative of the Lagrangian is small in the

sense that

(

D1,v + D2,v

)

Lκ(x , y) .
m4

ε4 δ4

� in the last inequality the EL equations of the causal action

principle are used!
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Matter flux

Now consider

� v Killing field

� u = (div u,u) with u tangential to ∂U

V

U

S

v

u

Then the matter flux can be introduced by

F (Sτ ) :=

∫

Ω∩V

dρ(x)

∫

M\V

dρ(y)
(

∇1,u−∇2,u

)(

∇1,v+∇2,v

)

Lκ(x , y).
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Limiting case of lightlike propagation

If v is a Killing field, then

d

dτ
A(Sτ )

∣

∣

∣

τ=0

=

∫

U∩V

dρ(x)

∫

M\V

dρ(y)
(

∇1,v +∇2,v

)(

∇1,v −∇2,v

)

Lκ(x , y)

F (Sτ )

=

∫

Ω∩V

dρ(x)

∫

M\V

dρ(y)
(

∇1,u −∇2,u

)(

∇1,v +∇2,v

)

Lκ(x , y)

In the limiting case when v becomes timelike, u and v coincide.

Thus
d

dτ
A(Sτ )

∣

∣

∣

τ=0
= F (Sτ )

This generalizes a formula by Ted Jacobson (1995) to the

setting of causal fermion systems.
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Summary

� Area, area change, matter flux and total mass can be

defined intrinsically for a causal fermion system

� agreement with classical notions (ADM mass, Jacobson’s

area law)

� conclusion: causal action principle describes gravitational

effects in a sensible way

� gives an intuitive and direct understanding of the causal

action principle
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