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What is a causal fermion system?

» approach to fundamental physics
» novel mathematical model of space-time

» physical equations are formulated in generalized
space-times
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» Planck scale gives natural length scale for “new physics”
» ultraviolet divergences of QFT

» Consider lattice system, for simplicity 2d
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Usual way to set up equations:
» Replace derivatives by difference quotients

0 =0¢(t, x) := (A1—t)2 (qb(t + At x) —2¢(t, x) + ¢(t — At, x))

_ (A1—x)2 (qb(t, X + Ax) — 2¢(t, x) + ¢(t, x — Ax))

» Gives evolution equation, proceed time step by time step
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Drawback of this approach:
» Ad hoc: Why square lattice, why difference quotients?
» Is not background-free: What is lattice spacing?

» Not invariant under general coordinate transformations,
not compatible with the equivalence principle

Basic question: Can one formulate equations without referring
to the nearest neighbor relation and lattice spacing?
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» Consider wave functions 1, ...,y on lattice (f < o)
» Introduce scalar product; orthonormalize,

(k1) = 0k
gives f-dim Hilbert space (H, (.|.))-
important object: for any lattice point (f, x) introduce

local correlation operator F(t, x) : H — H
» define matrix elements by
(F(ta X) lk = w/(t X)l/Jk(t’ X)

basis invariant:

(U, F(t,x) d)ac = (L, x)o(t, X) forall,¢ € H
» Hermitian matrix
» Has rank at most one, is positive semi-definite

F(t,x)=e€e"e  with e:H—->C, ¢v—y(x)



F = {F Hermitian, rank one, positive semi—definite}

M
general idea:

» disregard objects on the left
(nearest neighbors, lattice spacing)
» work instead with the objects on the right
(only local correlation operators)
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How to set up equations in this setting?
Explain idea in simple example:

» local correlation operators Fy,...,Fy € F

» product F; F; tells about correlation of wave functions
at different space-time points

» Tr(F;F;) is real number
> minimize
N
=) Tr(FiF)
ij=1
under suitable constraints.
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Causal fermion systems

Definition (Causal fermion system)

Let (7, (.|.)sc) be Hilbert space
Given parameter n € N (“spin dimension”)

&= {x € L(3{) with the properties:
» x is self-adjoint and has finite rank
» x has at most n positive
and at most n negative eigenvalues }

p a measure on F (“‘universal measure”)

N
AN - dp
oo f
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Causal fermion systems

Definition (Causal fermion system)

Let (K, (.].)sc) be Hilbert space
Given parameter n € N (“spin dimension”)

&= {x € L(3{) with the properties:
» X is self-adjoint and has finite rank
» x has at most n positive

and at most n negative eigenvalues }

p a measure on F (“‘universal measure”)

M :=supp p space-time
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Causal action principle

Let x,y € F. Then x and y are linear operators.

x-y € L(H):

@ rank < 2n

@ in general not self-adjoint: (x-y)* =y-x #x-y
thus non-trivial complex eigenvalues A}, ..., A3/
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Causal action principle

. . . Xy Xy
Nontrivial eigenvalues of xy: A\{",..., \57 € C

2n
. 1 2
Lagrangian  L(x,y) = 7~ > (A1 - AT >0
=
action S= ff L(x,y) dp(x) dp(y) € [0, ]
FxF

Minimize S under variations of p, with constraints

volume constraint: p(F) = const

trace constraint: / tr(x) dp(x) = const
F

2n
boundedness constraint: H > NP dp(x)dp(y) < C
FxF i=1

» F.F., “Causal variational principles on measure spaces,”
J. Reine Angew. Math. 646 (2010) 141-194
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Example: Dirac spinors in Minkowski space

Space-time is Minkowski space, signature (+ — — —)

» free Dirac equation (iVk0x —m)y =0
» probability density oty = 1704,
gives rise to a scalar product:

(]6) = /t:mst(wgb)(t, %) d%

time independent due to current conservation
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Example: Dirac spinors in Minkowski space

» Choose H as a subspace of the solution space,

j{ — Span(l/}h- . 71/}1‘)

For simplicity in presentation assume: v; continuous.
» To x € R* associate a local correlation operator

(WIF(x)9) = —v(x)o(x) VY, peH
Is self-adjoint, rank < 4,
at most two positive and at most two negative eigenvalues
» Thus F(x) € F where
F = {F € L(%) with the properties:

> F is self-adjoint and has rank < 4
> F has at most 2 positive

and at most 2 negative eigenvalues }
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Example: Dirac spinors in Minkowski space

We obtain mapping x— F(x) e F C L(K)
F C L(H)

t F
— =

» push-forward measure dp := F.(d*x), is measure on J.
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Example: the Minkowski vacuum

Specify vacuum:

» Choose H as the space of all negative-energy solutions,
hence “Dirac sea”

w
\ %ticles

k

Dirac sea
anti—particle

Fixes length scale (“Compton length”)

» Introduce ultraviolet regularization
Fixes length scale ¢ (“Planck length”)

[This is a minimizer of the causal action (in a well-defined sense).]

Felix Finster Causal fermion systems



Analysis in the Continuum Limit

This is the starting point for continuum limit analysis:

» Consider Dirac systems in a classical bosonic field,.
Are measures critical points in the limit ¢ N\, 07?

”. Fundamental Theories
FelgFinster of PhySiCS 186
The Continuum Springer, 2016

Limit of Causal 548+xi pages

Fermion
Systems

From Planck Scale Structures to

Ve ] arXiv:1605.04742 [math-ph]

4) Springef’

classical fields coupled to second-quantized Dirac field:
» interactions of the standard model (electroweak + strong)
» general relativity
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Example: Dirac spinors in space-time

Let (., g) be a globally hyperbolic space-time.
F C L(H)

t F

1

Take push-forward measure

pi=Fulpa) (e p(Q) = pq(F1(Q))
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Example: Dirac spinors in space-time

F C L(K)

In general, this is not a minimizer

general concept: “matter encodes geometry”
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Underlying physical principles

» Pauli exclusion principle:
Choose orthonormal basis v, ..., of H. Set

V=11 A Ay,

gives equivalent description by Hartree-Fock state.

» local gauge principle:
freedom to perform local unitary transformations.

» the “equivalence principle”:
symmetry under “diffeomorphisms” of M
(note: M merely is a topological measure space)

locality, causality and time direction are emergent
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Interpretation in terms of space-time events

» operators in F can be interpreted as
“possible local correlation operators”
or simply as possible events

» operators in M are the events realized in space-time
» space-time is made up of all the events
» the physical equations relate the events to each other

For details on this connection:

» F.F, J. Fréhlich, C. Paganini, C. and M. Oppio,
“Causal fermion systems and the ETH approach to quantum theory,”
arXiv:2004.11785 [math-ph] (2020)
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Inherent structures of a causal fermion system

Let (p, F, H) be a causal fermion of spin dimension n,
space-time M := suppp.

[ space-time points are linear operators on H ]

» For x € M, consider eigenspaces of x.
» Forx,y e M,

@ consider operator products xy
@ project eigenspaces of x to eigenspaces of y

Gives rise to:

» quantum objects (spinors, wave functions)
» geometric structures (connection, curvature)
» causal structure, analytic structures
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Inherent structures of a causal fermion system

» Spinors

SxM = x(H) C H “spin space”, dim SyM < 2n
<Ulv-x = (U| X V)3  “spin scalar product”,
inner product of signature (< n, < n)

SyM SxM
Hilbert space H
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Inherent structures in space-time

» Physical wave functions
YU (x) =mxu withu e H  physical wave function

mx: H—=>H orthogonal projection on x(3)

SyM u

/
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Inherent structures in space-time

» The kernel of the fermionic projector:

P(y,x) =my X|gm : SxM — SyM

f
P(y,x) ==Y [¥%(y)= <4 (x)| where (e;) ONB of 3
i=1
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Inherent structures in space-time

» Geometric structures
@ P(x,y) : §yM — S¢M yields relations between spin

spaces.
Using a polar decomposition (..., ...) one gets:
Dy, : SyM — S¢M unitary “spin connection”

@ tangent space Ty, carries Lorentzian metric,
Vxy + Ty = Ty corresponding “metric connection”
@ holonomy of connection gives curvature

R(vaaz) = vX,y vy,z Vz,x Ty — Tx

Felix Finster Causal fermion systems



Causal structure
Let x,y € M. Then

x-y € L(H) has non-trivial complex eigenvalues A}, ..., A3
Definition (causal structure)
The points x, y € J are called

spacelike separated  if |A}‘y| =\ |forallj,k=1,....2n

timelike separated ~ if XY, ..., A} are all real
and |)\j’.‘y| # [N | for some j, k

lightlike separated otherwise

» Lagrangian is compatible with causal structure:
2n

. 1 X Xy |\ 2
Lagrangian L£(x,y) = an > (1A= IA))° > 0
ij=1

thus x, y spacelike separated = L(x,y)=0
“points with spacelike separation do not interact”
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A distinguished time direction

X(H) cH subspace of dimension < 2n

Introduce the functional
C: MxM-=R, C(x,y) =itr(y xmymx — Xy mx )
For timelike separated points x, y € M,

y likes in the future of x  if C(x,y) >0
y likes in the past of x if C(x,y) <0
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Analysis of the causal action principle

2n
(00 = [ (L0 +r 3N E) doty)
i=1

Lemma (Euler-Lagrange equations)
Let p be a minimizer of the causal action. Then

Uy = n;rff

VAW

(Proof in tomorrow’s talk)
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Linear perturbations

Assume that p is a discrete minimizing measure, interpreted as
describing the vacuum.

» What are linear perturbations of the measure?

! ) f F C L(%)
A
v(x1)/ V(Xz}d \ \

Xq X

Also a scalar weight function b(x) comes into play
» jetv:=(b,v)
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The jet v = (b, v) satisfies the linearized field equations
0= (u, Av)(x)

= Vu < /,w (V‘]’U + V27U)E(X, y) dp(y) - Vn 5)
for all test jets u, where s > 0 is a Lagrange multiplier and

Vog(x) == a(x) g(x) + (Dvg)(x)

There are also corresponding nonlinear field equations.

» F.F., J. Kleiner, “A Hamiltonian formulation of causal variational
principles,” arXiv:1612.07192 [math-ph], Calc. Var. Partial Differential
Equations 56:73 (2017)

» F.F, “Perturbation theory for critical points of causal variational
principles,” arXiv:1703.05059 [math-ph],
to appear in Adv. Theor. Math. Phys. (2020)
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Existence, Uniqueness, Finite Propagation Speed

for linearized fields
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This holds “on the macroscopic scale”

» C. Dappiaggi, F.F., “The Cauchy problem and the causal structure of
linearized fields for causal variational principles,” arXiv:1811.10587
[math-ph], to appear in Methods and Applications of Analysis (2020)

based on energy estimates
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Surface Layer Integrals

For doing quantum theory, there is still missing
@ probability density, scalar product is fixed time
@ unitary time evolution

/ dp(x) / dp(y) (---)L(x, y)
Q M\Q
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Surface Layer Integrals

Typically: £(x, y) very small if x and y far apart
(decay on the Compton scale)

MAR DDy

» F.F, J. Kleiner, “Noether-like theorems for causal variational principles,”’
arXiv:1506.09076 [math-ph], Calc. Var. Partial Differential Equations
55:35 (2016)

» F.F, J. Kleiner, “A class of conserved surface layer integrals for causal
variational principles,” arXiv:1801.08715 [math-ph],

Calc. Var. Partial Differential Equations 58:38 (2016)
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Conservation laws for linearized fields

2(0) = /Q dp(x) /M L9 (Tr = T2 £(xy)

Ug(uun) = / dP(X)/ dp(¥) (V1uVae — VisVau)L(X,Y)
Q MQ

Gives rise to: Complex structure, unitary time evolution

» F.F., N. Kamran, “Complex structures on jet spaces and bosonic Fock
space dynamics for causal variational principles,”
arXiv:1808.03177 [math-ph], to appear in Pure Appl. Math. Q. (2020)
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Nonlinear conservation laws

Consider two measures p and j and subsets Q ¢ M, 2 ¢ M.

2 (5,p) = /Q dp(%) /M G EY)
- / dp(x) / di(7) L(x.7)
Q ng

» Gives conservation laws for nonlinear fields

Used for definition of total mass (see talk tomorrow).
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Fock space dynamics

» perform perturbation expansion

» rewrite p-multilinear mappings as linear mappings on the
tensor product

» combine with conservation laws
Gives unitary time evolution on Fock spaces

Worked out for bosonic interactions in

» F.F., N. Kamran, “Complex structures on jet spaces and bosonic Fock
space dynamics for causal variational principles,”’
arXiv:1808.03177 [math-ph], to appear in Pure Appl. Math. Q. (2020)
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» Connection to classical field theory and PDEs:
@ nonlinear fields, prove existence and uniqueness, ...
» Connection to quantum field theory:

@ interacting QFT with fermions:
current project with Niky Kamran
@ linear field theories
(with Claudio Dappiaggi and Marco Oppio)

» work out quantitative differences to standard QFT
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www.causal-fermion-system.com

Thank you for your attention!
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GauB3-like theorem

For simplicity leave out scalar components of jets.
(B0)() = [ (Dyo+ Deu)£(xy) dnly)

0= Dyt = /M DiuL(x,y) dp(y)  (EL eqns)

Hence
(Au)(x) = — /M (D1,u=D2y) L(x,y) dp(y)
[ @) dotx) == [ do) [ dp(y) (D1~ Deu)(xy)
_ / dp(x) / dp(y) (D1y— Da.u) £(X, Y)
Q M\Q

(volume integral) = (surface layer integral)
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Energy estimates

» consider the energy as “smoothened” surface layer
integral:

E(t) = (v, 0); = /U dp(x) () /U doly) (1 - m(y))
X (VLUVLU - Vz,nvz,n>ﬁ(xa}’)

» energy identity

% (b,0); = 2/U(0,An>(X) dpt(x)

P /U Aalo, ] dpy(X) + s /U b(x)2 dpi(x)

O’pt(X) = Ht(X) dp(X) s Ht(X) = 81771(X)
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Energy estimates

» hyperbolicity conditions:

1
(0,0); > §/U<||n(x)|],2( + \AZ[U,U]D dpi(x)  forallv
» Gives rise to weak solutions in lens-shaped regions:

(Au, U>L2(L) = <Ll, m>L2(L) for all test jetS u

UcCM:=suppp
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Energy estimates

» strong solutions

» global solutions: exhaust space-time by lens-shaped
regions

» gives existence of advanced and retarded Green’s
operators

Felix Finster Causal fermion systems



What is a quantum field?

» Whatis a classical bosonic field?
Recall concept of local correlation operator at the
beginning: ‘
(F(t X)), = ¥5(t X))t x)
This holds more generally: x € M := supp p C F,
x=F(x),  F) = <(0)r(x)=x

The x(x) are called physical wave functions. A vector
field is the first variation of F(x):

V(x) = 0F(x) = <00(X) bk (X)=x + <2j(X) 001 (X) = x

@ bosonic jet: vary physical wave functions collectively
0j(X) = —(sm Avy)(x)



What is a quantum field?

Using bosonic classical jets alone, one cannot satisfy the EL
equations.

» Additional transformations:
x — U(x)x U(x)™" with U(x) € U(H)

where U(x) “fluctuates” on Compton scale.
» Leaves local densities unchanged
» Changes many-particle correlations because

P(x,y) = mxU(x)" " U(Y)yls,m

In particular, oscillatory functions come into play.

» As a consequence, the system can no longer be described
by Hartree-Fock states and by classical bosonic fields.
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