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What is a causal fermion system?

� approach to fundamental physics

� novel mathematical model of space-time

� physical equations are formulated in generalized

space-times
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Motivation

� Planck scale gives natural length scale for “new physics”

� ultraviolet divergences of QFT

� Consider lattice system, for simplicity 2d
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Motivation

Usual way to set up equations:

� Replace derivatives by difference quotients

0 = 2φ(t , x) :=
1

(∆t)2

(

φ(t +∆t , x) − 2φ(t , x) + φ(t −∆t , x)
)

−
1

(∆x)2

(

φ(t , x +∆x)− 2φ(t , x) + φ(t , x −∆x)
)

� Gives evolution equation, proceed time step by time step
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Motivation

Drawback of this approach:

� Ad hoc: Why square lattice, why difference quotients?

� Is not background-free: What is lattice spacing?

� Not invariant under general coordinate transformations,

not compatible with the equivalence principle

Basic question: Can one formulate equations without referring

to the nearest neighbor relation and lattice spacing?
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Motivation

� Consider wave functions ψ1, . . . , ψf on lattice (f <∞)

� Introduce scalar product; orthonormalize,

〈ψk |ψl〉 = δkl ,

gives f -dim Hilbert space (H, 〈.|.〉H).

important object: for any lattice point (t , x) introduce

local correlation operator F (t , x) : H → H

� define matrix elements by

(F (t , x))j
k = ψj(t , x)ψk (t , x)

basis invariant:

〈ψ,F (t , x)φ〉H = ψ(t , x)φ(t , x) for all ψ, φ ∈ H

� Hermitian matrix

� Has rank at most one, is positive semi-definite

F (t , x) = e∗e with e : H → C , ψ 7→ ψ(x)
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Motivation

F :=
{

F Hermitian, rank one, positive semi-definite
}

0

F ⊂ L(H)

M
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general idea:

� disregard objects on the left

(nearest neighbors, lattice spacing)

� work instead with the objects on the right

(only local correlation operators)
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Motivation

How to set up equations in this setting?

Explain idea in simple example:

� local correlation operators F1, . . . ,FN ∈ F

� product Fi Fj tells about correlation of wave functions

at different space-time points

� Tr(FiFj) is real number

� minimize

S =
N
∑

i ,j=1

Tr(FiFj)
2

under suitable constraints.
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Causal fermion systems

Definition (Causal fermion system)

Let (H, 〈.|.〉H) be Hilbert space

Given parameter n ∈ N (“spin dimension”)

F :=
{

x ∈ L(H) with the properties:

� x is self-adjoint and has finite rank

� x has at most n positive

and at most n negative eigenvalues
}

ρ a measure on F (“universal measure”)

N
∑

i=1

· · · ;

∫

F

· · · dρ
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Causal fermion systems

Definition (Causal fermion system)

Let (H, 〈.|.〉H) be Hilbert space

Given parameter n ∈ N (“spin dimension”)

F :=
{

x ∈ L(H) with the properties:

� x is self-adjoint and has finite rank

� x has at most n positive

and at most n negative eigenvalues
}

ρ a measure on F (“universal measure”)

M
M := supp ρ space-time
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Causal action principle

Let x , y ∈ F. Then x and y are linear operators.

x ·y ∈ L(H):

rank ≤ 2n

in general not self-adjoint: (x ·y)∗ = y ·x 6= x ·y

thus non-trivial complex eigenvalues λxy
1 , . . . , λ

xy
2n
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Causal action principle

Nontrivial eigenvalues of xy : λ
xy
1 , . . . , λ

xy
2n ∈ C

Lagrangian L(x , y) =
1

4n

2n
∑

i ,j=1

(

|λxy
i | − |λxy

j |
)2

≥ 0

action S =
x

F×F

L(x , y) dρ(x) dρ(y) ∈ [0,∞]

Minimize S under variations of ρ, with constraints

volume constraint: ρ(F) = const

trace constraint:

∫

F

tr(x) dρ(x) = const

boundedness constraint:
x

F×F

2n
∑

i=1

|λ
xy
i |2 dρ(x)dρ(y) ≤ C

� F.F., “Causal variational principles on measure spaces,”

J. Reine Angew. Math. 646 (2010) 141–194
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Example: Dirac spinors in Minkowski space

Space-time is Minkowski space, signature (+−−−)

� free Dirac equation (iγk∂k − m)ψ = 0

� probability density ψ†ψ = ψγ0ψ,

gives rise to a scalar product:

〈ψ|φ〉 =

∫

t=const

(ψγ0φ)(t , ~x)d~x

time independent due to current conservation
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Example: Dirac spinors in Minkowski space

� Choose H as a subspace of the solution space,

H = span(ψ1, . . . , ψf )

For simplicity in presentation assume: ψi continuous.

� To x ∈ R
4 associate a local correlation operator

〈ψ|F (x)φ〉 = −ψ(x)φ(x) ∀ψ, φ ∈ H

Is self-adjoint, rank ≤ 4,

at most two positive and at most two negative eigenvalues

� Thus F (x) ∈ F where

F :=
{

F ∈ L(H) with the properties:

⊲ F is self-adjoint and has rank ≤ 4

⊲ F has at most 2 positive

and at most 2 negative eigenvalues
}
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Example: Dirac spinors in Minkowski space

We obtain mapping x 7→ F (x) ∈ F ⊂ L(H)

Ft

~x

F ⊂ L(H)

� push-forward measure dρ := F∗(d
4x), is measure on F.
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Example: the Minkowski vacuum

Specify vacuum:

� Choose H as the space of all negative-energy solutions,

hence “Dirac sea”
ω

k

anti−particles

particles

Dirac sea

Fixes length scale (“Compton length”)

� Introduce ultraviolet regularization

Fixes length scale ε (“Planck length”)

This is a minimizer of the causal action (in a well-defined sense).
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Analysis in the Continuum Limit

This is the starting point for continuum limit analysis:

� Consider Dirac systems in a classical bosonic field,.

Are measures critical points in the limit εց 0?

Fundamental Theories

of Physics 186

Springer, 2016

548+xi pages

arXiv:1605.04742 [math-ph]

classical fields coupled to second-quantized Dirac field:

� interactions of the standard model (electroweak + strong)

� general relativity

Felix Finster Causal fermion systems



Example: Dirac spinors in space-time

Let (M,g) be a globally hyperbolic space-time.

Ft

~x

F ⊂ L(H)

Take push-forward measure

ρ := F∗(µM) (i.e. ρ(Ω) := µM

(

F−1(Ω)
)

)
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Example: Dirac spinors in space-time

M := suppρ

F ⊂ L(H)

In general, this is not a minimizer

general concept: “matter encodes geometry”
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Underlying physical principles

� Pauli exclusion principle:

Choose orthonormal basis ψ1, . . . , ψf of H. Set

Ψ = ψ1 ∧ · · · ∧ ψf ,

gives equivalent description by Hartree-Fock state.

� local gauge principle:

freedom to perform local unitary transformations.

� the “equivalence principle”:

symmetry under “diffeomorphisms” of M

(note: M merely is a topological measure space)

locality, causality and time direction are emergent
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Interpretation in terms of space-time events

� operators in F can be interpreted as

“possible local correlation operators”

or simply as possible events

� operators in M are the events realized in space-time

� space-time is made up of all the events

� the physical equations relate the events to each other

For details on this connection:

� F.F, J. Fröhlich, C. Paganini, C. and M. Oppio,

“Causal fermion systems and the ETH approach to quantum theory,”

arXiv:2004.11785 [math-ph] (2020)
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Inherent structures of a causal fermion system

Let (ρ,F,H) be a causal fermion of spin dimension n,

space-time M := suppρ.

space-time points are linear operators on H

� For x ∈ M, consider eigenspaces of x .

� For x , y ∈ M,

consider operator products xy
project eigenspaces of x to eigenspaces of y

Gives rise to:

� quantum objects (spinors, wave functions)

� geometric structures (connection, curvature)

� causal structure, analytic structures
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Inherent structures of a causal fermion system

� Spinors

SxM := x(H) ⊂ H “spin space”, dimSxM ≤ 2n

≺u|v≻x := 〈u | x v〉H “spin scalar product”,

inner product of signature (≤ n,≤ n)

Hilbert space H

SxMSyM
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Inherent structures in space-time

� Physical wave functions

ψu(x) = πx u with u ∈ H physical wave function

πx : H → H orthogonal projection on x(H)

SxMSyM u

ψu(x)ψu(y)
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Inherent structures in space-time

� The kernel of the fermionic projector:

P(y , x) = πy x |Sx M : SxM → SyM

SxMSyM

φ ∈ SxM

P(y , x)φ

P(y , x) = −

f
∑

i=1

|ψei (y)≻≺ψei (x)| where (ei) ONB of H
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Inherent structures in space-time

� Geometric structures

P(x , y) : Sy M → Sx M yields relations between spin

spaces.

Using a polar decomposition (. . . , . . . ) one gets:

Dx,y : Sy M → Sx M unitary “spin connection”

tangent space Tx , carries Lorentzian metric,

∇x,y : Ty → Tx corresponding “metric connection”

holonomy of connection gives curvature

R(x , y , z) = ∇x,y ∇y ,z ∇z,x : Tx → Tx
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Causal structure

Let x , y ∈ M. Then

x ·y ∈ L(H) has non-trivial complex eigenvalues λ
xy
1 , . . . , λ

xy
2n

Definition (causal structure)

The points x , y ∈ F are called























spacelike separated if |λ
xy
j | = |λ

xy
k | for all j , k = 1, . . . ,2n

timelike separated if λxy
1 , . . . , λ

xy
2n are all real

and |λxy
j
| 6= |λxy

k
| for some j , k

lightlike separated otherwise

� Lagrangian is compatible with causal structure:

Lagrangian L(x , y) =
1

4n

2n
∑

i,j=1

(

|λxy
i | − |λxy

j |
)2

≥ 0

thus x , y spacelike separated ⇒ L(x , y) = 0

“points with spacelike separation do not interact”
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A distinguished time direction

x(H) ⊂ H subspace of dimension ≤ 2n

Introduce the functional

C : M × M → R , C(x , y) := i tr
(

y x πy πx − x y πx πy

)

For timelike separated points x , y ∈ M,

{

y likes in the future of x if C(x , y) > 0

y likes in the past of x if C(x , y) < 0
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Analysis of the causal action principle

ℓ(x) :=

∫

F

(

L(x , y) + κ

2n
∑

i=1

|λ
xy
i |2

)

dρ(y)

Lemma (Euler-Lagrange equations)

Let ρ be a minimizer of the causal action. Then

ℓ|M ≡ inf
F

ℓ

ℓ

FM

(Proof in tomorrow’s talk)
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Linear perturbations

Assume that ρ is a discrete minimizing measure, interpreted as

describing the vacuum.

� What are linear perturbations of the measure?

x1

F ⊂ L(H)
b

b
b

b

b b b b

b
b b b

x2

v(x1) v(x2)

Also a scalar weight function b(x) comes into play

� jet v := (b, v)
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Jet dynamics

The jet v = (b, v) satisfies the linearized field equations

0 = 〈u,∆v〉(x)

:= ∇u

(
∫

M

(

∇1,v +∇2,v

)

L(x , y) dρ(y)−∇v s

)

for all test jets u, where s > 0 is a Lagrange multiplier and

∇vg(x) := a(x)g(x) +
(

Dvg
)

(x)

There are also corresponding nonlinear field equations.

� F.F., J. Kleiner, “A Hamiltonian formulation of causal variational

principles,” arXiv:1612.07192 [math-ph], Calc. Var. Partial Differential

Equations 56:73 (2017)

� F.F., “Perturbation theory for critical points of causal variational

principles,” arXiv:1703.05059 [math-ph],

to appear in Adv. Theor. Math. Phys. (2020)
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Existence, Uniqueness, Finite Propagation Speed

for linearized fields
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This holds “on the macroscopic scale”

� C. Dappiaggi, F.F., “The Cauchy problem and the causal structure of

linearized fields for causal variational principles,” arXiv:1811.10587

[math-ph], to appear in Methods and Applications of Analysis (2020)

based on energy estimates
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Surface Layer Integrals

For doing quantum theory, there is still missing

probability density, scalar product is fixed time

unitary time evolution

Ω
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b

b
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b
b

M \ Ω

∫

Ω
dρ(x)

∫

M\Ω
dρ(y) (· · · )L(x , y)
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Surface Layer Integrals

Typically: L(x , y) very small if x and y far apart

(decay on the Compton scale)
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M \Ω ∼ m−1

� F.F., J. Kleiner, “Noether-like theorems for causal variational principles,”

arXiv:1506.09076 [math-ph], Calc. Var. Partial Differential Equations

55:35 (2016)

� F.F., J. Kleiner, “A class of conserved surface layer integrals for causal

variational principles,” arXiv:1801.08715 [math-ph],

Calc. Var. Partial Differential Equations 58:38 (2016)
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Conservation laws for linearized fields

IΩ
ρ
(v) :=

∫

Ω
dρ(x)

∫

M\Ω
dρ(y)

(

∇1,v −∇2,v

)

L(x , y)

σΩ
ρ
(u, v) :=

∫

Ω
dρ(x)

∫

M\Ω
dρ(y)

(

∇1,u∇2,v −∇1,v∇2,u

)

L(x , y)

Gives rise to: Complex structure, unitary time evolution
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� F.F., N. Kamran, “Complex structures on jet spaces and bosonic Fock

space dynamics for causal variational principles,”

arXiv:1808.03177 [math-ph], to appear in Pure Appl. Math. Q. (2020)
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Nonlinear conservation laws

Consider two measures ρ and ρ̃ and subsets Ω ⊂ M, Ω̃ ⊂ M̃.

γΩ(ρ̃, ρ) :=

∫

Ω̃
d ρ̃(x̃)

∫

M\Ω
dρ(y) L(x̃ , y)

−

∫

Ω
dρ(x)

∫

M̃\Ω̃
d ρ̃(ỹ) L(x , ỹ)

� Gives conservation laws for nonlinear fields

Used for definition of total mass (see talk tomorrow).
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Fock space dynamics

� perform perturbation expansion

� rewrite p-multilinear mappings as linear mappings on the

tensor product

� combine with conservation laws

Gives unitary time evolution on Fock spaces

Worked out for bosonic interactions in

� F.F., N. Kamran, “Complex structures on jet spaces and bosonic Fock

space dynamics for causal variational principles,”

arXiv:1808.03177 [math-ph], to appear in Pure Appl. Math. Q. (2020)
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Outlook

� Connection to classical field theory and PDEs:

nonlinear fields, prove existence and uniqueness, . . .

� Connection to quantum field theory:

interacting QFT with fermions:
current project with Niky Kamran

linear field theories

(with Claudio Dappiaggi and Marco Oppio)

� work out quantitative differences to standard QFT
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www.causal-fermion-system.com

Thank you for your attention!
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Gauß-like theorem

For simplicity leave out scalar components of jets.

(

∆u
)

(x) =

∫

M

(

D1,u + D2,u

)

L(x , y) dρ(y)

0 = Duℓ =

∫

M

D1,uL(x , y) dρ(y) (EL eqns)

Hence

(

∆u
)

(x) = −

∫

M

(

D1,u – D2,u

)

L(x , y) dρ(y)

∫

Ω

(

∆u
)

(x) dρ(x) = −

∫

Ω
dρ(x)

∫

M

dρ(y)
(

D1,u − D2,u

)

L(x , y)

= −

∫

Ω
dρ(x)

∫

M\Ω
dρ(y)

(

D1,u − D2,u

)

L(x , y)

(volume integral) = (surface layer integral)
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Energy estimates

� consider the energy as “smoothened” surface layer

integral:

E(t) := (v, v)t =

∫

U

dρ(x) ηt(x)

∫

U

dρ(y)
(

1 − ηt(y)
)

×
(

∇1,v∇1,v −∇2,v∇2,v

)

L(x , y)

� energy identity

d

dt
(v, v)t = 2

∫

U

〈v,∆v〉(x) dρt(x)

− 2

∫

U

∆2[v, v] dρt(x) + s

∫

U

b(x)2 dρt(x)

dρt(x) := θt(x) dρ(x) , θt(x) := ∂tηt(x)
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Energy estimates

� hyperbolicity conditions:

(v, v)t ≥
1

C2

∫

U

(

‖v(x)‖2
x +

∣

∣∆2[v, v]
∣

∣

)

dρt(x) for all v

� Gives rise to weak solutions in lens-shaped regions:

〈∆u, v〉L2(L) = 〈u,w〉L2(L) for all test jets u

U ⊂ M := supp ρ

ηt ≡ 0

ηt ≡ 1 supp θt

L
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Energy estimates

� strong solutions

� global solutions: exhaust space-time by lens-shaped

regions

� gives existence of advanced and retarded Green’s

operators
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What is a quantum field?

� What is a classical bosonic field?

Recall concept of local correlation operator at the

beginning:

(F (t , x))
j
k = ψj(t , x)ψk (t , x)

This holds more generally: x ∈ M := supp ρ ⊂ F,

x = F (x) , F (x)j
k = ≺ψj(x)|ψk (x)≻x

The ψk (x) are called physical wave functions. A vector

field is the first variation of F (x):

v(x) = δF (x) = ≺δψj (x)|ψk (x)≻x +≺ψj(x)|δψk (x)≻x

bosonic jet: vary physical wave functions collectively

δψj (x) = −(sm A/ ψj)(x)
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What is a quantum field?

Using bosonic classical jets alone, one cannot satisfy the EL

equations.

� Additional transformations:

x → U(x) x U(x)−1 with U(x) ∈ U(H)

where U(x) “fluctuates” on Compton scale.

� Leaves local densities unchanged

� Changes many-particle correlations because

P(x , y) → πxU(x)−1 U(y)y |Sy M

In particular, oscillatory functions come into play.

� As a consequence, the system can no longer be described

by Hartree-Fock states and by classical bosonic fields.
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