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Abstract

The “principle of the fermionic projector” provides a new mathematical frame-

work for the formulation of physical theories and is a promising approach for

physics beyond the standard model. The book begins with a brief review of

relativity, relativistic quantum mechanics and classical gauge theories, with the

emphasis on the basic physical concepts and the mathematical foundations. The

external field problem and Klein’s paradox are discussed and then resolved by

introducing the so-called fermionic projector, a global object in space-time which

generalizes the notion of the Dirac sea. The mathematical core of the book is

to give a precise definition of the fermionic projector and to employ methods of

hyperbolic differential equations for its detailed analysis. The fermionic projector

makes it possible to formulate a new type of variational principles in space-time.

The mathematical tools for the analysis of the corresponding Euler-Lagrange

equations are developed. A particular variational principle is proposed which

gives rise to an effective interaction showing many similarities to the interactions

of the standard model.

The main chapters of the book are easily accessible for beginning graduate

students in mathematics or physics. Several appendices provide supplementary

material which will be useful to the experienced researcher.
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Preface to the Second Online Edition

In the almost twelve years since this book was completed, the fermionic projector
approach evolved to what is known today as the theory of causal fermion systems.
There has been progress in several directions: the mathematical setting was general-
ized, the mathematical methods were improved and enriched, and the physical appli-
cations have been concretized and worked out in more detail. The current status of
the theory is presented in a coherent way in the recent monograph [5]. An untechnical
physical introduction is given in [9].

Due to these developments, parts of the present book are superseded by the more
recent research papers or the monograph [5]. However, other parts of this book have
not been developed further and are still up to date. For some aspects not covered
in [5], the present book is still the best reference. Furthermore, the present book is
still of interest as being the first publication in which the causal action principle was
presented. Indeed, comparing the presentation in the present book to the later devel-
opments should give the reader a deeper understanding of why certain constructions
were modified and how they were improved. In order to facilitate such a study, we
now outline the developments which led from the present book to the monograph [5].
In order not to change the original bibliography, a list of references to more recent
research papers is given at the end of this preface, where numbers are used (whereas
the original bibliography using letters is still at the end of the book). Similar as in
the first online edition, I took the opportunity to correct a few typos. Also, I added a
few footnotes beginning with “Online version:”. Apart from these changes, the online
version coincides precisely with the printed book in the AMS/IP series. In particular,
all equation numbers are the same.

Maybe the most important change in the mathematical setup was the move from
indefinite inner product spaces to Hilbert spaces, as we now explain in detail. Clearly,
the starting point of all my considerations was Dirac theory. On Dirac wave functions
in Minkowski space, one can introduce the two inner products

(Ψ|Φ) =
∫

IR3
(Ψγ0Φ)(t, ~x) d3x (1)

<Ψ|Φ> =

∫

IR4
Ψ(x)Φ(x) d4x . (2)

The first inner product (1) is positive definite and thus defines a scalar product. For
solutions of the Dirac equation, it is time independent due to current conservation,
making the solution space of the Dirac equation to a Hilbert space (more generally,
the scalar product can be computed by integrating the normal component of the Dirac
current over any Cauchy surface). The inner product (2), on the other hand, is indef-
inite. It is well-defined and covariant even on wave functions which do not satisfy the
Dirac equation, giving rise to an indefinite inner product space (which can be given
a Krein space structure). It should be pointed out that the time integral in (2) in
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viii PREFACE TO THE SECOND ONLINE EDITION

general diverges for solutions of the Dirac equation, a problem which I always consid-
ered to be more of technical than of fundamental nature (this technical problem can
be resolved for example by working as in (2.2.26)–(2.2.28) with a δ-normalization in
the mass parameter or by making use of the mass oscillation property as introduced
in [12]).

The fermionic projector approach is based on the belief that on a microscopic scale
(like the Planck scale), space-time should not be modeled by Minkowski space but
should have a different, possibly discrete structure. Consequently, the Dirac equation
in Minkowski space should not be considered as being fundamental, but it should be
replaced by equations of different type. For such a more fundamental description, the
scalar product (1) is problematic, because it is not clear how the analog of an integral
over a hypersurface should be defined, and why this integral should be independent of
the choice of the hypersurface. The indefinite inner product (2), however, can easily
be generalized to for example a discrete space-time if one simply replaces the integral
in (2) by a sum over all space-time points. Such considerations led me to regard the
indefinite inner product (2) as being more fundamental than (1). This is the reason
why throughout this book, we work preferably with indefinite inner product spaces.
In particular, the structure of “discrete space-time” is introduced on an underlying
indefinite inner product space (see §3.3).

My views changed gradually over the past few years. The first input which trig-
gered this process was obtained when developing the existence theory for the causal
action principle. While working on this problem in the simplest setting of a finite
number of space-time points [1], it became clear that in order to ensure the existence
of minimizers, one needs to assume that the image of the fermionic projector P is a
negative definite subspace of the indefinite inner product space (H,<.|.>). The fact
that P has a definite image makes it possible to introduce a Hilbert space (H, 〈.|.〉H)
by setting 〈.|.〉H = −<.|P .> and dividing out the null space. This construction, which
was first given in [7, Section 1.2.2], gave an underlying Hilbert space structure. How-
ever, at this time, the connection of the corresponding scalar product to integrals over
hypersurfaces as in (1) remained obscure.

From the mathematical point of view, having an underlying Hilbert space struc-
ture has the major benefit that functional analytic methods in Hilbert spaces become
applicable. When thinking about how to apply these methods, it became clear that
also measure-theoretic methods are useful. This led me to generalize the mathematical
setting such as to allow for the description of not only discrete, but also continuous
space-times. This setting was first introduced in [3] when working out the existence
theory. This analysis also clarified which constraints one must impose in order to
obtain a mathematically well-posed variational problem.

The constructions in [3] also inspired the notion of the universal measure, as we now
outline. When working out the existence theory, it became clear that instead of using
the kernel of the fermionic projector, the causal action principle can be formulated
equivalently in terms of the local correlation operators F (x) which relate the Hilbert
space scalar product to the spin scalar product by

〈ψ|F (x)φ〉H = −≺ψ(x)|φ(x)≻x .

In this formulation, the only a-priori structure of space-time is that of being a measure
space (M,µ). The local correlation operators give rise to a mapping

F : M → F , x 7→ F (x) ,
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where F is the subset of finite rank operators on H which are symmetric and (counting
multiplicities) have at most 2N positive and at most 2N negative eigenvalues (whereN
denotes the number of sectors). Then, instead of working with the measure µ, the
causal action can be expressed in terms of the push-forward measure ρ = F∗µ, being a
measure on F (defined by ρ(Ω) = µ(F−1(Ω))). As a consequence, it seems natural to
leave out the measure space (M,µ) and to work instead directly with the measure ρ
on F, referred to as the universal measure. We remark that working with (M,µ) has
the potential benefit that it is possible to prescribe properties of the measure ρ. In
particular, if µ is a discrete measure, then so is ρ (for details see [3, Section 1.2]).
However, the analysis of the causal action principle in [13] suggests that minimizing
measures are always discrete, even if one varies over all regular Borel measures (which
may have discrete and continuous components). With this in mind, it seems unneces-
sary to arrange the discreteness of the measure ρ by starting with a discrete measure
space (M,µ). Then the measure space (M,µ) becomes obsolete. These considerations
led me to the conviction that one should work with the universal measure ρ, which
should be varied within the class of all regular Borel measures. Working with general
regular Borel measures also has the advantage that it becomes possible to take convex
combinations of universal measures, which seems essential for getting the connection
to second-quantized bosonic fields (see the notions of decoherent replicas of space-time
and of microscopic mixing of wave functions in [4] and [15]).

Combining all the above results led to the framework of causal fermion systems,
where a physical system is described by a Hilbert space (H, 〈.|.〉H) and the universal
measure ρ on F. This framework was first introduced in [7]. Subsequently, the analytic,
geometric and topological structures encoded in a causal fermion system were worked
out systematically; for an overview see [5, Chapter 1].

From the conceptual point of view, the setting of causal fermion systems and the
notion of the universal measure considerably changed both the role of the causal action
principle and the concept of what space-time is. Namely, in the causal action principle
in this book, one varies the fermionic projector P in a given discrete space-time.
In the setting of causal fermion systems, however, one varies instead the universal
measure ρ, being a measure on linear operators on an abstract Hilbert space. In the
latter formulation, there is no space-time to begin with. On the contrary, space-time
is introduced later as the support of the universal measure. In this way, the causal
action principle evolved from a variational principle for wave functions in space-time
to a variational principle for space-time itself as well as for all structures therein.

In order to complete the summary of the conceptual modifications, we remark that
the connection between the scalar product 〈.|.〉H and surface integrals as in (1), which
had been obscure for quite a while, was finally clarified when working out Noether-
like theorems for causal variational principles [10]. Namely, surface integrals now
have a proper generalization to causal fermion systems in terms of so-called surface
layer integrals. It was shown that the symmetry of the causal action under unitary
transformations acting on F gives rise to conserved charges which can be expressed by
surface layer integrals. For Dirac sea configurations, these conserved charges coincide
with the surface integrals (1).

Another major development concerns the description of neutrinos. In order to
explain how these developments came about, we first note that in this book, neutrinos
are modelled as left-handed massless Dirac particles (see §5.1). This has the benefit
that the neutrinos drop out of the closed chain due to chiral cancellations (see §5.3



x PREFACE TO THE SECOND ONLINE EDITION

and §5.4). When writing this book, I liked chiral cancellations, and I even regarded
them as a possible explanation for the fact that neutrinos appear only with one chi-
rality. As a side remark, I would like to mention that I was never concerned about
experimental observations which indicate that neutrinos do have a rest mass, because
I felt that these experiments are too indirect for making a clear case. Namely, mea-
surements only tell us that there are fewer neutrinos on earth than expected from the
number of neutrinos generated in fusion processes in the sun. The conventional ex-
planation for this seeming disappearance of solar neutrinos is via neutrino oscillations,
making it necessary to consider massive neutrinos. However, it always seemed to me
that there could be other explanations for the lack of neutrinos on earth (for example,
a modification of the weak interaction or other, yet unknown fundamental forces), in
which case the neutrinos could well be massless.

My motivation for departing from massless neutrinos was not related to experi-
mental evidence, but had to do with problems of mathematical consistency. Namely,
I noticed that left-handed neutrinos do not give rise to stable minimizers of the causal
action (see [5, Section 4.2]). This general result led me to incorporate right-handed
neutrino components, and to explain the fact that only the left-handed component is
observed by the postulate that the regularization breaks the chiral symmetry. This
procedure cured the mathematical consistency problems and had the desired side effect
that neutrinos could have a rest mass, in agreement with neutrino oscillations.

We now comment on other developments which are of more technical nature. These
developments were mainly triggered by minor errors or shortcomings in the present
book. First, Andreas Grotz noticed when working on his master thesis in 2007 that the
normalization conditions for the fermionic projector as given in (2.6.11) and (2.6.12)
are in general violated to higher order in perturbation theory. This error was cor-
rected in [6] by a rescaling procedure. This construction showed that there are two
different perturbation expansions: with and without rescaling. The deeper meaning of
these two expansions became clearer later when working out different normalizations
of the fermionic projector. This study was initiated by the quest for a non-perturbative
construction of the fermionic projector, as was carried out in globally hyperbolic space-
times in [11, 12]. It turned out that in space-times of finite lifetime, one cannot work
with the δ-normalization in the mass parameter as used in (2.2.26)–(2.2.28) (the “mass
normalization”). Instead, a proper normalization is obtained by using a scalar prod-
uct (.|.) which is represented similar to (1) by an integral over a spacelike hypersurface
(the “spatial normalization”). As worked out in detail in [14] with a convenient con-
tour integral method, the causal perturbation expansion without rescaling realizes the
spatial normalization condition, whereas the rescaling procedure in [6] gives rise to
the mass normalization. The constructions in curved space-time in [11, 12] as well as
the general connection between the scalar product (.|.) and the surface layer integrals
in [10] showed that the physically correct and mathematically consistent normalization
condition is the spatial normalization condition. With this in mind, the combinatorics
of the causal perturbation expansion in this book is indeed correct, but the resulting
fermionic projector does not satisfy the mass but the spatial normalization condition.

Clearly, the analysis of the continuum limit in Chapters 6–8 is superseded by the
much more detailed analysis in [5, Chapters 3-5]. A major change concerns the treat-
ment of the logarithmic singularities on the light cone, as we now point out. In the
present book, some of the contributions involving logarithms are arranged to vanish
by imposing that the regularization should satisfy the relation (6.2.9). I tried for quite
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a while to construct an example of a regularization which realizes this relation, until I
finally realized that there is no such regularization, for the following reason:

Lemma I. There is no regularization which satisfies the condition (6.2.9).

Proof. The linear combination of monomials M in (6.2.6) involves a factor T
(1)
[2] ,

which has a logarithmic pole on the light cone (see (2.5.43), (2.5.42) and (2.5.41)).

Restricting attention to the corresponding contribution ∼ log |~ξ|, we have

M ≍ − 1

16π3
T
(−1)
[0] T

(−1)
[0] T

(0)
[0] log |~ξ| .

As a consequence,

(M −M) T
(0)
[0]

−1

= − log |~ξ|
16π3

∣
∣T

(−1)
[0]

∣
∣2

T
(0)
[0]

(
T
(0)
[0] − T

(0)
[0]

)

= − log |~ξ|
16π3

∣
∣
∣
∣

T
(−1)
[0]

T
(0)
[0]

∣
∣
∣
∣

2(∣
∣T

(0)
[0]

∣
∣2 −

(
T
(0)
[0]

)2
)

= − log |~ξ|
8π3

∣
∣
∣
∣

T
(−1)
[0]

T
(0)
[0]

∣
∣
∣
∣

2 (

ImT
(0)
[0]

)2
≤ 0 .

Since this expression has a fixed sign, it vanishes in a weak evaluation on the light
cone only if it vanishes identically to the required degree. According to (2.5.41), the

function ImT
(0)
[0] is a regularization of the distribution −iπδ(ξ2) ε(ξ0)/(8π3) on the

scale ε. Hence on the light cone it is of the order ε−1. This gives the claim.

This no-go result led me to reconsider the whole procedure of the continuum limit.
At the same time, I tried to avoid imposing relations between the regularization pa-
rameters, which I never felt comfortable with because I wanted the continuum limit
to work for at least a generic class of regularizations. Resolving this important issue
took me a lot of time and effort. My considerations eventually led to the method
of compensating the logarithmic poles by a microlocal chiral transformation. These
construction as well as many preliminary considerations are given in [5, Section 3.7].

Finally, I would like to make a few comments on each chapter of the book. Chap-
ters 1–3 are still up to date, except for the generalizations and modifications mentioned
above. Compared to the presentation in [5], I see the benefit that these chapters might
be easier to read and might convey a more intuitive picture of the underlying physical
ideas. Chapter 4 is still the best reference for the general derivation of the formalism of
the continuum limit. In [5, Chapter 2] I merely explained the regularization effects in
examples and gave an overview of the methods and results in Chapter 4, but without
repeating the detailed constructions. Chapter 5 is still the only reference where the
form of the causal action is motivated and derived step by step. Also, the notion of
state stability is introduced in detail, thus providing the basis for the later analysis
in [2, 8]. As already mentioned above, the analysis in Chapters 6–8 is outdated. I
recommend the reader to study instead [5, Chapters 3–5]. The Appendices are still
valuable. I added a few footnotes which point to later improvements and further de-
velopments.

Felix Finster, Regensburg, August 2016
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Preface to the First Online Edition

In the few years since the book appeared, I was frequently asked if the introductory
chapters were also available online. Also, I heard complaints that the preprints on the
arXiv on the “principle of the fermionic projector” were preliminary versions which
were not quite compatible with the book and with subsequent papers. In order to
improve the situation, I decided to replace my original preprints hep-th/0001048, hep-
th/0202059 and hep-th/0210121 by the corresponding chapters of the book.

I took the opportunity to correct some typos. I also added a few footnotes begin-
ning with “Online version:” which point out to later developments. Apart from these
changes, the present online version coincides precisely with the book in the AMS/IP
series. In particular, all equation numbers are the same.

Felix Finster, Regensburg, October 2009
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Preface

The basic ideas behind the “principle of the fermionic projector” go back to the
years 1990-91 when I was a physics student in Heidelberg. At that time, I was excited
about relativity and quantum mechanics, in particular about classical Dirac theory,
but I felt uncomfortable with quantum field theory. The dissatisfaction with second
quantized fields, which was in part simply a beginner’s natural skepticism towards an
unfamiliar physical concept, was my motivation for thinking about possible alterna-
tives. Today I clearly understand quantum field theory much better, and many of my
early difficulties have disappeared. Nevertheless, some of my objections remain, and
the idea of formulating physics in a unified way based on Dirac’s original concept of a
“sea of interacting particles” seems so natural and promising to me that I have pursued
this idea ever since. It took quite long to get from the first ideas to a consistent theory,
mainly because mathematical methods had to be developed in order to understand the
“collective behavior” of the particles of the Dirac sea.

This book gives me the opportunity to present the main ideas and methods in a
somewhat broader context, with the intention of making this area of mathematical
physics accessible to both theoretical physicists and applied mathematicians. The
emphasis of the main chapters is on the conceptual part, whereas the more technical
aspects are worked out in the appendices.

I am grateful to Claus Gerhardt, Joel Smoller, Shing-Tung Yau and Eberhard
Zeidler for their encouragement and support. I would like to thank Stefan Hoch, Niky
Kamran, Johann Kronthaler, Wätzold Plaum and Joel Smoller for helpful comments,
and Eva Rütz for the typesetting. Finally, I am grateful to the Max Planck Institute
for Mathematics in the Sciences, Leipzig, and the Morningside Center, Beijing, for
their hospitality while I was working on the manuscript.

Felix Finster, Regensburg, November 2004
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CHAPTER 0

The Principle of the Fermionic Projector – A New
Mathematical Model of Space-Time

The mathematical model of space-time has evolved in history. In Newtonian me-
chanics, space is described by a Euclidean vector space. In special relativity, space and
time were combined to Minkowski space, a vector space endowed with a scalar product
of signature (+− −−). In general relativity, the vector space structure of space-time
was given up on the large scale and was replaced by that of a Lorentzian manifold. The
first hint that the notions of space and time should be modified also on the microscopic
scale was obtained by Planck, who observed that the gravitational constant, Planck’s
constant and the speed of light give rise to a quantity of the dimension of length,

lP =

√

~ κ

c3
≈ 1.6 · 10−35 m ,

and he conjectured that for distances as tiny as this so-called Planck length, the
conventional laws of physics should no longer hold, and yet unknown physical effects
might become significant. Later, this picture was confirmed by quantum field theory.
Namely, due to the ultraviolet divergences, perturbative QFT is well-defined only
after regularization, and the regularization is then removed using the renormalization
procedure. While renormalization ensures that the observable quantities do not depend
on the regularization, the theoretical justification for the renormalization program lies
in the assumption that the continuum theory should be valid only down to some
microscopic length scale, and it seems natural to associate this length scale to the
Planck length.

Today most physicists agree that in order to make progress in fundamental physics,
one should go beyond the continuum field theory and try to get a better understanding
of the microscopic structure of space-time. However, giving up the usual space-time
continuum leads to serious problems, and this is one reason why there is no consensus
on what the correct mathematical model for “Planck scale physics” should be. Let
us illustrate the difficulties by briefly discussing a few of the many approaches. The
simplest and maybe most natural approach is to assume that on the Planck scale
space-time is no longer a continuum but becomes in some way “discrete.” This idea
is for example used in lattice gauge theories, where space-time is modeled by a four-
dimensional lattice (see Figure 0.1(a)). Using the specific structures of a lattice like
the nearest-neighbor relation and the lattice spacing d, one can set up a quantum field
theory which is ultraviolet finite [Ro]. Lattice gauge theories are very useful for nu-
merical simulations [K]. However, they are not fully satisfying from a conceptual point
of view because a space-time lattice is not consistent with the equivalence principle
of general relativity. Namely, if one considers the lattice in the reference frame of an
accelerated observer (denoted in in Figure 0.1(b) by (t′, x′)), the lattice points are no
longer in a regular configuration. Thus the structure of a lattice is not invariant under

1
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Figure 0.1. A lattice regularization for two different observers.

general coordinate transformations and hence is not compatible with the equivalence
principle.

An alternative approach is to hold on to a space-time continuum, but to work with
objects which are spread out in space-time, thereby avoiding the ultraviolet problems
which occur for very small distances. The most prominent example in this direction is
string theory, where physics is on a fundamental level described by so-called strings,
which are extended in space-time and are therefore ultraviolet finite. The basic problem
with such theories is that they are formulated using the structures of an underlying
continuum space-time (like the vector space structure, the topology or even a metric),
although all observable quantities (like the Lorentz metric, particles, fields, etc.) are to
be derived from the non-localized objects, without referring to the underlying space-
time continuum. Therefore, the structures of the underlying “continuum background”
may seem artificial, and serious conceptual problems arise when these background
structures are not compatible with basic physical principles (for example, a background
vector space is not compatible with the equivalence principle). For short, one says
that the theory is not background-free (for a more detailed discussion see [Ba] and the
references therein).

Thus one difficulty in finding a promising model for Planck scale physics is that
it should be background-free and should respect the basic physical principles (like the
equivalence principle, the local gauge principle, etc.). There are approaches which
actually meet these requirements. One is Connes’ noncommutative geometry. As
pointed out by Grothendieck, there is a one-to-one correspondence between the points
of a manifold and the prime ideals of the (commutative) algebra of functions on this
manifold. Thus the geometry of a manifold can be recovered from an underlying
algebraic structure, and this makes it possible to extend the notions of space and time
by considering more general, noncommutative algebras (see [Co, CC] for details and
physical applications). The other approach is quantum gravity as pursued by Ashtekar
and his school [ARS, Th]. The hope is that the ultraviolet divergences of QFT should
disappear as soon as gravity, quantized in a non-perturbative way, is included.

Ultimately, a model for space-time on the Planck scale must be verified or falsified
by physical experiments. Unfortunately, experiments on the Planck scale would require
such enormously high energies that they are at present out of reach. Indirect experi-
ments seem possible in principle [ARA] but have so far not been carried out. In my
opinion, one should not hope for important new experimental input in the near future,
but one should try to make due with the experimental data which is now available.
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Indeed, this situation is not as hopeless as it might appear at first sight. Namely, in
present physical models like the standard model, a lot of information from experiments
is built in empirically, like the masses of the elementary particles, the gauge groups,
the coupling constants, etc. Therefore, one can get a connection to experiments simply
by trying to reproduce this well known empirical data. If successful, this procedure
could give strong physical evidence for a model. For example, even if based on ad-
hoc assumptions on the microscopic structure of space-time (which cannot be verified
directly), a model would be very convincing and physically interesting if it gave the
correct value for the fine structure constant and explained e.g. why the strong gauge
group is SU(3) or why neutrinos do not couple to the electromagnetic field. Thus the
goal of a mathematical model for space-time on the Planck scale is to give a more
fundamental explanation for the structures and empirical parameters in the standard
model. To our opinion, only such concrete results can justify the model. Clearly, it is
far from obvious how a promising model should look, or even in which mathematical
framework it should be formulated. But at least for a mathematician, this makes the
problem only more interesting, and it seems a challenging program to search for such
models and to develop the mathematical methods needed for their analysis.

Our point of view that the mathematical model needs justification by known exper-
imental data is not just a requirement which the model should fulfill at the very end,
but it also gives a few hints on how one should proceed in order to find a promising
model. First of all, one can expect concrete results only if one makes specific assump-
tions. Therefore, generalizing the notion of a Lorentzian manifold does not seem to
be sufficient, but one should make a concrete ansatz for the microscopic structure of
space-time (as it is done e.g. in string theory and lattice gauge theories). Furthermore,
in order to make it easier to get a connection to well-established theories like classi-
cal field theory and quantum mechanics, it seems a good idea to take these theories
as the starting point and to try to work as closely as possible with the objects used
in these theories. Namely, if one drops important structures of the classical theories
and/or introduces too many new structures ad hoc, it might become very difficult if
not impossible to obtain a relation to observable data.

In our model of space-time we have tried to follow the above considerations. Our
starting point is relativistic quantum mechanics and classical field theory. We assume
that space-time is discrete on the Planck scale. But our notion of “discrete space-time”
is much more general than a four-dimensional lattice; in particular, we do not assume
any discrete symmetries in space-time, we keep the local gauge freedom, and we also
extend the diffeomorphism invariance of a manifold in such a way that the equivalence
principle is respected in discrete space-time. Furthermore, our model is background-
free. In contrast to string theory, we do not introduce any new objects, but hold on to
the structures already present in classical Dirac theory. We build in our physical ideas
simply by prescribing which of these structures we consider as being fundamental, and
then carry over these structures to discrete space-time. In the resulting mathematical
framework, it is impossible to formulate the conventional physical equations, and thus
we propose instead new equations of different type, referred to as the equations of
discrete space-time. In a certain limiting case, the so-called continuum limit, we get
a connection to the conventional formulation of physics in a space-time continuum.
We point out that, in contrast to the Ashtekar program, we do not work with second
quantized fields. But our concept is that the equations of discrete space-time should
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also account for the physical effects of quantized fields if one goes beyond the continuum
limit.

More specifically, we describe the physical system by the fermionic projector P (x, y),
which can be regarded as the projector on all occupied fermionic states of the system,
including the states of the Dirac sea. After carrying over the fermionic projector to
discrete space-time, we can set up variational principles like our “model variational
principle”

∑

x,y∈M

L[P (x, y) P (y, x)] → min ,

where the “Lagrangian” L is given by

L[A] = |A2| − µ|A|2 ,
with µ a Lagrangian multiplier. Here |A| is the so-called spectral weight defined as
the sum of the absolute values of the eigenvalues of the matrix A (or, in case that A is
not diagonalizable, of the zeros of its characteristic polynomial). We study the above
variational principle for a fermionic projector which in the vacuum is the direct sum
of seven identical massive sectors and one massless left-handed sector, each of which
is composed of three Dirac seas. Analyzing the continuum limit for an interaction via
general chiral and (pseudo)scalar potentials, we find that the sectors spontaneously
form pairs, which are referred to as blocks. The resulting so-called effective interaction
can be described by chiral potentials corresponding to the effective gauge group

SU(2)× SU(3)× U(1)3 .

This model has striking similarity to the standard model if the block containing the
left-handed sector is identified with the leptons and the three other blocks with the
quarks. Namely, the effective gauge fields have the following properties.

• The SU(3) corresponds to an unbroken gauge symmetry. The SU(3) gauge
fields couple to the quarks exactly as the strong gauge fields in the standard
model.
• The SU(2) potentials are left-handed and couple to the leptons and quarks
exactly as the weak gauge potentials in the standard model. Similar to the
CKM mixing in the standard model, the off-diagonal components of these
potentials must involve a non-trivial mixing of the generations. The SU(2)
gauge symmetry is spontaneously broken.
• The U(1) of electrodynamics can be identified with an Abelian subgroup of
the effective gauge group.

The effective gauge group is larger than the gauge group of the standard model, but
this is not inconsistent because a more detailed analysis of our variational principle
should give further constraints for the Abelian gauge potentials. Moreover, there
are the following differences to the standard model, which we derive mathematically
without working out their physical implications.

• The SU(2) gauge field tensor F must be simple in the sense that F = Λ s for
a real 2-form Λ and an su(2)-valued function s.
• In the lepton block, the off-diagonal SU(2) gauge potentials are associated
with a new type of potential, called nil potential, which couples to the right-
handed component.

These results give a strong indication that the principle of the fermionic projector is of
physical significance. Nevertheless, the goal of this book is not to work out our model
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variational principle in all details. Our intention is to develop the general concepts
and methods from the basics, making them easily accessible to the reader who might
be interested in applying them to other equations of discrete space-time or to related
problems.

These notes are organized as follows. In order to make the presentation self-
contained, Chapter 1 gives a brief account of the mathematical and physical prelim-
inaries. Chapter 2 introduces the fermionic projector in the continuum and provides
the mathematical methods needed for its detailed analysis. In Chapter 3 we go be-
yond the continuum description and introduce our mathematical model for space-time
on the Planck scale. In Chapter 4 we develop a mathematical formalism suitable for
the analysis of the continuum limit. In Chapter 5 we present and discuss different
equations of discrete space-time in the vacuum, and we choose the most promising
equations as our “model equations”. In the last Chapters 6-8 we analyze interacting
systems in the continuum limit. The appendices contain additional material and will
be referred to from the main chapters.





CHAPTER 1

Preliminaries

1.1. Relativity

In this section we briefly outline the mathematical framework of special and general
relativity (for a more detailed introduction see [Wo] and [Wa]). We always work
in normal units where ~ = c = 1. In special relativity, space-time is described by
Minkowski space (M, 〈., .〉), a real 4-dimensional vector space endowed with an inner
product of signature (+−−−). Thus, choosing a pseudo-orthonormal basis (ei)i=0,...,3

and representing the vectors of M in this basis, ξ =
∑3

i=0 ξ
iei, the inner product takes

the form

〈ξ, η〉 =
3∑

j,k=0

gjk ξ
j ηk , (1.1.1)

where gij , the Minkowski metric, is the diagonal matrix g = diag (1,−1,−1,−1). In
what follows we usually omit the sums using Einstein’s summation convention (i.e. we
sum over all indices which appear twice, once as an upper and once as a lower index).
Also, we sometimes abbreviate the Minkowski scalar product by writing ξη := 〈ξ, η〉
and ξ2 := 〈ξ, ξ〉. A pseudo-orthonormal basis (ei)i=0,...,3 is in physics called a reference
frame, because the corresponding coordinate system (xi) of Minkowski space gives the
time and space coordinates for an observer in a system of inertia. We also refer to
t := x0 as time and denote the spatial coordinates by ~x = (x1, x2, x3).

The sign of the Minkowski metric encodes the causal structure of space-time.
Namely, a vector ξ ∈M is said to be

timelike if 〈ξ, ξ〉 > 0
spacelike if 〈ξ, ξ〉 < 0

null if 〈ξ, ξ〉 = 0 .







Likewise, a vector is called non-spacelike if it is timelike or null. The null vectors form
the double cone L = {ξ ∈ M | 〈ξ, ξ〉 = 0}, referred to as the light cone. Physically,
the light cone is formed of all rays through the origin of M which propagate with the
speed of light. Similarly, the timelike vectors correspond to velocities slower than light
speed; they form the interior light cone I = {ξ ∈M | 〈ξ, ξ〉 > 0}. Finally, we introduce
the closed light cone J = {ξ ∈M | 〈ξ, ξ〉 ≥ 0}. The space-time trajectory of a moving
object describes a curve q(τ) in Minkowski space (with τ an arbitrary parameter). We
say that the space-time curve q is timelike if the tangent vector to q is everywhere
timelike. Spacelike, null, and non-spacelike curves are defined analogously. The usual
statement of causality that no information can travel faster than with the speed of
light can then be expressed as follows,

causality: information can be transmitted only along
non-spacelike curves.

7
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The set of all points which can be joined with a given space-time point x by a non-
spacelike curve is precisely the closed light cone centered at x, denoted by Jx := J−x.
It is the union of the two single cones

J∨x = {y ∈M | (y − x)2 ≥ 0, (y0 − x0) ≥ 0}
J∧x = {y ∈M | (y − x)2 ≥ 0, (y0 − x0) ≤ 0} ,

which have the interpretation as the points in the causal future and past of x, respec-
tively. Thus we refer to J∨x and J∧x as the closed future and past light cones centered
at x, respectively. Similarly, we also introduce the sets I∨x , I

∧
x and L∨x , L

∧
x .

A linear transformation of Minkowski space which leaves the form of the Minkowski
metric (1.1.1) invariant is called a Lorentz transformation. The Lorentz transforma-
tions form a group, the Lorentz group. The Lorentz transformations which preserve
both the time direction and the space orientation form a subgroup of the Lorentz
group, the orthochronous proper Lorentz group.

The physical equations should be Lorentz invariant, meaning that they must be
formulated in Minkowski space, independent of the reference frame. A convenient
way of making Lorentz invariance manifest is to bring the equations in tensorial form
(see [L] for a good introduction). Writing out the tensor indices, we get upper “con-
travariant” and lower “covariant” indices, which can be transformed into each other by
contracting with the metric, e.g. ξj = gjkξ

k and ξk = gklξl with g
kl = (gkl)

−1. In order
to formulate electrodynamics in a manifestly Lorentz invariant form, one combines the
electric potential and the vector potential to a 1-form A = Ajdx

j , the electromagnetic
potential. The electric and magnetic fields are then components of the electromagnetic
field tensor F defined by

F = dA or, in components, Fjk = ∂jAk − ∂kAj .

The Maxwell equations take the form

∂kF
kl = C jl , (1.1.2)

where j is the so-called 4-current and the constant C = 4πe involves the electromag-
netic coupling constant (we use the sign convention where e > 0). For an observer in
a reference frame, the time and spatial components j0 and ~ of the 4-current have the
interpretation as the electric charge density and the electric current density, respec-
tively. Since we shall always work in the 4-dimensional setting, it is unambiguous to
refer to j simply as the electromagnetic current. Now consider a point particle of mass
m and unit charge e in a given (=external) electromagnetic field. Since by causality
its velocity is always smaller than light speed, its trajectory is a timelike curve q(τ).
Thus we can parametrize it by the arc length, i.e.

〈u, u〉 ≡ 1 with u(τ) :=
d

dτ
q(τ) .

In a reference frame, the time and spatial components of the vector m ·u(τ) are the
energy and momentum of the particle at the space-time point q(τ). We refer to mu
as the momentum of the particle. The parameter τ has the interpretation as the
proper time of an observer moving along q. The equation of motion is the tensor
equation m d

dτ u
j = −eF jkuk. Since we shall only consider particles of unit charge, it

is convenient to remove the parameter e from the equation of motion. To this end, we
rescale the electromagnetic potential according to A → e−1A. Then the equation of
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motion simplifies to

m
d

dτ
uj = −F jk uk , (1.1.3)

whereas the constant C in the Maxwell equations (1.1.2) becomes C = 4πe2.
The starting point for general relativity is the observation that a physical process

involving gravity can be understood in different ways. Consider for example an ob-
server at rest on earth looking at a freely falling person (e.g. a diver who just jumped
from a diving board). The observer at rest argues that the earth’s gravitational force,
which he can feel himself, also acts on the freely falling person and accelerates him.
The person at free fall, on the other hand, does not feel gravity. He can take the point
of view that he himself is at rest, whereas the earth is accelerated towards him. He
then concludes that there are no gravitational fields, and that the observer on earth
merely feels the force of inertia corresponding to his acceleration. Einstein postulated
that these two points of view should be equivalent descriptions of the physical process.
More generally, it depends on the observer whether one has a gravitational force or an
inertial force. In other words,

equivalence principle: no physical experiment can distin-
guish between gravitational and in-
ertial forces.

In mathematical language, observers correspond to coordinate systems, and so the
equivalence principle states that the physical equations should be formulated in general
(i.e. “curvilinear”) coordinate systems, and should in all these coordinate systems have
the same mathematical structure. This means that the physical equations should be
invariant under diffeomorphisms, and thus space-time is to be modeled by a Lorentzian
manifold (M,g).

A Lorentzian manifold is “locally Minkowski space” in the sense that at every
space-time point p ∈ M , the corresponding tangent space TpM is a vector space en-
dowed with a scalar product 〈., .〉p of signature (+ − −−). Therefore, we can distin-
guish between spacelike, timelike and null tangent vectors. Defining a non-spacelike
curve q(τ) by the condition that its tangent vector u(τ) ∈ Tq(τ)M be everywhere non-
spacelike, our above definition of light cones and the notion of causality immediately
carry over to a Lorentzian manifold. In a coordinate chart, the scalar product 〈., .〉p
can be represented in the form (1.1.1) where gjk is the so-called metric tensor. In
contrast to Minkowski space, the metric tensor is not a constant matrix but depends
on the space-time point, gjk = gjk(p). Its ten components can be regarded as the
relativistic analogue of Newton’s gravitational potential. For every p ∈ M there are
coordinate systems in which the metric tensor coincides with the Minkowski metric up
to second order,

gjk(p) = diag(1,−1,−1,−1) , ∂jgkl(p) = 0 . (1.1.4)

Such Gaussian normal coordinates correspond to the reference frame of a “freely falling
observer” who feels no gravitational forces. However, it is in general impossible to
arrange that also ∂jkglm(p) = 0. This means that by going into a suitable reference
frame, the gravitational field can be transformed away locally (=in one point), but
not globally. With this in mind, a reference frame corresponding to Gaussian normal
coordinates is also called a local inertial frame.

The equation of motion (1.1.3) and the Maxwell equations (1.1.2) can easily be
formulated on a Lorentzian manifold by the prescription that they should in a local
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inertial frame have the same form as in Minkowski space; this is referred to as the
strong equivalence principle. It amounts to replacing all partial derivatives by the
corresponding covariant derivatives ∇ of the Levi-Civita connection; we write symbol-
ically

∂ −→ ∇ . (1.1.5)

We thus obtain the equations

m∇τu
j = −F jkuk , ∇kF

kl = 4πe2 jl (1.1.6)

with Fjk = (dA)jk = ∇jAk −∇kAj .
The gravitational field is described via the curvature of space-time. More precisely,

the Riemannian curvature tensor is defined by the relations

Ri
jkl u

l = ∇j∇ku
i −∇k∇ju

i . (1.1.7)

Contracting indices, one obtains the Ricci tensor Rjk = Ri
jik and scalar curvature

R = Rj
j . The relativistic generalization of Newton’s gravitational law are the Einstein

equations

Rjk −
1

2
R gjk = 8πκ Tjk , (1.1.8)

where κ is the gravitational constant. Here the energy-momentum tensor Tjk gives the
distribution of matter and energy in space-time.

It is very convenient that the physical equations can all be derived from a varia-
tional principle. To this end, one considers the action (see e.g. [LL])

S =

∫ (

m gjk u
juk +Aju

j
)

dτ +

∫

M

(

− 1

16πe2
FjkF

jk − 1

16πκ
R

)

dµ , (1.1.9)

where u = c′(τ) is the tangent vector of a timelike curve, and dµ :=
√− det g d4x

is the integration measure on M . This action is not bounded below, but one can
nevertheless look for stationary points and derive the corresponding Euler-Lagrange
equations. Varying the space-time curve, the electromagnetic potential and the metric
yield the equations of motion, the Maxwell equations and the Einstein equations,
respectively.

1.2. Relativistic Quantum Mechanics

We now give an elementary introduction to relativistic quantum mechanics in Min-
kowski space (for more details see [BD1, T]). According to the Heisenberg Uncertainty
Principle, the position and momentum of a quantum mechanical particle cannot be
determined simultaneously, making it impossible to describe the particle by a trajec-
tory in space-time. Instead, one uses a wave function Ψ(t, ~x), whose absolute square
has the interpretation as the probability density that the particle is at position ~x. The
simplest relativistic wave equation is the Klein-Gordon equation

(−✷−m2) Ψ = 0 , (1.2.1)

where ✷ ≡ ∂j∂j is the wave operator. This equation describes a scalar particle (=par-
ticle without spin) of mass m. If the particle has electric charge, one needs to suitably
insert the electromagnetic potential A into the Klein-Gordon equation. More precisely,
one finds empirically that the equation

− (∂k − iAk)(∂
k − iAk) Ψ = m2Ψ (1.2.2)
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describes a scalar particle of massm and charge e in the presence of an electromagnetic
field.

In order to describe a particle with spin, it was Dirac’s idea to work with a first
order differential operator whose square is the wave operator. One introduces the
Dirac matrices γj as 4× 4-matrices which satisfy the anti-commutation relations

2 gjk 11 = {γj , γk} ≡ γjγk + γkγj . (1.2.3)

Then the square of the operator γj∂j is

(γj∂j)
2 = γjγk ∂j∂k =

1

2
{γj , γk} ∂jk = ✷ . (1.2.4)

For convenience, we shall always work in the Dirac representation

γ0 =

(
11 0
0 −11

)

, ~γ =

(
0 ~σ
−~σ 0

)

, (1.2.5)

where ~σ are the three Pauli matrices

σ1 =

(
0 1
1 0

)

, σ2 =

(
0 −i
i 0

)

, σ3 =

(
1 0
0 −1

)

.

The Dirac equation in the vacuum reads
(

iγk
∂

∂xk
−m

)

Ψ(x) = 0 , (1.2.6)

where Ψ(x), the Dirac spinor, has four complex components. The leptons and quarks
in the standard model are Dirac particles, and thus one can say that all matter is
on the fundamental level described by the Dirac equation. Multiplying (1.2.6) by the
operator (iγj∂j +m) and using (1.2.4), one finds that each component of Ψ satisfies
the Klein-Gordon equation (1.2.1). In the presence of an electromagnetic field, the
Dirac equation must be modified to

iγk(∂k − iAk)Ψ = mΨ . (1.2.7)

Multiplying by the operator (iγj(∂j − iAj) + m) and using the anti-commutation
relations, we obtain the equation

[

−(∂k − iAk)(∂
k − iAk) +

i

2
Fjkγ

jγk −m2

]

Ψ = 0 .

This differs from the Klein-Gordon equation (1.2.2) by the extra term i
2Fjkγ

jγk, which
describes the coupling of the spin to the electromagnetic field. We also denote the
contraction with Dirac matrices by a slash, i.e. u/ = γjuj for u a vector of Minkowski
space and ∂/ = γj∂j .

The wave functions at every space-time point are endowed with an indefinite scalar
product of signature (2, 2), which we call spin scalar product and denote by

≺Ψ | Φ≻(x) =

4∑

α=1

sα Ψα(x)∗ Φα(x) , s1 = s2 = 1, s3 = s4 = −1 , (1.2.8)

where Ψ∗ is the complex conjugate wave function (this scalar product is often written
as ΨΦ with the so-called adjoint spinor Ψ ≡ Ψ∗γ0). By the adjoint A∗ of a matrix A
we always mean the adjoint with respect to the spin scalar product as defined via the
relations

≺A∗Ψ | Φ≻ = ≺Ψ |AΦ≻ for all Ψ,Φ.
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In an obvious way, this definition of the adjoint gives rise to the notions “selfadjoint,”
“anti-selfadjoint” and “unitary.” With these notions, the Dirac matrices are selfad-
joint, meaning that

≺γlΨ | Φ≻ = ≺Ψ | γlΦ≻ for all Ψ,Φ.

To every solution Ψ of the Dirac equation we can associate a time-like vector field J
by

Jk = ≺Ψ | γk Ψ≻ , (1.2.9)

which is called the Dirac current. The Dirac current is divergence-free,

∂kJ
k = ∂k ≺Ψ | γk Ψ≻ = ≺∂kΨ | γk Ψ≻+≺Ψ | γk∂k Ψ≻

= i (≺i∂/Ψ |Ψ≻−≺Ψ | i∂/Ψ≻)
= i (≺(i∂/+A/−m)Ψ |Ψ≻−≺Ψ | (i∂/+A/−m)Ψ≻) = 0 ,

this is referred to as current conservation.
So far Dirac spinors were introduced in a given reference frame. In order to verify

that our definitions are coordinate independent, we consider two reference frames (xj)
and (x̃l) with the same orientation of time and space. Then the reference frames are
related to each other by an orthochronous proper Lorentz transformation Λ, i.e. in
components

x̃l = Λl
j x

j , Λl
j

∂

∂x̃l
=

∂

∂xj
,

and Λ leaves the Minkowski metric invariant,

Λl
j Λ

m
k glm = gjk . (1.2.10)

Under this change of space-time coordinates, the Dirac operator iγj(∂xj − iAj) trans-
forms to

iγ̃l
(
∂

∂x̃l
− iÃl

)

with γ̃l = Λl
jγ

j . (1.2.11)

This transformed Dirac operator does not coincide with the Dirac operator iγl(∂x̃l −
iÃl) as defined in the reference frame (x̃l) because the Dirac matrices have a different
form. However, the next lemma shows that the two Dirac operators do coincide up to
a suitable unitary transformation of the spinors.

Lemma 1.2.1. For any orthochronous proper Lorentz transformation Λ there is a
unitary matrix U(Λ) such that

U(Λ) Λl
jγ

j U(Λ)−1 = γl .

Proof. Since Λ is orthochronous and proper, we can write it in the form Λ =
exp(λ), where λ is a suitable generator of a rotation and/or a Lorentz boost. Then
Λ(t) := exp(tλ), t ∈ R, is a family of Lorentz transformations, and differentiat-
ing (1.2.10) with respect to t at t = 0, we find that

λlj glk = −gjm λmk .

Using this identity together with the fact that the Dirac matrices are selfadjoint, it is
straightforward to verify that the matrix

u :=
1

4
λlk γlγ

k
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is anti-selfadjoint. As a consequence, the family of matrices

U(t) := exp (tu)

is unitary. We now consider for a fixed index l the family of matrices

A(t) := U(t) Λ(t)ljγ
j U(t)−1 .

Clearly, A(0) = γl. Furthermore, differentiating with respect to t gives

d

dt
A(t) = U Λl

j

{

u γj − γj u+ λjkγ
k
}

U−1 ,

and a short calculation using the commutation relations
[
γlγk, γ

j
]
= 2

(

γl g
kj − δjl γk

)

shows that the curly brackets vanish. We conclude that A(1) = A(0), proving the
lemma.

Applying this lemma to the Dirac operator in (1.2.11), one sees that the Dirac oper-
ator is invariant under the joint transformation of the space-time coordinates and the
spinors

xj −→ Λj
kx

k , Ψ −→ U(Λ) Ψ . (1.2.12)

Moreover, since the matrix U(Λ) is unitary, the representation of the spin scalar prod-
uct (1.2.8) is valid in any reference frame. We conclude that our definition of spinors
is indeed coordinate invariant.

Out of the Dirac matrices one can form the pseudoscalar matrix ρ by

ρ =
i

4!
ǫjklmγ

jγkγlγm (1.2.13)

(this matrix in the physics literature is usually denoted by γ5). Here ǫjklm is the
totally antisymmetric symbol (i.e. ǫjklm is equal to ±1 if (j, k, l,m) is an even and odd
permutation of (0, 1, 2, 3), respectively, and vanishes otherwise). A short calculation
shows that the pseudoscalar matrix is anti-selfadjoint and ρ2 = 11. As a consequence,
the matrices

χL =
1

2
(11− ρ) , χR =

1

2
(11 + ρ) (1.2.14)

satisfy the relations

χ2
L/R = χL/R , ρ χL = −χL , ρ χR = χR , χ∗L = χR , χL + χR = 11 .

They can be regarded as the spectral projectors of the matrix ρ and are called the
chiral projectors . The projections χLΨ and χRΨ are referred to as the left- and right-
handed components of the spinor. A matrix is said to be even and odd if it commutes
and anti-commutes with ρ, respectively. It is straightforward to verify that the Dirac
matrices are odd, and therefore

γj χL/R = χR/L γ
j .

Using this relation, one can rewrite the Dirac equation (1.2.7) as a system of equations
for the left- and right-handed components of Ψ,

iγk(∂k − iAk) χLΨ = mχRΨ , iγk(∂k − iAk) χRΨ = mχLΨ .
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If m = 0, these two equations decouple, and we get separate equations for the left-
and right-handed components of Ψ. This observation is the starting point of the 2-
component Weyl spinor formalism. We shall not use this formalism here, but will
instead describe chiral massless particles (like neutrinos) by the left- or right-handed
component of a Dirac spinor.

For the probabilistic interpretation of the Dirac wave function, we need to dis-
tinguish a direction of time and work in a particular reference frame. Then the zero
component of the Dirac current J0(t, ~x) has for a given time t the interpretation as the
probability density of the particle to be at position ~x (and is thus the relativistic ana-
logue of the absolute square |Ψ|2 of the Schrödinger or Pauli wave functions). Clearly,
for this probabilistic interpretation the wave function must be properly normalized.
More precisely, physical states must satisfy the normalization condition

∫

IR3
≺Ψ | γ0 Ψ≻(t, ~x) d~x = 1 . (1.2.15)

The integral in (1.2.15) is also called the probability integral. Using Gauss’ (divergence)
theorem and the current conservation, one sees that the normalization integral is time
independent,

∫

IR3
≺Ψ | γ0 Ψ≻(t2, ~x) d~x−

∫

IR3
≺Ψ | γ0 Ψ≻(t1, ~x) d~x

=

∫ t2

t1

dt

∫

IR3
d~x ∂k≺Ψ | γk Ψ≻(t, ~x) = 0 , (1.2.16)

and thus it suffices to satisfy (1.2.15) for example at t = 0.
In a given reference frame, it is convenient to introduce a positive scalar product

by polarizing the normalization integral,

(Ψ | Φ) :=

∫

IR3
≺Ψ | γ0 Φ≻(t, ~x) d~x . (1.2.17)

We denote the Hilbert space corresponding to this scalar product by H = L2(R3)4.
Multiplying the Dirac equation (1.2.7) by γ0 and bringing the t-derivative on a separate
side of the equation, we can write the Dirac equation as

i∂tΨ = hΨ (1.2.18)

with a purely spatial operator h. Clearly, this equation is not manifestly covariant. In
analogy to nonrelativistic quantum mechanics, it is referred to as the Dirac equation
in Hamiltonian form, and h is the Hamiltonian. If Ψ and Φ are solutions of the Dirac
equation, one sees similar to (1.2.16) that the scalar product (1.2.17) is independent
of time. Hence

0 = ∂t(Ψ | Φ) = i ((hΨ | Φ)− (Ψ | hΦ)) .
This shows that the Hamiltonian is a symmetric operator on H.

We conclude this section by a brief discussion of the solutions of the free Dirac
equation (=the Dirac equation without electromagnetic field) in the case m 6= 0.
Taking the Fourier transform of the wave function,

Ψ(x) =

∫
d4k

(2π)4
Ψ̂(k) e−ikx , Ψ̂(k) =

∫

d4xΨ(x) eikx ,
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the Dirac equation (i∂/ − m)Ψ = 0 reduces to the algebraic equation in momentum
space

(k/ −m) Ψ̂(k) = 0 . (1.2.19)

Multiplying by k/ + m and using the identity (k/ − m)(k/ + m) = k2 − m2, one sees
that if k2 6= m2, the matrix k/ −m is invertible and thus (1.2.19) has no solutions. If
conversely k2 = m2, we have the relation (k/ −m)2 = −2m(k/ −m), showing that the
matrix k/−m is diagonalizable and that its eigenvalues are either −2m or zero. Taking
the trace, Tr(k/ −m) = −4m, it follows that the matrix k/ −m has a two-dimensional
kernel. A short calculation shows that the projector onto this kernel is given by

Π(k) :=
k/+m

2m
. (1.2.20)

We conclude that (1.2.19) has a solution only if k is on the mass shell {k | k2 = m2}.
For each k on the mass shell, (1.2.19) has exactly two linearly independent solutions.
In order to give these solutions more explicitly, we choose a reference frame (t, ~x) and
denote the corresponding momentum variables by k = (ω, ~p). The momenta on the
mass shell are then given by

ω = ω(~p, ǫ) := ǫ
√

|~p|2 +m2

with parameters ~p ∈ R3 and ǫ ∈ {±1}. The momenta with ǫ = 1 and ǫ = −1 are said
to be on the upper and lower mass shell, respectively. For any given (~p, ǫ), we label the
two linearly independent solutions of (1.2.19) by a parameter s ∈ {1, 2} and denote
them by χ~psǫ. It is most convenient to choose them pseudo-orthonormal with respect
to the spin scalar product,

≺χ~psǫ|χ~ps′ǫ≻ = ǫ δs,s′ for all ~p ∈ R3, ǫ ∈ {±1} and s, s′ ∈ {1, 2} . (1.2.21)

Here the factor ǫ reflects that the solution spaces on the upper and lower mass shell
are positive and negative definite, respectively. Using a bra/ket notation in the spin
scalar product, we get a simple representation of the projector (1.2.20),

∑

s=1,2

ǫ |χ~psǫ≻≺χ~psǫ| = Π(ω(~p, ǫ), ~p) . (1.2.22)

The spinors χ~psǫ form a complete set of solutions of (1.2.19). Taking their suitably
normalized Fourier transform, we obtain the plane wave solutions

Ψ~psǫ(t, ~x) =
1

(2π)
3
2

e−iω(~p,ǫ)t+i~p~x χ~psǫ . (1.2.23)

Each solution of the free Dirac equation is a superposition of plane wave solutions.
In the Hamiltonian framework (1.2.18), the plane wave solutions are eigenfunctions

of the Hamiltonian with eigenvalue ω(~p, ǫ),

hΨ~psǫ = ω(~p, ǫ) Ψ~psǫ .

Since the eigenvalue of the Hamiltonian has the interpretation as the physical energy of
the state, we conclude that the plane wave solutions on the upper and lower mass shell
have positive and negative energy, respectively. Expressed more mathematically, the
plane wave solutions correspond to points in the essential spectrum of the Hamiltonian,
and thus

σess(h) = {±
√

~p2 +m2, ~p ∈ R3} = (−∞,−m] ∪ [m,∞) .
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In particular, we conclude that the Dirac equation has solutions of negative energy and
that the Hamiltonian is not bounded below. This was originally considered a serious
problem of Dirac theory, mainly because a system with unbounded Hamiltonian has no
stable ground state. Dirac resolved these problems by introducing the so-called Dirac
sea [D2]. The concept of the Dirac sea plays a crucial role in the present work. At this
point, we merely explain Dirac’s idea in words (in the next section we shall explain
how it is implemented mathematically in the framework of quantum field theory, and
in Chapter §2 we will come back to it in greater detail). Thinking of many-particle
quantum mechanics (and assuming that the particles do not interact with each other),
the solutions of the Dirac equation can be regarded as one-particle states, which can
be occupied by the particles of the system. According to the Pauli Exclusion Principle,
each state may be occupied by at most one particle. If one assumes that no states
are occupied in the vacuum, a system of n particles is unstable because the energy
of the system can be made negative and arbitrarily small by occupying n negative-
energy states. However, this problem disappears if one assumes that in the vacuum all
states of negative energy are already occupied. Then the n additional particles must
occupy states of positive energy, and the system becomes stable. This consideration led
Dirac to no longer think of the vacuum as “empty space,” but instead to conjecture
that the vacuum should be formed of a “sea” of quantum mechanical particles of
negative energy. Dirac’s conception was that the effects of all the particles of the
sea should compensate each other in such a way that the sea cannot be observed.
Likewise, in this picture an interacting system of n particles corresponds to the Dirac
sea and n additional particles of positive energy which all interact with each other.
This intuitive concept of the Dirac sea as a “sea of interacting particles” was not only
useful for resolving the problem of the negative-energy solutions, but furthermore led
to the prediction of anti-particles and pair creation/annihilation. To this end, Dirac
considered an interacting system which at initial time t = 0 is the vacuum. Then at
a later time, one of the particles of the sea may no longer occupy a state of negative
energy, but be instead in a positive-energy state. In this case, the system consists of
one particle and one “hole” in the Dirac sea. Since the completely filled Dirac sea
should be invisible, the hole appears as a virtual particle of energy and electric charge
opposite to that of the unoccupied negative-energy state. Thus the virtual particle
has positive energy, but its charge is opposite to that of an ordinary particle. This
virtual particle is referred to as anti-particle. In the above process, particles and anti-
particles are always generated in pairs, this explains the physical effect of pair creation.
Conversely, a particle and a hole can recombine in a process called pair annihilation.

1.3. Fock Space Quantization of the Free Dirac Field

In this section we outline the canonical quantization of the free Dirac field (for
details see [BD2, IZ]). For clarity, we first quantize without taking into account
the Dirac sea and explain afterwards how the construction is to be modified in order
to cure the problem of the negative-energy states. We begin with the one-particle
Hilbert space (H, (., .)) in the Hamiltonian framework (1.2.18). Clearly, the plane-
wave solutions (1.2.23) are not square integrable, but we can normalize them in the
distributional sense. More precisely,

(Ψ~psǫ |Ψ~p′s′ǫ′) = δ3(~p − ~p′)≺χ~psǫ | γ0χ~ps′ǫ′≻ . (1.3.1)
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In order to compute the inner product ≺χ~psǫ | γ0χ~ps′ǫ′≻, we first plug in the spectral
projectors (1.2.20), which for convenience we now denote by Π~pǫ := Π(ω(~p, ǫ), ~p),

≺χ~psǫ | γ0χ~ps′ǫ′≻ = ≺Π~pǫχ~psǫ | γ0 Π~pǫ′χ~ps′ǫ′≻ = ≺χ~psǫ |Π~pǫ γ
0 Π~pǫ′χ~ps′ǫ′≻ .

The matrix product Π~pǫγ
0Π~pǫ′ is computed in the cases ǫ = ǫ′ and ǫ 6= ǫ′ as follows,

Π~pǫ γ
0 Π~p −ǫ =

ωγ0 − ~p~γ +m

2m
γ0
−ωγ0 − ~p~γ +m

2m

=
(k/ +m)(−k/ +m)

4m2
γ0 = 0

Π~pǫ γ
0 Π~pǫ =

ωγ0 − ~p~γ +m

2m
γ0

ωγ0 − ~p~γ +m

2m

=
ωγ0 − ~p~γ +m

4m2
2ω +

(k/ +m)(−k/ +m)

4m2
γ0 =

ω

m
Π~pǫ ,

where we set ω = |ω(~p, ǫ)| and k = (ω, ~p). Hence the matrix products reduce to a
multiple of the identity, and we can use the normalization (1.2.21) to obtain

(Ψ~psǫ |Ψ~p′s′ǫ′) =
ω(~p)

m
δ3(~p− ~p′) δǫǫ′ δss′ , (1.3.2)

with ω(~p) := |ω(~p, ǫ)| =
√

|~p|2 +m2. Readers who dislike this δ-normalization can also
state (1.3.2) by saying that, similar to a Fourier transformation, the mapping

L2

(

R3,
d~p

2ω(~p)

)4

−→ H : fsǫ(~p) 7−→
√
2m

∑

s,ǫ

∫

IR3

d~p

2ω(~p)
fsǫ(~p) Ψ~psǫ(t, ~x)

is an isometry of Hilbert spaces. The factor d~p/(2ω(~p)) appearing here can be inter-
preted as the Lorentz invariant measure on the mass shell (i.e. formally d~p/(2ω(~p)) =
δ(k2 −m2) d4k), and we abbreviate it in what follows by dµ~p.

In many-particle quantum mechanics, the system where the n one-particle states
Ψ~p1s1ǫ1 , . . . ,Ψ~pnsnǫn are occupied is described by the Hartree-Fock state

Ψ = Ψ~p1s1ǫ1 ∧ · · · ∧ Ψ~pnsnǫn . (1.3.3)

Here the wedge product ∧ is the anti-symmetrized tensor product. Due to the anti-
symmetry, the wedge product vanishes if two of the one-particle wave functions Ψ~pi,si,ǫi
coincide. This corresponds to the

Pauli Exclusion Principle: each quantum mechanical state
can be occupied by at most one
particle.

Particles which obey the Pauli Exclusion Principle are called fermions (whereas for
bosons one uses instead of (1.3.3) the symmetric tensor product). Working with the n-
particle state (1.3.3) also implies that the n particles are indistinguishable in the sense
that if we exchange two particles, the wave function Ψ changes only by a physically
irrelevant phase.

A general n-particle state corresponds to a linear combination of Hartree-Fock
states and is thus a vector of the Hilbert space Fn = ∧nH. In quantum field theory,
the number of particles is not fixed, and therefore the Dirac particles are described
more generally by a vector of the fermionic Fock space F = ⊕∞n=0Fn. Notice that the
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scalar product on F is induced by that on H; we denote it for clarity by (.|.)F . On

the Fock space, we introduce the field operators Ψ̂†~psǫ by

Ψ̂†~psǫ : Fn −→ Fn+1 : Ψ 7−→ Ψ~psǫ ∧Ψ

and denote their adjoint with respect to the scalar product (.|.)F by Ψ̂~psǫ, Ψ̂~psǫ =

(Ψ̂†~psǫ)
∗. The operators Ψ̂†~psǫ and Ψ̂~psǫ are referred to as the creation and annihilation

operators, respectively. A straightforward calculation using our definitions and the
normalization condition (1.3.2) yields that the field operators satisfy the canonical
anticommutation relations

{Ψ̂~psǫ, Ψ̂~p′s′ǫ′} = 0 = {Ψ̂†~psǫ, Ψ̂
†
~p′s′ǫ′}

{Ψ̂~psǫ, Ψ̂
†
~p′s′ǫ′} = 2ω(~p) δ3(~p − ~p′) δǫǫ′ δss′ .

(1.3.4)

The vacuum corresponding to these field operators, denoted by |0>, is a unit vector
of F on which all annihilation operators vanish,

Ψ̂~psǫ |0> = 0 for all ~p, s, ǫ. (1.3.5)

The Hartree-Fock states can be obtained from it by applying the creation operators,

(1.3.3) = Ψ̂†~p1s1ǫ1 · · · Ψ̂
†
~pnsnǫn

|0> ,

and taking linear combinations, we can build up the whole Fock space from the vacuum.
The energy of the Hartree-Fock state (1.3.3) is the sum of the energies ω(~p, ǫ) of all
particles, and a short calculation shows that this coincides with the eigenvalue of the
following operator on the Fock space,

H0 =
∑

ǫ,s

∫

IR3
ω(~p, ǫ) Ψ̂†~psǫΨ̂~psǫ dµ~p . (1.3.6)

Thus H0 is the Hamiltonian of the free many-particle theory.
Since the factor ω(~p, ǫ) in the integrand can be negative, the Hamiltonian (1.3.6)

is not bounded from below. This is precisely the problem of the negative-energy so-
lutions of the Dirac equation which we described at the end of the previous section.
This problem disappears in quantum field theory as follows. According to the con-
cept of the Dirac sea, all negative-energy states should be occupied in the vacuum.
This is implemented here by redefining the vacuum; namely we replace (1.3.5) by the
conditions

Ψ̂~ps+ |0> = 0 = Ψ̂†~ps− |0> for all ~p, s. (1.3.7)

Since the anti-particles correspond to “holes” in the Dirac sea, we reinterpret the
creation operators for the negative-energy states as annihilation operators and vice
versa, i.e. we perform the formal replacements

Ψ̂~ps− ←→ Ψ̂†~ps− . (1.3.8)

This is convenient because after the reinterpretation, the new vacuum (1.3.7) again
satisfies the usual conditions (1.3.5). The Hamiltonian (1.3.6) transforms under the
replacements (1.3.8) into

H0 =
∑

ǫ,s

∫

IR3
ω(~p) Ψ̂†~psǫΨ̂~psǫ dµ~p −

∑

s

∫

IR3
ω(~p) {Ψ̂†~ps−, Ψ̂~ps−} dµ~p . (1.3.9)
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The first part of this Hamiltonian is positive. Using the anti-commutation rela-
tions (1.3.4), one sees that the second term in (1.3.9) is an infinite negative constant.
Using the argument that adding a constant to the total energy of a system is nothing
more than introducing a new convention for the zero point of energy measurements,
one drops this second term and redefines the Hamiltonian by

H0 =
∑

ǫ,s

∫

IR3
|ω(~p, s)| Ψ̂†~psǫΨ̂~psǫ dµ~p . (1.3.10)

This Hamiltonian is positive and vanishes on the vacuum, giving rise to a satisfying
physical theory. However, dropping the second summand in (1.3.9) was a problematic
step in the construction. We postpone the discussion of this point to §2.2.

1.4. Classical Gauge Theories

We now briefly introduce the framework of local gauge theories (for a more detailed
introduction see for example [Ga]). In order to avoid confusion between covariant
derivatives ∇ and gauge-covariant derivatives D we restrict attention to Minkowski
space. The generalization to curved space-time will be described in connection with
the Dirac equation in §1.5. The starting point for gauge theories is the observation
that changing the electromagnetic potential by the gradient of a real-valued function
Λ,

A −→ A+ ∂Λ , (1.4.1)

leaves the field tensor unchanged,

Fjk −→ Fjk + ∂j∂kΛ− ∂k∂jΛ = Fjk .

The equations of classical electrodynamics (1.1.2, 1.1.3) do not involve the electromag-
netic potential, only its field tensor. Therefore, these equations are obviously invariant
under the transformation (1.4.1). In the quantum mechanical wave equations (1.2.2,
1.2.7) the electromagnetic potential does appear, but only in combination with a par-
tial derivative in the operators ∂k − iAk. These operators transform under (1.4.1) as
follows,

∂k − iAk −→ ∂k − iAk − i∂kΛ = eiΛ (∂k − iAk) e
−iΛ .

Writing the transformation law with the multiplication operators e±iΛ reveals that the
equations of quantum mechanics are invariant under (1.4.1) if at the same time the
local phase of the wave functions is transformed according to

Ψ −→ eiΛ Ψ . (1.4.2)

Finally, these local phase transformations leave the Dirac current (1.2.9) unchanged.
We conclude that classical field theory and relativistic quantum mechanics are in-
variant under the transformation (1.4.1, 1.4.2), which is referred to as a local gauge
transformation of electrodynamics. The invariance of the physical equations under
local gauge transformations can be interpreted as a physical symmetry, the local gauge
symmetry.

Extending the above concept leads to the mathematical framework of gauge theo-
ries. We first note that the phase factor eiΛ in (1.4.2) can be interpreted as the opera-
tion of an element of the Lie group U(1) on Ψ. Likewise, the factors ∂jΛ = ieiΛ∂je

−iΛ

can be regarded as elements of the corresponding Lie algebra u(1). Since in (1.4.1)
this factor is added to the components Aj of the electromagnetic potential, it is nat-
ural to also consider the Aj as u(1)-valued functions. In generalization, we let the
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gauge group G be an arbitrary Lie group in a given matrix representation on the wave
functions (the wave functions may have more than four components; a typical example
is G = U(p) and Ψ(x) ∈ C4 ⊗ Cp). The corresponding Lie algebra in its representa-
tion on the wave functions is denoted by g. We introduce the gauge potentials Aj as
g-valued functions on M . For any smooth function U : M → G, the transformation
of the wave functions

Ψ(x) −→ U(x) Ψ(x) (1.4.3)

is referred to as a local gauge transformation. Clearly, partial derivatives of Ψ do
not behave well under gauge transformations because we pick up derivatives of U .
This problem disappears if instead of partial derivatives we consider gauge-covariant
derivatives

Dj = ∂j − iAj , (1.4.4)

provided that the gauge potentials transform according to

Aj −→ UAjU
−1 + iU (∂jU

−1) . (1.4.5)

Namely, a short calculation shows that the gauge-covariant derivative behaves under
gauge transformations according to

Dj −→ U Dj U
−1 , (1.4.6)

and thus the gauge-covariant derivatives of Ψ obey the simple transformation rule

DjΨ −→ U DjΨ .

Next we need to introduce the gauge potentials into the physical equations and
formulate the equations that describe the dynamics of the gauge fields. We just saw
that in order to ensure gauge invariance, one should work with gauge-invariant deriva-
tives instead of partial derivatives. The simplest method for making the physical
theory gauge invariant is to replace all partial derivatives by the corresponding gauge-
invariant derivatives,

∂ −→ D . (1.4.7)

This ad-hoc method is in physics called the minimal coupling procedure. For the
equations of quantum mechanics it can be motivated if one keeps in mind that with
a local gauge transformation of the form U(x) = 11 − iAj (x − p)j + o(x − p) we can
always arrange that A(p) = 0. In this gauge, the gauge-covariant derivatives coincide
at p with the partial derivatives, and thus we can state minimal coupling as follows,

Around each space-time point p there is a gauge such that the
quantum mechanical equations coincide at p with the equations
without gauge fields.

(1.4.8)

In this formulation, minimal coupling can be understood similar to the strong equiva-
lence principle; we only need to replace “coordinate system” by “gauge” and “gravita-
tional field” by “gauge field.” In the example of the free Dirac equation (i∂/−m)Ψ = 0,
minimal coupling yields the equation

iγj(∂j − iAj) Ψ = mΨ ,

which describes a behavior of a Dirac particle in the presence of the gauge field. This
equation can also be derived by varying Ψ in the corresponding Dirac action

SD =

∫

M
≺Ψ |

(
iγj(∂j − iAj)−m

)
Ψ≻ dµ.



1.5. DIRAC SPINORS IN CURVED SPACE-TIME 21

In order to get the equations for the gauge field, we construct out of the gauge-covariant
derivative the field tensor by

Fjk = i [Dj ,Dk] = ∂jAk − ∂kAj − i[Aj , Ak] .

Since its behavior under gauge transformation is simply

Fjk −→ U Fjk U
−1 ,

we can generalize the action of the electromagnetic field in (1.1.9) by the Yang-Mills
action

SYM = − 1

16πe2

∫

M
Tr(FjkF

jk) dµ ,

where “Tr” is a suitably normalized matrix trace. The total action is simply the sum
of the Dirac and Yang-Mills actions,

S = SD + SYM .

Varying (Ψ, A) we obtain the coupled Dirac-Yang/Mills equations which describe the
classical dynamics.

1.5. Dirac Spinors in Curved Space-Time

Dirac spinors are often formulated on a manifold using frame bundles, either an
orthonormal frame [B, Fr] or a Newman-Penrose null frame [PR, Ch]. We here
outline an equivalent formulation of spinors in curved space-time in the framework
of a U(2, 2) gauge theory (for details see [F2]). We restrict attention to the Dirac
operator in local coordinates; for global issues like topological obstructions for the
existence of spin structures see e.g. [LM]. We let M be a 4-dimensional manifold
(without Lorentz metric) and define the spinor bundle SM as a vector bundle over M
with fibre C4. The fibres are endowed with a scalar product ≺.|.≻ of signature (2, 2),
which is again referred to as the spin scalar product. Sections in the spinor bundle
are called spinors or wave functions. In local coordinates, a spinor is represented by a
4-component complex function on space-time, usually denoted by Ψ(x). Choosing at
every space-time point a pseudo-orthonormal basis (eα)α=1,...,4 in the fibres,

≺eα|eβ≻ = sα δαβ , s1 = s2 = 1, s3 = s4 = −1 (1.5.1)

and representing the spinors in this basis, Ψ = Ψαeα, the spin scalar product takes
again the form (1.2.8). Clearly, the basis (eα) is not unique, but at every space-point
can be transformed according to

eα −→ (U−1)βα eβ ,

where U is an isometry of the spin scalar product, U ∈ U(2, 2). Under this basis
transformation the spinors behave as follows,

Ψα(x) −→ Uα
β (x) Ψ

β(x) . (1.5.2)

Due to the analogy to (1.4.3) we interpret this transformation of the wave functions
as a local gauge transformation with gauge group G = U(2, 2). We refer to a choice of
the spinor basis (eα) as a gauge.

Our goal is to formulate classical Dirac theory in such a way that the above U(2, 2)
gauge transformations correspond to a physical symmetry, the U(2, 2) gauge symmetry.
To this end, we shall introduce the Dirac operator as the basic object on M , from
which we will later deduce the Lorentz metric and the gauge potentials. We define a
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differential operator D of first order on the wave functions by the requirement that in
a chart and gauge it should be of the form

D = iGj(x)
∂

∂xj
+B(x) (1.5.3)

with suitable (4×4)-matrices Gj and B. This definition does not depend on coordinates
and gauge, although the form of the matrices Gj and B clearly does. More precisely,
under a change of coordinates xi → x̃i the operator (1.5.3) transforms into

i

(

Gk(x̃)
∂x̃j

∂xk

)
∂

∂x̃j
+B(x̃) , (1.5.4)

whereas a gauge transformation Ψ→ UΨ yields the operator

UDU−1 = i
(
UGjU−1

) ∂

∂xj
+
(
UBU−1 + iUGj(∂jU

−1)
)
. (1.5.5)

We define the Dirac operator by the requirement that by choosing suitable coordinates
and gauge, one can arrange that the matrices Gj in front of the partial derivatives
“coincide locally” with the Dirac matrices of Minkowski space.

Def. 1.5.1. A differential operator D of first order is called Dirac operator if
for every p ∈M there is a chart (xi, U) around p and a gauge (eα)α=1,...,4 such that D
is of the form (1.5.3) with

Gj(p) = γj , (1.5.6)

where the γj are the Dirac matrices of Minkowski space in the Dirac representa-
tion (1.2.5).

It may seem unconventional that in this definition the zero order term B of the
Dirac operator is not at all specified. Furthermore, our formulation as a gauge theory
seems incomplete because we introduced local gauge transformations (1.5.2, 1.4.3), but
not a corresponding gauge-covariant derivative (1.4.4). In order to clarify the situation,
we shall now construct from the Dirac operator a gauge-covariant derivative D, also
referred to as spin derivative. To this end, we must find matrices Aj which transform
under local gauge transformations according to (1.4.5). This construction will also
reveal the structure of the matrix B, and this will finally lead us to the definition of
the so-called physical Dirac operator, which involves precisely the gravitational and
electromagnetic fields.

In the chart and gauge where (1.5.6) holds, it is obvious from (1.2.3) that the
anti-commutator of the matrices Gj(p) gives the Minkowski metric. Using the trans-
formation rules (1.5.4, 1.5.5), one sees that in a general coordinate system and gauge,
their anti-commutator defines a Lorentz metric,

gjk(x) 11 =
1

2
{Gj(x), Gk(x)} . (1.5.7)

In this way, the Dirac operator induces on the manifold a Lorentzian structure. We
refer to the matrices Gj as the Dirac matrices in curved space-time. Since we can
arrange that these matrices coincide locally with the Dirac matrices of Minkowski
space, all manipulations of Dirac matrices can be performed at any given space-time
point in an obvious way. In particular, the pseudoscalar matrix (1.2.13) now takes the
more general form

ρ(x) =
i

4!
εjklm GjGkGlGm ,
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where the anti-symmetric tensor εjklm differs from the anti-symmetric symbol ǫjklm by

the volume density, εjklm =
√

|det g|ǫjklm. The pseudoscalar matrix gives us again the
notion of even and odd matrices and of chirality (1.2.14). Furthermore, we introduce
the bilinear matrices σjk by

σjk(x) =
i

2
[Gj , Gk] .

As in Minkowski space, the matrices

Gj , ρGj , 11 , iρ , σjk (1.5.8)

form a basis of the 16-dimensional (real) vector space of selfadjoint matrices (with
respect to ≺.|.≻). The matrices Gj and ρGj are odd, whereas 11, iρ and σjk are even.

For the construction of the spin connection we must clearly consider derivatives.
The Lorentzian metric (1.5.7) induces the Levi-Civita connection ∇, which defines
the covariant derivative of tensor fields. Taking covariant derivatives of the Dirac

matrices, ∇kG
j = ∂kG

j + Γj
kl G

l, we obtain an expression which behaves under co-
ordinate transformations like a tensor. However, it is not gauge covariant, because a
gauge transformation (1.4.3) yields contributions involving first derivatives of U . More
precisely, according to (1.5.5),

∇kG
j −→ ∇k(UG

jU−1) = U(∇kG
j)U−1 + (∂kU)GjU−1 + UGj(∂kU

−1)

= U(∇kG
j)U−1 −

[
U(∂kU

−1), UGjU−1
]
. (1.5.9)

We can use the second summand in (1.5.9) to partially fix the gauge.

Lemma 1.5.2. For every space-time point p ∈M there is a gauge such that

∇kG
j(p) = 0 (1.5.10)

(for all indices j, k).

Proof. We start with an arbitrary gauge and construct the desired gauge with
two subsequent gauge transformations:

(1) The matrix ∂jρ is odd, because

0 = ∂j11 = ∂j(ρρ) = (∂jρ)ρ+ ρ(∂jρ) .

As a consequence, the matrix iρ(∂jρ) is selfadjoint. We can thus perform a
gauge transformation U with U(p) = 11, ∂jU(p) = 1

2ρ(∂jρ). In the new gauge
the matrix ∂jρ(p) vanishes,

∂jρ|p −→ ∂j(UρU
−1)|p = ∂jρ|p +

1

2
[ρ(∂jρ), ρ]|p = ∂jρ|p − ρ2(∂jρ)|p = 0 .

Differentiating the relation {ρ,Gj} = 0, one sees that the matrix ∇kG
j
|p is

odd. We can thus represent it in the form

∇kG
j
|p = Λj

km Gm
|p + Θj

km ρGm (1.5.11)

with suitable coefficients Λj
km and Θj

km.
This representation can be further simplified: According to Ricci’s Lemma,

∇ng
jk = 0. Expressing the metric via the anti-commutation relations and dif-

ferentiating through with the Leibniz rule, we obtain

0 = {∇nG
j , Gk} + {Gj , ∇nG

k}
= 2Λj

nm gmk − Θj
nm 2iρσmk + 2Λk

nm gmj − Θk
nm 2iρσmj (1.5.12)
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and thus
Λj
nm gmk

|p = −Λk
nm gmj

|p
. (1.5.13)

In the case j = k 6= m, (1.5.12) yields that Θj
nm = 0. For j 6= k, we obtain

Θj
nj σ

jk +Θk
nk σ

kj = 0 and thus Θj
nj = Θk

nk (j and k denote fixed indices, no

summation is performed). We conclude that there are coefficients Θk with

Θj
km = Θk δ

j
m . (1.5.14)

(2) We perform a gauge transformation U with U(p) = 11 and

∂kU = −1

2
Θk ρ −

i

4
Λm
kn g

nl σml .

Using the representation (1.5.11) together with (1.5.13, 1.5.14), the matrix
∇kG

j transforms into

∇kG
j −→ ∇kG

j + [∂kU, G
j ]

= Λj
km Gm + Θk ρG

j − Θk ρG
j − i

4
Λm
kn g

nl [σml, G
j ]

= Λj
km Gm − i

4
Λm
kn g

nl 2i (Gm δjl −Gl δ
j
m)

= Λj
km Gm +

1

2
Λm
kn g

nj Gm −
1

2
Λj
km Gm = 0 .

We call a gauge satisfying condition (1.5.10) a normal gauge around p. In order to
analyze the remaining gauge freedom, we let U be a transformation between two normal
gauges. Then according to (1.5.9) and (1.5.10), the commutator [U(∂kU

−1), UGjU−1]
vanishes at p or, equivalently,

[i(∂kU
−1) U, Gj ]|p = 0 .

As is easily verified in the basis (1.5.8) using the commutation relations between
the Dirac matrices, a matrix which commutes with all Dirac matrices is a multi-
ple of the identity matrix. Moreover, the matrix i(∂jU

−1) U is selfadjoint because
(i(∂jU

−1)U)∗ = −iU−1(∂jU) = −i∂j(U−1U)+i(∂jU
−1)U = i(∂jU

−1)U . We conclude
that the matrix i(∂jU

−1)U is a real multiple of the identity matrix, and transforming
it unitarily with U we see that it also coincides with the matrix iU (∂jU

−1). Under
this strong constraint for the gauge transformation it is easy to find expressions with
the required behavior (1.4.5) under gauge transformations. Namely, setting

aj =
1

4
Re Tr(Gj B) 11 , (1.5.15)

where “Tr” denotes the trace of a 4× 4-matrix, one sees from (1.5.5) that

aj −→ aj +
1

4
Re Tr

(

GjG
k i(∂kU

−1) U
)

11 = aj + iU(∂jU
−1) .

We can identify the aj with the gauge potentials Aj and use (1.4.4) as the definition
of the spin connection.

Def. 1.5.3. The spin derivative D is defined by the condition that it behaves
under gauge transformations (1.4.3) according to (1.4.6) and in normal gauges around
p has the form

Dj(p) =
∂

∂xj
− iaj (1.5.16)
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with the potentials aj according to (1.5.15).

In general gauges, the spin derivative can be written as

Dj =
∂

∂xj
− iEj − iaj (1.5.17)

with additional matrices Ej(x), which involve the Dirac matrices and their first deriva-
tives. A short calculation shows that the trace of the matrix Ej does not change under
gauge transformations, and since it vanishes in normal gauges, we conclude that the
matrices Ej are trace-free. A straightforward calculation yields that they are explicitly
given by

Ej =
i

2
ρ (∂jρ) −

i

16
Tr(Gm ∇jG

n)GmGn +
i

8
Tr(ρGj ∇mG

m) ρ .

In the next two theorems we collect the basic properties of the spin connection.

Theorem 1.5.4. The spin derivative satisfies for all wave functions Ψ,Φ the equa-
tions

[Dk, G
j ] + Γj

kl G
l = 0 (1.5.18)

∂j ≺Ψ | Φ≻ = ≺DjΨ | Φ≻ + ≺Ψ |DjΦ≻ . (1.5.19)

Proof. The left side of (1.5.18) behaves under gauge transformations according
to the adjoint representation .→ U .U−1 of the gauge group. Thus it suffices to check
(1.5.18) in a normal gauge, where

[Dk, G
j ] + Γj

kl G
l = ∇kG

j − i

4
Re Tr(GjB) [11, Gj ] = 0 .

Since both sides of (1.5.19) are gauge invariant, it again suffices to consider a
normal gauge. The statement is then an immediate consequence of the Leibniz rule
for partial derivatives and the fact that the spin derivative differs from the partial
derivative by an imaginary multiple of the identity matrix (1.5.16).

The identity (1.5.18) means that the coordinate and gauge invariant derivative of
the Dirac matrices vanishes. The relation (1.5.19) shows that the spin connection is
compatible with the spin scalar product.

We define torsion T and curvature R of the spin connection as the following 2-
forms,

Tjk =
i

2
([Dj , Gk]− [Dk, Gj ]) , Rjk =

i

2
[Dj ,Dk] .

Theorem 1.5.5. The spin connection is torsion-free. Curvature has the form

Rjk =
1

8
Rmnjk σ

mn +
1

2
(∂jak − ∂kaj) (1.5.20)

where Rmnjk is the the Riemannian curvature tensor and the aj are given by (1.5.15).

Proof. The identity (1.5.18) yields that

[Dj , Gk] = [Dj , gkl G
l] = (∂jgkl)G

l − gkl Γ
l
jm Gm = Γm

jk Gm

and thus, using that the Levi-Civita connection is torsion-free,

Tjk =
i

2
(Γm

jk − Γm
kj)Gm = 0 .
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Again using (1.5.18), we can rewrite the covariant derivative as a spin derivative,

Gl ∇ku
l = [Dk, Glu

l] .

Iterating this relation, we can express the Riemann tensor (1.1.7) by

Gi R
i
jkl u

l = [Dj , [Dk, Glu
l]]− [Dk, [Dj , Glu

l]]

= [[Dj , Dk], Glu
l] = −2i [Rjk, Glu

l] .

This equation determines curvature up to a multiple of the identity matrix,

Rjk(x) =
1

8
Rmnjk σ

mn + λjk11 .

Thus it remains to compute the trace of curvature,

1

4
Tr(Rjk) 11 =

1

8
Tr(∂jAk − ∂kAj) 11 =

1

2
(∂jak − ∂kaj) ,

where we used (1.5.17) and the fact that the matrices Ej are trace-free.

We come to the physical interpretation of the above construction. According
to Lemma 1.5.2 we can choose a gauge around p such that the covariant deriva-
tives of the Dirac matrices vanish at p. Moreover, choosing normal coordinates and
making a global (=constant) gauge transformation, we can arrange that G(p) = γj

and ∂jgkl(p) = 0. Then the covariant derivatives at p reduce to partial derivatives,
and we conclude that

Gj(p) = γj , ∂kG
j(p) = 0 . (1.5.21)

These equations have a large similarity with the conditions for normal coordinates
(1.1.4), only the role of the metric is now played by the Dirac matrices. Indeed,
differentiating (1.5.7) one sees that (1.5.21) implies (1.1.4). Therefore, (1.5.21) is a
stronger condition which not only gives a constraint for the coordinates, but also for
the gauge. We call a coordinate system and gauge where (1.5.21) is satisfied a normal
reference frame around p.

In a normal reference frame, the Dirac matrices, and via (1.5.7) also the metric,
are the same as in Minkowski space up to the order o(x− p). According to the strong
equivalence principle, the Dirac equation at p should coincide with that in Minkowski
space. Now we use minimal coupling in the formulation (1.4.8) to conclude that there
should be a normal gauge such that all gauge potentials vanish at p, and thus the Dirac
operator at p should coincide with the free Dirac operator i∂/. This physical argument
allows us to specify the zero order term in (1.5.3).

Def. 1.5.6. A Dirac operator D is called physical Dirac operator if for any
p ∈M there is a normal reference frame around p such that B(p) = 0.

Equivalently, the physical Dirac operator could be defined as a differential operator
of first order (1.5.3) with the additional structure that for any p ∈ M there is a
coordinate chart and gauge such that the following three conditions are satisfied,

Gj(p) = γj , ∂kG
j(p) = 0 , B(p) = 0 .

This alternative definition has the disadvantage that it is a-priori not clear whether the
second condition ∂kG

j(p) = 0 can be satisfied for a general metric. This is the reason
why we preferred to begin with only the first condition (Def. 1.5.1), then showed that
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the second condition can be arranged by choosing suitable coordinates and gauge, and
satisfied the third condition at the end (Def. 1.5.6).

In general coordinates and gauge, the physical Dirac operator can be written as

D = iGjDj = iGj (∂j − iEj − iaj) ,
where D is the spin connection of Def. 1.5.3. The matrices Ej take into account the
gravitational field and are called spin coefficients, whereas the aj can be identified
with the electromagnetic potential (compare (1.2.7)). We point out that the gravita-
tional field cannot be introduced into the Dirac equation by the simple replacement
rule (1.4.7) because gravity has an effect on both the Dirac matrices and the spin co-
efficients. But factorizing the gauge group as U(2, 2) = U(1)×SU(2, 2), the SU(2, 2)-
gauge transformations are linked to the gravitational field because they influence Gj

and Ej , whereas the U(1) can be identified with the gauge group of electrodynamics.
In this sense, we obtain a unified description of electrodynamics and general relativity
as a U(2, 2) gauge theory. The Dirac equation

(D −m) Ψ = 0

describes a Dirac particle in the gravitational and electromagnetic field. According
to Theorem 1.5.5, the curvature of the spin connection involves both the Riemann
tensor and the electromagnetic field tensor. We can write down the classical action in
terms of these tensor fields, and variation yields the classical Einstein-Dirac-Maxwell
equations.

For the probabilistic interpretation of the Dirac equation in curved space-time,
we choose a space-like hypersurface H (corresponding to “space” for some observer)
and consider in generalization of (1.2.17) on solutions of the Dirac equation the scalar
product

(Ψ | Φ) =

∫

H
≺Ψ |Gjνj Φ≻ dµH , (1.5.22)

where ν is the future-directed normal on H and dµH is the invariant measure on the
Riemannian manifold H. Then (Ψ|Ψ) is the normalization integral, which we again
normalize to one. Its integrand has the interpretation as the probability density. In
analogy to (1.2.9) the Dirac current is introduced by Jk = ≺Ψ |GkΨ≻. Using Theo-
rem 1.5.4 one sees similar as in Minkowski space that the Dirac current is divergence-
free, ∇kJ

k = 0. From Gauss’ theorem one obtains that the scalar product (1.5.22)
does not depend on the choice of the hypersurface H.

We finally remark that using Theorem 1.5.4 together with Gauss’ theorem, one
easily verifies that the physical Dirac operator is Hermitian with respect to the inner
product

<Ψ | Φ> :=

∫

M
≺Ψ | Φ≻ dµ , (1.5.23)

in which the wave functions (which need not satisfy the Dirac equation but must have a
suitable decay at infinity) are integrated over the whole space-time. This inner product
is not positive, but it will nevertheless play an important conceptual role in the next
chapters.





CHAPTER 2

The Fermionic Projector in the Continuum

In the previous chapter we introduced the concept of the Dirac sea in order to
give the negative-energy solutions of the free Dirac equation a physical meaning as
anti-particle states (see §1.2, §1.3). Now we shall extend this concept to the case with
interaction. We will see that the Dirac sea can still be introduced as a universal object
in space-time, described mathematically by the so-called fermionic projector (§2.3). We
develop the mathematical methods for an explicit analysis of the fermionic projector
in position space (§2.5) and finally consider the normalization of the fermionic states
(§2.6).

2.1. The External Field Problem

We begin with the simplest interaction: a classical external field in Minkowski
space. In this situation the Dirac wave function is a solution of the Dirac equation

(i∂/+ B −m) Ψ = 0 , (2.1.1)

where the operator B is composed of the external potentials (as an example one may
choose B = A/ with A the electromagnetic potential (1.2.7)). In order to have current
conservation (i.e. the identity ∂kJ

k = 0 with J according to (1.2.9)), we always assume
that B is Hermitian (with respect to the spin scalar product). If B is static (=time
independent), we can separate the time dependence of the wave function with a plane
wave ansatz,

Ψ(t, ~x) = e−iωt ψ(~x) . (2.1.2)

The separation constant ω has the interpretation as the energy of the solution. Thus
the energy is a conserved quantity, and its sign distinguishes between solutions of
positive and negative energy. In more mathematical terms, for a static potential the
Hamiltonian in (1.2.18) is time independent, and the sign of the spectrum of h gives
a splitting of the solution space of the Dirac equation into the subspaces of positive
and negative energy, respectively. As a consequence, our previous construction of the
Dirac sea can be adapted: When building up the Fock space from the one-particle
states, we cure the problem of the negative-energy solutions similar to (1.3.7–1.3.9)
by redefining the vacuum and by formally exchanging the creation and annihilation
operators corresponding to the negative-energy solutions.

The situation becomes much more difficult when B is time-dependent. In this case,
the separation ansatz (2.1.2) no longer works. The energy is not conserved, and it is
even possible that a solution which has positive energy at initial time will have negative
energy at a later time. Expressed more mathematically, the Hamiltonian in (1.2.18)
now depends explicitly on time, and therefore the sign of the spectrum of h no longer
gives a canonical splitting of the solution space of the Dirac equation (this splitting
would also depend on time). As a consequence, it is not clear which solutions have
the interpretation as “negative-energy solutions” and thus correspond to anti-particle

29
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states (1.3.8). For this reason, it is no longer obvious how to quantize the Dirac field
in a canonical way. This difficulty is usually referred to as the external field problem.
It becomes most evident in the setting of Klein’s paradox, where one considers a step
potential whose amplitude is larger than the mass gap (see [BD1, T]). However, we
point out that the external field problem appears already for arbitrarily weak external
fields, simply because the time dependence of B leads to a complicated mixing of the
solutions of positive and negative energy. We could speak of a “solution of negative
energy” only if it were a superposition of states which all had negative energy, and
there seems no reason why such solutions should exist.

It is instructive to discuss the external field problem in the setting of pertubation
theory. Consider a first order perturbation of the plane-wave solution Ψ~psǫ,

Ψ = Ψ~psǫ +∆Ψ+O(B2) . (2.1.3)

Substituting this ansatz into the Dirac equation (2.1.1), we obtain to first order in B
the inhomogeneous Dirac equation

(i∂/−m) ∆Ψ = −B Ψ~psǫ . (2.1.4)

If sm(x, y) is a Green’s function of the free Dirac equation, characterized by the dis-
tributional equation

(i∂/x −m) sm(x, y) = δ4(x− y) , (2.1.5)

we can construct a solution of (2.1.4) by

∆Ψ = −
∫

d4y s(x, y) B(y) Ψ~psǫ(y) (2.1.6)

(in order not to distract from the main ideas, we here calculate on a formal level; the
analytic justification will be given at the end of §2.2). If the Green’s function were
unique, (2.1.3, 2.1.6) would give a unique procedure for perturbing the negative-energy
solutions of the vacuum, making it possible to extend the notion of “negative-energy
state” to the interacting theory (at least in first order perturbation theory).

The problem is that the Green’s function is not unique, as we now briefly recall
(for details see [BD1]). Taking the Fourier transform of (2.1.5),

sm(x, y) =

∫
d4k

(2π)4
sm(k) e−ik(x−y) , (2.1.7)

we obtain the algebraic equation

(k/ −m) sm(k) = 11 .

Since the matrix k/−m is singular on the mass shell (see the argument after (1.2.19)),
this equation can be solved for sm(k) only after using a ±iε-regularization on the mass
shell. The most popular choices are the advanced and the retarded Green’s functions
defined by

s∨m(k) = lim
εց0

k/+m

k2 −m2 − iεk0 and s∧m(k) = lim
εց0

k/+m

k2 −m2 + iεk0
, (2.1.8)

respectively (with the limit εց 0 taken in the distributional sense). Computing their
Fourier transform (2.1.7) with residues, one sees that they are causal in the sense that
their supports lie in the upper and lower light cone, respectively,

supp s∨m(x, .) ⊂ J∨x , supp s∧m(x, .) ⊂ J∧x . (2.1.9)
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Another commmon choice is the Feynman propagator

sFm(k) := lim
εց0

k/+m

k2 −m2 + iε
. (2.1.10)

Taking the Fourier transform (2.1.7) with residues, one finds

sFm(x, y) =
i

(2π)3

∫

IR3
(k/ +m) e−ik(x−y)

∣
∣
∣
k=(ǫ(t)ω(~p), ~p)

dµ~p (2.1.11)

with t ≡ (y − x)0 and ω(~p), dµ~p as introduced after (1.3.2). Here ǫ denotes the step
function ǫ(x) = 1 for x ≥ 0 and ǫ(x) = −1 otherwise. Thus for positive t we get the
integral over the upper mass shell, whereas for negative t we integrate over the lower
mass shell. As a consequence, the Feynman propagator is not causal, but it is instead
characterized by the frequency conditions that it is for positive and negative time t
composed only of positive and negative frequencies, respectively. More systematically,
the defining equation for the Green’s function (2.1.5) determines sm only up to a
solution of the homogeneous Dirac equation. Thus we can write a general Green’s
function sm in the form

sm(x, y) = s∨m(x, y) + a(x, y) , (2.1.12)

where a(x, y) is a linear combination of plane-wave solutions in the variable x, i.e.

a(x, y) =
∑

s,ǫ

∫

IR3
Ψ~psǫ(x) c~psǫ(y) dµ~p

with a suitable complex-valued function c~psǫ(y).
Due to the non-uniqueness of the Green’s function (2.1.12), the relations (2.1.3,

2.1.6) do not give a unique procedure for perturbing the plane-wave solutions Ψ~ksǫ
.

In particular, it is not clear how to extend the notion of “negative energy state” to
the interacting theory. This corresponds precisely to the external field problem. We
conclude that in a perturbative approach, the external field problem becomes manifest
in the non-uniqueness of the perturbation expansion.

Feynman [Fe] gave the frequency conditions in the Feynman propagator the phys-
ical interpretation as “positive-energy states moving to the future” and “negative-
energy states moving to the past”. Identifying “negative-energy states moving to the
past” with “antiparticle states” he concluded that the Feynman propagator is distin-
guished from all other Green’s functions in that it takes into account the particle/anti-
particle interpretation of the Dirac equation in the physically correct way. Feyn-
man proposed to perform the perturbation expansion exclusively with the Feynman
propagator, thereby making the perturbation expansion unique. The flaw is that the
frequency conditions are not invariant under general coordinate and gauge transfor-
mations (simply because such transformations “mix” positive and negative frequen-
cies), and therefore Feynman’s method is not compatible with the equivalence prin-
ciple and the local gauge principle. This is not a problem for most calculations in
physics, but it is not satisfying conceptually. Another approach is to work with the
so-called Hadamard states [H, Wa2]. The disadvantage of this approach is that the
states of the quantum field no longer have a particle interpretation. In other words, the
notions of “particle” and “anti-particle” depend on the local observer, and therefore
also the notion of the Dirac sea loses its universal meaning. We proceed in §2.2 by
showing that the Dirac sea can indeed be introduced as a global object of space-time,
even in the presence of a general interaction.



32 2. THE FERMIONIC PROJECTOR IN THE CONTINUUM

We finally remark that the above arguments apply in the same way for second
quantized fields: we only need to replace B by an operator on a suitable bosonic Fock
space. Also, our assumption that B is an external field is merely a technical simpli-
fication (more precisely, we disregard the dynamical equations for the bosonic fields,
thereby also avoiding the divergences of QFT and the renormalization procedure), but
it is not essential for our arguments. Namely, in a time-dependent interacting system,
the Dirac wave functions satisfy (2.1.1), where B(t, ~x) is determined by the dynamical
equations of the whole system. Solving these equations we can (at least in principle)
compute B, and applying our above arguments with this B as an external field, we
conclude that the notion of “negative-energy state” ceases to exist. In what follows we
will for simplicity again consider an external field, but we shall come back to coupled
systems in §2.4.

2.2. The Causal Perturbation Expansion

We saw in the previous section that the external field problem for the Dirac equa-
tion (2.1.1) is equivalent to the non-uniqueness of the perturbation expansion for the
individual states of the Dirac sea. We shall now solve this problem by considering the
collection of all states of the Dirac sea. This will reveal an underlying causal structure,
which will enable us to make the perturbation expansion unique1. We closely follow
the constructions given in [F4].

In the vacuum, out of all plane-wave solutions of negative energy we form the
object

P sea(x, y) := −m
π

∑

s

∫

IR3
|Ψ~ps−≻≺Ψ~ps−| dµ~p . (2.2.1)

Using the explicit form of the plane-wave solutions (1.2.23, 1.2.22, 1.2.20), we obtain
the covariant formula

P sea(x, y) =

∫
d4k

(2π)4
(k/ +m) δ(k2 −m2) Θ(−k0) e−ik(x−y) , (2.2.2)

which also shows that P sea(x, y) is a well-defined distribution. In order to get a con-
nection to causality, we decompose P sea(x, y) in the form

P sea(x, y) =
1

2
(pm(x, y) − km(x, y)) , (2.2.3)

where pm and km are the distributions

pm(x, y) =

∫
d4k

(2π)4
(k/ +m) δ(k2 −m2) e−ik(x−y) (2.2.4)

km(x, y) =

∫
d4k

(2π)4
(k/ +m) δ(k2 −m2) ǫ(k0) e−ik(x−y) . (2.2.5)

1We remark for clarity that our “causal perturbation expansion” does not seem to be related to
Scharf’s “causal approach” to QED [S]. Scharf uses causality to avoid the ultraviolet divergences of
perturbative QED, whereas in our setting of an external field all Feynman diagrams are finite anyway.
On the other hand, Scharf is interested only in the scattering states, whereas our goal is to describe
the dynamics also for intermediate times.
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In order to relate the distribution km to the advanced and retarded Green’s functions,
we substitute the distributional equation

lim
εց0

(
1

x− iε −
1

x+ iε

)

= 2πi δ(x)

into the formula for km in momentum space,

km(p) = (p/+m) δ(p2 −m2) ǫ(p0)

=
1

2πi
(p/+m) lim

εց0

[
1

p2 −m2 − iε −
1

p2 −m2 + iε

]

ǫ(p0)

=
1

2πi
(p/+m) lim

εց0

[
1

p2 −m2 − iεp0 −
1

p2 −m2 + iεp0

]

. (2.2.6)

Using (2.1.8) we get the simple formula

km =
1

2πi

(
s∨m − s∧m

)
. (2.2.7)

The support property (2.1.9) yields that km is causal in the sense that

suppkm(x, .) ⊂ Jx .

The distribution pm is not causal, but it can be deduced from km as follows. For a
diagonalizable matrix A with real eigenvalues we can uniquely define its absolute value
|A| as the diagonalizable matrix with non-negative eigenvalues and |A|2 = A2. The
matrix k/+m in (2.2.4, 2.2.5) is diagonalizable with non-negative eigenvalues and thus

∣
∣ǫ(k0) (k/ +m)

∣
∣ = k/ +m . (2.2.8)

Before applying this relation to (2.2.4, 2.2.5), it is useful to consider the above distribu-
tions P sea, pm, . . . as integral kernels of corresponding operators on the wave functions
in space-time, for example

(P sea Ψ)(x) :=

∫

P sea(x, y) Ψ(y) d4y . (2.2.9)

Then the operators km and pm are diagonal in momentum space, and so (2.2.8) gives
rise to the formal identity

pm = |km| , (2.2.10)

where | . | now is the absolute value of an operator on wave functions in Minkowski
space. With (2.2.3) and (2.2.7, 2.2.10) we have related the fermionic projector to the
causal Green’s functions in a way which can be generalized to the interacting theory,
as we shall now make precise.

We begin with the perturbation expansion for the causal Green’s functions. The
retarded Green’s function in the presence of the external field B, denoted by s̃∧m, is
characterized by the conditions

(i∂/+ B −m) s̃∧m(x, y) = δ4(x− y) , supp s̃∧m(x, .) ⊂ J∧x . (2.2.11)

The existence and uniqueness of the advanced Green’s functions follows from the gen-
eral theory of linear hyperbolic PDEs [J, Ta]. In short, for the existence proof one
considers the solution of the Cauchy problem

(i∂/+ B −m) Ψ = f ∈ C∞0 ((t0,∞)× R3)4 , Ψ(t0, ~x) = 0 ;
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by linearity it can be expressed as an integral over the inhomogeneity,

Ψ(x) =

∫

IR4
s̃∧m(x, y) f(y) d4y .

To prove uniqueness, one considers the difference of two retarded Green’s functions s̃∧m,1

and s̃∧m,2,

Ψ(x) = s̃∧m,1(x, y)− s̃∧m,2(x, y) .

Then Ψ(x) is for fixed y a solution of the homogeneous Dirac equation which vanishes
identically on the half space x0 < y0. The uniqueness of the solution of the Cauchy
problem yields that Ψ ≡ 0.

Expanding (2.2.11) in powers of B, one obtains the perturbation series s̃∧m =
∑∞

n=0 s
∧
(n), where s

∧
(0) = s∧m is the retarded Green’s function of the vacuum, and the

other summands are determined by the conditions that they are causal, supp s∧(n)(x, .) ∈
J∧x , and satisfy the inductive relations

(i∂/−m) s∧(n) = −B s∧(n−1) (n ≥ 1).

Here we again used the operator notation (2.2.9) and considered B as a multiplication
operator. The operator product

(−s∧m B s∧m)(x, y) = −
∫

d4z s∧m(x, z) B(z) s∧m(z, y) (2.2.12)

is causal in the sense that B(z) enters only for z ∈ L∧x ∩L∨y (the analytic justification of
this and all other operator products in this section will be given in Lemma 2.2.2 below).
In particular, the support of (2.2.12) is again in the past light cone. Furthermore, it
satisfies the relation

(i∂/−m) (−s∧m B s∧m) = −B s∧m ,

and can thus be identified with the operator s∧(1). By iteration, we obtain for the other

terms of the perturbation series the explicit formulas

s∧(n) = (−s∧m B)n s∧m .

We conclude that the retarded Green’s function can be represented as

s̃∧m =

∞∑

k=0

(
−s∧m B

)k
s∧m . (2.2.13)

Similarly, we introduce the advanced Green’s function s̃∨m by the conditions

(i∂/−m+ B) s̃∨m(x, y) = δ4(x− y) , supp s̃∨m(x, .) ⊂ J∨x . (2.2.14)

It has the perturbation expansion

s̃∨m =

∞∑

k=0

(
−s∨m B

)k
s∨m . (2.2.15)

Having uniquely introduced the causal Green’s functions, we can now extend (2.2.7)

to the case with interaction. Namely, we define the operator k̃m by

k̃m =
1

2πi

(
s̃∨m − s̃∧m

)
(2.2.16)
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with the causal Green’s functions as given by (2.2.13, 2.2.15). Finally, we also ex-
tend (2.2.10) to the case with interaction by setting

p̃m
formally
:=

√

k̃2m . (2.2.17)

In the next theorem we will give this last relation a precise mathematical meaning and
show that it gives rise to a unique perturbation expansion. It is most convenient to
work with the Green’s function

sm :=
1

2
(s∨m + s∧m) . (2.2.18)

Furthermore, we introduce the series of operator products

b<m =
∞∑

k=0

(−sm B)k , bm =
∞∑

k=0

(−B sm)k B , b>m =
∞∑

k=0

(−B sm)k

and set for Q ⊂ N

Fm(Q,n) =

{
pm if n ∈ Q
km if n 6∈ Q .

Theorem 2.2.1. The relations (2.2.16, 2.2.17) uniquely determine the perturbation
expansions for km and pm. We have the explicit formulas

k̃m =
∞∑

β=0

(−iπ)2β b<m km (bm km)2β b>m (2.2.19)

p̃m =

∞∑

β=0

[β2 ]∑

α=0

c(α, β) Gm(α, β) (2.2.20)

with the coefficients

c(0, 0) = 1 (2.2.21)

c(α, β) =

β
∑

n=α+1

(−1)n+1 (2n− 3)!!

n! 2n

(
β − α− 1
n− α− 1

)

for β ≥ 1 (2.2.22)

and the operator products

Gm(α, β) =
∑

Q∈P(β+1), #Q=2α+1

(−iπ)2β

× b<m Fm(Q, 1) bmkmbm Fm(Q, 2) bmkmbm · · · bmkmbm Fm(Q,β + 1) b>m , (2.2.23)

where P(n) denotes the set of subsets of {1, . . . , n} (we use the convention l!! = 1 for
l ≤ 0).

Proof. An explicit calculation using (2.1.5) shows that (i∂/+B−m) b<m = 0. Since
all operator products in (2.2.19) and (2.2.23) have a factor b<m at the left, the operators

p̃m, k̃m are solutions of the Dirac equation,

(i∂/+ B −m) p̃m = 0 = (i∂/+ B −m) k̃m .

It remains to verify that the conditions (2.2.16, 2.2.17) are satisfied and to show unique-
ness.
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According to (2.2.7, 2.2.18), the advanced and retarded Green’s function can be
written as

s∨m = sm + iπ km , s∧m = sm − iπ km . (2.2.24)

We substitute the series (2.2.13, 2.2.15) into (2.2.16),

k̃m =
1

2πi

∞∑

k=0

(

(−s∨m B)k s∨m − (−s∧m B)k s∧m
)

, (2.2.25)

insert (2.2.24) and expand. This gives a sum of operator products of the form

C1 B C2 B · · · B Cl+1 with Cj = km or Cj = sm .

The contributions with an even number of factors km have the same sign for the
advanced and retarded Green’s functions and cancel in (2.2.25). The contributions
with an odd number of km’s occur in each Green’s function exactly once and have the
opposite sign. Using the notation

Cm(Q,n) =

{
km if n ∈ Q
sm if n 6∈ Q , Q ⊂ N ,

we can thus rewrite (2.2.25) in the form

k̃m =

∞∑

l=0

(−1)l
∑

Q∈P(l+1), #Q odd

(iπ)#Q−1

× Cm(Q, 1) B Cm(Q, 2) B · · · B Cm(Q, l) B Cm(Q, l + 1) .

After reordering the sums, this coincides with (2.2.19).
Next we want to give the relation (2.2.10) a mathematical meaning. To this end,

we consider m ≥ 0 as a variable mass parameter. Then we can form products of the
operators pm, km by manipulating the arguments of the distributions in momentum
space. For example, using (2.2.4) we obtain

pm(k) pm′(k) = (k/+m) δ(k2 −m2) (k/+m′) δ(k2 − (m′)2)

= (k2 + (m+m′)k/ +mm′) δ(m2 − (m′)2) δ(k2 −m2)

= (k2 + (m+m′)k/ +mm′)
1

2m
δ(m−m′) δ(k2 −m2)

= δ(m−m′) pm(k) , (2.2.26)

and similarly from (2.2.5),

pm km′ = km′ pm = δ(m −m′) km (2.2.27)

km km′ = δ(m−m′) pm . (2.2.28)

We remark that this formalism has some similarity with the bra/ket notation in quan-
tum mechanics, if the position variable ~x is replaced by the mass parameter m. Equa-
tion (2.2.26) can be interpreted that the pm are the spectral projectors of the free Dirac
operator; the relations (2.2.27, 2.2.28) reflect the relative minus sign in km for the states
on the upper and lower mass shell. In particular, one sees that km km′ = pm pm′ . This
relation can be extended to the case with interaction,

p̃m p̃m′ = k̃m k̃m′ , (2.2.29)
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and gives a meaningful square of (2.2.10) (we will see in a moment that k̃m k̃m′ vanishes
for m 6= m′). If our construction ensures that p̃m is a positive operator, (2.2.29) is
even equivalent to (2.2.10).

Let us compute the product k̃m k̃m′ explicitly. The definitions (2.2.4, 2.2.5) and
(2.2.18, 2.1.8) yield in analogy to (2.2.26) the formulas2

pm sm′ = sm′ pm = PP

(
1

m−m′
)

pm (2.2.30)

km sm′ = sm′ km = PP

(
1

m−m′
)

km (2.2.31)

sm sm′ = PP

(
1

m−m′
)

(sm − sm′) , (2.2.32)

where PP(x−1) = 1
2 limεց0[(x+ iε)−1 + (x− iε)−1] denotes the principal value. As a

consequence, the operator products involving the factor sm ·sm′ are telescopic,

n∑

p=0

km (B sm)p (sm′ B)n−p km′ = 0 for n ≥ 1. (2.2.33)

This allows us to evaluate the following product,

km b>m b<m′ km′ = δ(m−m′) pm . (2.2.34)

With this formula, we can compute the square of (2.2.19),

k̃m k̃m′ = δ(m−m′)
∞∑

β1,β2=0

(−iπ)2β1+2β2 b<m (km bm)2β1 pm (bm km)2β2 b>m . (2.2.35)

We could continue the proof by verifying explicitly that the product p̃m p̃m′ with p̃m
according to (2.2.20) coincides with (2.2.35). This is a straightforward computation,
but it is rather lengthy and not very instructive. We prefer to describe how the
operator products (2.2.23) and the coefficients (2.2.22) can be derived. In order to
make the proof more readable, we make the following simplifications. Since the factors
b<m, b>m cancel similar to (2.2.34) in telescopic sums, we can omit them in all formulas
without changing the multiplication rules for the operator products. Then all operator
products have km or pm as their first and last factor, and we can multiply them with
the rules (2.2.26–2.2.28). Since all these rules give a factor δ(m −m′), we will in any
case get the prefactor δ(m−m′) as in (2.2.35). Therefore, we can just forget about all
factors δ(m −m′) and consider all expressions at the same value of m. Furthermore,
we will omit the subscript ‘m’ and write the intermediate factors b as a dot ‘.’. After
these simplifications, we end up with formal products of the form

F1 . F2 . F3 . · · · . Fn with Fj = k or Fj = p (2.2.36)

and have the multiplication rules

p2 = k2 = 1 , p k = k p = k . (2.2.37)

2
Online version: As noticed by A. Grotz, in (2.2.32) the summand π2δ(m−m′) is missing. This

error is corrected in the paper [6] (listed in the references in the preface to the second online edition).



38 2. THE FERMIONIC PROJECTOR IN THE CONTINUUM

We must find a positive operator p̃ being a formal sum of operator products (2.2.36)
such that

p̃2 =

∞∑

β1,β2=0

(−iπ)2β1+2β2 (k .)2β1 p (. k)2β2 . (2.2.38)

In this way, we have reduced our problem to the combinatorics of the operator products.
As soon as we have found a solution p̃ of (2.2.38), the expression for p̃m is obtained by
adding the subscripts ‘m’ and by inserting the factors b<m, bm, b>m. Relation (2.2.29)
follows as an immediate consequence of (2.2.38).

The basic step for the calculation of p̃ is to rewrite (2.2.38) in the form

p̃2 = p+A with A =
∑

(β1,β2)6=(0,0)

(−iπ)2β1+2β2 (k .)2β1 p (. k)2β2 . (2.2.39)

The operator p is idempotent and acts as the identity on A, Ap = pA = A. Therefore,
we can take the square root of p+A with a formal Taylor expansion,

p̃ =
√

p+A = p +
∞∑

n=1

(−1)n+1 (2n− 3)!!

n! 2n
An , (2.2.40)

which uniquely defines p̃ as a positive operator.
It remains to calculate An. If we take the nth power of the sum in (2.2.39) and

expand, we end up with one sum over more complicated operator products. We first
consider how these operator products look like: The operator products in (2.2.39) all
contain an even number of factors k and exactly one factor p. The factor p can be the
1st, 3rd,. . . factor of the product. Each combination of this type occurs in A exactly
once. If we multiply n such terms, the resulting operator product consists of a total
odd number of factors p, k. It may contain several factors p, which all occur at odd
positions in the product. Furthermore, the total number of factors p is odd, as one
sees inductively. We conclude that An consists of a sum of operator products of the
form

(k . k .)q1 p . k . (k . k .)q2 p . k . (k . k .)q3 · · · (k . k .)q2α+1 p (. k . k)q2α+2 (2.2.41)

with α, qj ≥ 0. We set β = 2α+
∑

j qj. Notice that the number of factors p in (2.2.41)
is 2α+1; the total number of factors p, k is 2β +1. The form of the operator product
gives the only restriction 0 ≤ 2α ≤ β for the choice of the parameters α, β.

Next we count how often each operator product (2.2.41) occurs in the sum: The
easiest way to realize (2.2.41) is to form the product of the α+ 1 factors

[
(k.k.)q1 p (.k.k)q2+1

] [
(k.k.)q3+1 p (.k.k)q4+1

]

· · ·
[
(k.k.)q2α+1+1 p (.k.k)q2α+2

]
. (2.2.42)

However, this is not the only way to factor (2.2.41). More precisely, to each factor
in (2.2.42) we can apply the identities

(k . k .)q p (. k . k)r = [(k . k .)q p] [p (. k . k)r]

(k . k .)q p (. k . k)r = [(k . k .)s p]
[
(k . k .)q−s p (. k . k)r

]

(k . k .)q p (. k . k)r =
[
(k . k .)q p (. k . k)r−s

]
[p (. k . k)s] .

By iteratively substituting these identities into (2.2.42), we can realize every factoriza-
tion of (2.2.41). Each substitution step increases the number of factors by one. The
steps are independent in the sense that we can fix at the beginning at which positions
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in (2.2.42) the product shall be split up, and can then apply the steps in arbitrary

order. There are (α + 1) + (q1 − 1) +
∑2α+1

j=2 qj + (q2α+2 − 1) = β − (α + 1) positions

in (2.2.42) where we could split up the product (in the case q1 = 0 or q2α+2 = 0, the
counting of the positions is slightly different, but yields the same result). Since we
want to have n factors at the end, we must choose n− (α+1) of these positions, which
is only possible for α+ 1 ≤ n ≤ β and then gives (β − α− 1)!/((n − α− 1)! (β − n)!)
possibilities.

Combining these combinatorial factors with the constraints 0 ≤ 2α ≤ β and α+1 ≤
n ≤ β, we obtain for n ≥ 1 the identity

An =
∞∑

β=n

min(n−1,[β2 ])∑

α=0

(
β − α− 1
n− α− 1

)
∑

Q∈P(β+1), #Q=2α+1

× (−iπ)2β F (Q, 1) . k . F (Q, 2) . k . · · · . k . F (Q,β + 1) (2.2.43)

with F (Q,n) = p for n ∈ Q and F (Q,n) = k otherwise. Notice that the last sum in
(2.2.43) runs over all possible configurations of the factors p, k in the operator product
(2.2.41) for fixed α, β. We finally substitute this formula into (2.2.40) and pull the
sums over α, β outside. This gives the desired formula for p̃.

We call the perturbation expansion of the above theorem the causal perturbation
expansion. It allows us to define the Dirac sea in the presence of an external field
canonically by

P sea(x, y) =
1

2
(p̃m − k̃m)(x, y) .

In the next section the causal perturbation expansion will be extended to systems of
Dirac seas, and in §2.4 we will discuss it in detail.

We conclude this section by showing that, under suitable regularity and decay
assumptions on the external potentials, all operator products which appeared in this
section are well-defined and finite.

Lemma 2.2.2. Let (Cj), 0 ≤ j ≤ n, be a choice of operators Cj ∈ {km, pm, sm}.
If the external potential B is smooth and decays so fast at infinity that the functions
B(x), xiB(x), and xixjB(x) are integrable, then the operator product

(Cn B Cn−1 B · · · B C0)(x, y) (2.2.44)

is a well-defined tempered distribution on R4 × R4.

Proof. Calculating the Fourier transform of (2.2.44) gives the formal expression

M(q2, q1) :=

∫
d4p1
(2π)4

· · ·
∫
d4pn−1
(2π)4

Cn(q2) B̂(q2 − pn−1)

× Cn−1(pn−1) B̂(pn−1 − pn−2) · · · C1(p1) B̂(p1 − q1) C0(q1) , (2.2.45)

where we consider the Cj as multiplication operators in momentum space and where

B̂ denotes the Fourier transform of the function B (it is more convenient to work
in momentum space because the operators Cj are then diagonal). We will show that
M(q2, q1) is a well-defined tempered distribution; the Lemma then immediately follows
by transforming back to position space.
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The assumptions on B yield that B̂ is C2 and has rapid decay at infinity, i.e.

sup
q∈IR4, |κ|≤2

|qi1 · · · qin ∂κB̂(q)| < ∞

for all n, all tensor indices i1, . . . , in and multi-indices κ (with κ = (κ1, . . . , κq), |κ| :=
q). As is verified explicitly in momentum space, the distributions km, pm or sm are
bounded in the Schwartz norms of the test functions involving derivatives of only first
order, more precisely

|C(f)| ≤ const ‖f‖4,1 with C = km, pm or sm and f ∈ S,
where the Schwartz norms are as usual defined by

‖f‖p,q = max
|I|≤p, |J |≤q

sup
x∈IR4

|xI ∂Jf(x)| .

As a consequence, we can apply the corresponding operators even to functions with
rapid decay which are only C1. Furthermore, we can form the convolution of such
functions with C; this gives continuous functions (which will no longer have rapid
decay, however). Since C involves first derivatives, a convolution decreases the order
of differentiability of the function by one.

We consider the combination of multiplication and convolution

F (p2) :=

∫
d4p1
(2π)4

f(p2 − p1) C(p1) g(p1) , (2.2.46)

where we assume that f ∈ C2 has rapid decay and g ∈ C1 is bounded together with its
first derivatives, ‖g‖0,1 < ∞. For any fixed p2, the integral in (2.2.46) is well-defined
and finite because f(p2 − .) g(.) is C1 and has rapid decay. The resulting function F
is C1 and bounded together with its first derivatives, more precisely

‖F‖0,1 ≤ const ‖f‖4,2 ‖g‖0,1 . (2.2.47)

After these preparations, we can estimate the integrals in (2.2.45) from the right
to the left: We choose two test functions f, g ∈ S(R4,C4) and introduce the functions

F1(p1) =

∫
d4q2
(2π)4

B̂(p1 − q1) C0(q1) g(q1) (2.2.48)

Fj(pj) =

∫
d4pj−1
(2π)4

B̂(pj − pj−1) Cj−1(pj−1) Fj−1(pj−1) , 1 < j ≤ n . (2.2.49)

The integral (2.2.48) is of the form (2.2.46) and satisfies the above considered as-
sumptions on the integrand. Using the bound (2.2.47), we can proceed inductively in
(2.2.49). Finally, we perform the q2-integration,

M(f, g) =

∫
d4q2
(2π)4

f(q2) Cn(q2) Fn(q2) .

We conclude that M is a linear functional on S(R4,C4)×S(R4,C4), which is bounded
in the Schwartz norm ‖.‖4,1 of the test functions.

Using the language of quantum field theory, we also refer to the summands of the
perturbation expansions as Feynman diagrams. Then the result of the last lemma
can be understood from the fact that in an external field one only encounters tree
diagrams, which are all finite. Clearly, the existence of the perturbation expansion
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to every order does not imply the convergence of the perturbation series, and we will
come back to this problem in §2.5.

2.3. Definition of the Fermionic Projector

In this section we introduce the mathematical framework for describing a many-
fermion system in the presence of an external field. To this end, we first extend the
construction of §2.2 to a system of Dirac seas of in general different masses, which
may involve chiral massless Dirac seas. Then we introduce particles and anti-particles
by occupying additional states and creating “holes” in the Dirac seas, respectively.
Our construction is intended to be so general that it allows us to model the fermion
configuration of the standard model (see §5.1). For clarity, we postpone the question
of how the fermionic states are to be normalized to §2.6.

First, we need to introduce a distribution P sea(x, y) which describes the system in
the vacuum. The most general ansatz is to take a direct sum of sums of Dirac seas,

P sea =

N⊕

a=1

g(a)
∑

α=1

P sea
aα , (2.3.1)

where g(a) are positive integers and the summands P sea
aα are Dirac seas of a form

similar to (2.2.2). The direct sum increases the total number of components of the wave
functions, the so-called spin dimension, to 4N . The direct summands are called sectors,
and we refer to the indices a and α as the sector and generation index, respectively.
For each Dirac sea we introduce a mass parameter mnα ≥ 0. In order to allow for
chiral massless Dirac seas, we introduce (4× 4)-matrices Xaα with

Xaα =

{
11 if maα > 0

11, χL or χR if maα = 0

and set

P sea
aα =

1

2
Xaα (pmaα − kmaα) . (2.3.2)

We refer to P sea as defined by (2.3.1, 2.3.2) as the fermionic projector of the vacuum.
It is sometimes useful to consider P sea as a matrix in the sectors indices,

(P sea)ab = δab
1

2

g(a)
∑

α=1

Xaα (pmaα − kmaα)

with a, b = 1, . . . , N .
Since each sector may involve several Dirac seas of different masses, it seems im-

possible to write the fermionic projector of the vacuum as a solution of a suitable Dirac
equation, and thus we have no starting point for a perturbation expansion. In order
to bypass this problem, we replace the sum in (2.3.1) by a direct sum and introduce
the so-called auxiliary fermionic projector by

P sea =
N⊕

a=1

g(a)
⊕

α=1

P sea
aα . (2.3.3)

Using the same notation as for the fermionic projector is usually no problem because
it will be clear from the context whether the fermionic projector or the auxiliary
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fermionic projector is meant. In case of potential confusion we write the auxiliary
fermionic projector as a matrix in the sector and generation indices,

(P sea)
(aα)
(bβ) = δab δ

α
β

1

2
Xaα (pmaα − kmaα)

with a, b = 1, . . . , N , α = 1, . . . , g(a), β = 1, . . . , g(b)). In this notation, one also sees
that the fermionic projector can be obtained from the auxiliary fermionic projector by
taking the so-called partial trace3 over the generations,

(P sea)ab =

g(a)
∑

α=1

g(b)
∑

β=1

(P sea)
(aα)
(bβ) . (2.3.4)

We introduce the operators

p =

N⊕

a=1

g(a)
⊕

α=1

pmaα , k =

N⊕

a=1

g(a)
⊕

α=1

kmaα

and define the matrices

X =

N⊕

a=1

g(a)
⊕

α=1

Xaα , Y =
1

m

N⊕

a=1

g(a)
⊕

α=1

maα ,

which are called chiral asymmetry matrix and mass matrix, respectively. Here m is an
arbitrary mass parameter; a convenient choice is m = maxa,αmaα. These operators

act on direct sums of Dirac wave functions, i.e. on functions of the form Ψ = (Ψ(aα)(x))

with Ψ(aα) a 4-component Dirac spinor. On these wave funtions, we introduce the spin
scalar product by

≺Ψ | Φ≻(x) =

n∑

a=1

g(a)
∑

α=1

≺Ψ(aα) | Φ(aα)≻Dirac , (2.3.5)

where ≺.|.≻Dirac is the usual spin scalar product on Dirac spinors (1.2.8). In general-
ization of (1.5.23) we also introduce the indefinite inner product

<Ψ | Φ> =

∫

M
≺Ψ | Φ≻ dµ . (2.3.6)

Then the operators p and k are Hermitian with respect to <.|.>, and the mass matrix Y
is Hermitian with respect to the spin scalar product. Using the above notation, we
can write the auxiliary fermionic projector as

P sea(x, y) = X
1

2
(p(x, y)− k(x, y)) . (2.3.7)

Since ml = 0 for Xl 6= 11 and since the operators pm=0, km=0 are odd, we have
alternatively

P sea(x, y) =
1

2
(p(x, y) − k(x, y))X∗ , (2.3.8)

whereX∗ is the adjoint with respect to the spin scalar product. The auxiliary fermionic
projector is a solution of the free Dirac equation

(i∂/x −mY ) P sea(x, y) = 0 . (2.3.9)

3
Online version: In more recent works on the fermionic projector, the partial trace is referred to

as the sectorial projection.
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Our strategy is to extend the definition of the auxiliary fermionic projector to the
interacting system and then to get back to the fermionic projector by taking the
partial trace (2.3.4).

In order to describe the system of Dirac seas in the presence of an external field,

we insert a differential operator B = (B(aα)(bβ) ) into the Dirac equation (2.3.9),

(i∂/x + B −mY ) P sea(x, y) = 0 . (2.3.10)

We always assume that B is Hermitian with respect to the inner product <.|.>. The
causal perturbation expansion for the operators k and p can be carried out exactly as
in §2.2: We define the advanced and retarded Green’s functions by

s∨ =

N⊕

a=1

g(a)
⊕

α=1

s∨maα
, s∧ =

N⊕

a=1

g(a)
⊕

α=1

s∧maα
.

Their perturbation expansion is, in analogy to (2.2.13, 2.2.15), uniquely given by

s̃∨ =

∞∑

k=0

(−s∨ B)k s∨ , s̃∧ =

∞∑

k=0

(−s∧ B)k s∧ . (2.3.11)

The method of Theorem 2.2.1 now yields the following result.

Theorem 2.3.1. The perturbation expansion for p and k is uniquely determined
by the conditions

k̃ =
1

2πi
(s̃∨ − s̃∧) , p̃

formally
=

√

k̃2 . (2.3.12)

We have the explicit formulas

k̃ =
∞∑

β=0

(−iπ)2β b< k (b k)2β b> , p̃ =
∞∑

β=0

[β2 ]∑

α=0

c(α, β) G(α, β)

with

c(0, 0) = 1 ,

c(α, β) =

β
∑

n=α+1

(−1)n+1 (2n− 3)!!

n! 2n

(
β − α− 1
n− α− 1

)

for β ≥ 1

and

G(f, g) =
∑

Q∈P(β+1), #Q=2α+1

(−iπ)2β

× b< F (Q, 1) bkb F (Q, 2) bkb · · · bkb F (Q,β + 1) b> ,

where P(n) is the set of subsets of {1, . . . , n} and where we use the notation

s =
1

2
(s∨ + s∧) , F (Q,n) =

{
p if n ∈ Q
k if n 6∈ Q

b< =
∞∑

k=0

(−s B)k , b =
∞∑

k=0

(−B s)k B , b> =
∞∑

k=0

(−B s)k .
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The contributions to this perturbation expansion are all well-defined according to
Lemma 2.2.2.

After this straightforward generalization, we come to the more subtle question of
how to define P sea when a chiral asymmetry is present. The obvious idea is to set in
generalization of (2.3.7)

P sea(x, y) = X
1

2
(p̃ − k̃)(x, y) . (2.3.13)

This is not convincing, however, because we could just as well have defined P sea(x, y)

in analogy to (2.3.8) by P sea = 1
2 (p̃ − k̃) X∗, which does not coincide with (2.3.13)

as soon as X,X∗ do not commute with B. Actually, this arbitrariness in defining the
Dirac sea reflects a basic problem of the causal perturbation expansion for systems
with chiral asymmetry. In order to describe the problem in more detail, we consider
the perturbation calculation for k to first order. According to (2.3.11, 2.3.12),

k̃ = k − 1

2πi
(s∨ B s∨ − s∧ B s∧) + O(B2) (2.3.14)

= k − s B k − k B s + O(B2) .
This expansion is causal in the sense that k̃(x, y) only depends on B in the “diamond”
(L∨x ∩ L∧y ) ∪ (L∨y ∩ L∧x ), as is obvious from (2.3.14). It is not clear, however, how to
insert the chiral asymmetry matrix into this formula. It seems most natural to replace
all factors k by Xk,

˜(Xk) = Xk − s B Xk − Xk B s + O(B2) . (2.3.15)

Unfortunately, this expression cannot be written similar to (2.3.14) with the advanced
and retarded Green’s functions, which means that the causality of the expansion is
in general lost. In order to avoid this problem, one might want to insert X at every
factor s, k,

˜(Xk) = Xk − Xs BXk − Xk B Xs + O(B2)

= Xk − 1

2πi
(Xs∨ B Xs∨ − Xs∧ B Xs∧) + O(B2) . (2.3.16)

This expansion is causal similar to (2.3.14). In general, however, it does not satisfy

the Dirac equation (i∂/+ B −m) ˜(Xk) = 0, which does not seem to be what we want.
The only way to resolve this problem is to impose that the perturbation expan-

sions (2.3.15) and (2.3.16) should coincide. This yields a condition for the operator B,
which can be characterized as follows. We demand that

Xs∨ B Xs∨ = s∨ B Xs∨ = Xs∨ B s∨ . (2.3.17)

Since the operator s∨m=0 is odd, we have Xs∨ = s∨X∗. Substituting into the second
equation of (2.3.17) yields the condition X∗ B = B X. Since X is idempotent, this
condition automatically implies the first equation of (2.3.17). We formulate the derived
condition for the whole Dirac operator i∂/+B−mY and thus combine it with the fact
that chiral fermions are massless (i.e. X∗Y = Y X = Y ) and that X is composed of
chiral projectors (which implies that X∗∂/ = ∂/X).

Def. 2.3.2. The Dirac operator is called causality compatible with X if

X∗ (i∂/ + B −mY ) = (i∂/+ B −mY )X . (2.3.18)
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In the perturbation expansion to higher order, the condition (2.3.18) allows us
to commute X through all operator products. Using idempotence X2 = X, we can
moreover add factors X to the product; in particular,

X C1BC1B · · · BCn = XC1BXC1B · · · BXCn with Cj = p, Cj = k or Cj = s .

This ensures that the perturbation expansion is also well-defined to higher order. For a
Dirac operator which is causality compatible with X, the auxiliary fermionic projector
is defined canonically by (2.3.13).

So far the auxiliary fermionic projector describes a system of Dirac seas in the
presence of an external field. In order to insert particles and anti-particles into the
system, we add the projectors on particle states and substract the projectors on anti-
particle states,

P (x, y) = P sea(x, y)

+cnorm

np∑

k=1

|Ψk(x)≻≺Ψk(y)| − cnorm

na∑

l=1

|Φl(x)≻≺Φl(y)| , (2.3.19)

where Ψk and Φl are an orthogonal set of solutions of the Dirac equation, and the Φl

must lie in the image of P sea (for the normalization constant cnorm see §2.6). The
parameters np and na denote the total number of particles and anti-particles, respec-
tively. We usually avoid the issue of convergence of the sums in (2.3.19) by assuming
that np, na < ∞, but one could clearly also consider an infinite number of particles
and/or anti-particles. Finally, the fermionic projector is obtained from this expression
by taking similar to (2.3.4) the partial trace,

(P )ab =

g(a)
∑

α=1

g(b)
∑

β=1

(P )
(aα)
(bβ) . (2.3.20)

Theorem 2.3.1 together with (2.3.13, 2.3.19, 2.3.20) yields a mathematical frame-
work for describing a general many-fermion system in the presence of an external
field. Our construction makes Dirac’s concept of a “sea of interacting particles” math-
ematically precise. Apart from the causality compatibility condition (2.3.18) and the
regularity conditions in Lemma 2.2.2, the operator B is completely arbitrary. We point
out that we do not use the fermionic Fock space formalism of canonical quantum field
theory; the connection to this formalism will be explained in §3.2 and Appendix A.

2.4. Interpretation and Consequences

With the definition of the fermionic projector we radically departed from the usual
concept of the Dirac sea as “all negative-energy solutions” of the Dirac equation.
Instead, we used causality in a particular way. In order to clarify the connection
between our definition and the usual concept of the Dirac sea, we now describe how
the above constructions simplify in the special situation that B is static. If considered
as multiplication operators, static potentials map functions of positive and negative
frequency into functions of positive and negative frequency, respectively. Since the
operators p, k and s are diagonal in momentum space, they clearly preserve the sign
of the frequency too. Thus

[Π±, p] = [Π±, k] = [Π±, s] = [Π±,B] = 0 , (2.4.1)
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where the operators Π± are the projectors onto the states of positive and negative
frequency, respectively (i.e. in momentum space, Π± are the operators of multiplication
by the functions Θ(±k0)). The operators p and k differ only by a relative minus sign
for the states of positive and negative frequency,

Π± p = ±Π± k .

Using this relation together with (2.4.1), we can replace pairs of factors p by pairs of
factors k. For example,

· · · p B · · · p B · · · = · · · p B · · · p B · · · (Π+ +Π−)

= Π+(· · · k B · · · k B · · · ) + Π−(· · · (−k) B · · · (−k) B · · · )
= · · · k B · · · k B · · · , (2.4.2)

where the dots ‘· · · ’ denote any combination of the operators s, k, p and B. This allows
us to simplify the formula for p̃ by using only one factor p in every operator product.
After going through the details of the combinatorics, one obtains the formula

p̃ =
∞∑

b=0

(−iπ)2b b< p (b k)2b b> .

Thus the fermionic projector (2.3.13) can be written as

P sea(x, y) =
∞∑

b=0

(−iπ)2b b<
[
1

2
X (p− k)

]

(b k)2b b> .

This equation shows that P sea is composed of all negative-frequency eigenstates of
the Dirac operator (notice that the expression in the brackets [· · · ] is the fermionic
projector of the vacuum and that all other factors preserve the sign of the frequency).
We conclude that for static potentials our definition reduces to the usual concept of
the Dirac sea as “all negative-energy states.”

In order to get a better understanding of the time-dependent situation, we next
consider a scattering process. For simplicity, we consider a system of one Dirac sea and
assume that the scattering takes place in finite time t0 < t < t1. This means that the
wave functions Ψ satisfy the Dirac equation (2.1.1) with B supported in a finite time
interval,

B(t, ~x) = 0 if t 6∈ [t0, t1] . (2.4.3)

As a consequence, Ψ(t, ~x) is for t < t0 a solution of the free Dirac equation. We
uniquely extend this free solution to the whole Minkowski space and denote it by Ψin,

(i∂/−m) Ψin = 0 and Ψin(t, ~x) = Ψ(t, ~x) for t < t0.

Similarly, Ψ(t, ~x) is also for t > t1 a solution of the free Dirac equation; we denote its
extension by Ψout,

(i∂/−m) Ψout = 0 and Ψout(t, ~x) = Ψ(t, ~x) for t > t1.

The wave functions Ψin and Ψout are called the incoming and outgoing scattering
states, respectively. Recall that the dynamics of the wave functions is described in-
finitesimally by the Dirac equation in the Hamiltonian form (1.2.18), where h is a
symmetric operator on the Hilbert space (H, (., .)) with scalar product (1.2.17). Inte-
grating this equation from t0 to t1, we obtain a unitary operator S which maps the
incoming scattering states to the corresponding outgoing states,

Ψout = S Ψin . (2.4.4)
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The operator S is called scattering operator or S-matrix.
Using the scattering states, we can introduce fermionic projectors which describe

the vacua in the asymptotic past and future: For an observer in the past t < t0, the
external potential is zero. Thus it is natural for him to describe the vacuum with the
free Dirac sea (2.2.1). If this Dirac sea is extended to the whole Minkowski space with
external potential, one gets the object

P∧(x, y) = −m
π

∑

s

∫

IR3
|Ψ∧~ps−≻≺Ψ∧~ps−| dµ~p , (2.4.5)

where the wave functions Ψ∧~psǫ are the solutions of the Dirac equation (2.1.1) whose
incoming scattering states are the plane wave solutions Ψ~psǫ,

(i∂/ + B −m) Ψ∧~psǫ = 0 and (Ψ∧~psǫ)in = Ψ~psǫ .

Using the support conditions (2.4.3, 2.1.9), we can express the state Ψ∧~psǫ in a pertur-

bation series,

Ψ∧~psǫ =

∞∑

n=0

(−s∧ B)n Ψ~psǫ .

Substituting this formula into (2.4.5) we obtain for P∧ a perturbation expansion which
involves only the retarded Green’s functions,

P∧ =

∞∑

n1,n2=0

(−s∧ B)n1 P vac (−B s∧)n2 , (2.4.6)

where P vac stands for the free Dirac sea (2.2.1). Accordingly, an observer in the future
t > t0 describes the vacuum by the fermionic projector

P∨(x, y) = −m
π

∑

s

∫

IR3
|Ψ∨~ps−≻≺Ψ∨~ps−| dµ~p , (2.4.7)

where

(i∂/+ B −m) Ψ∨~psǫ = 0 and (Ψ∨~psǫ)out = Ψ~psǫ .

Its perturbation expansion involves only the advanced Green’s function,

P∨ =
∞∑

n1,n2=0

(−s∨ B)n1 P vac (−B s∨)n2 . (2.4.8)

Using (2.4.4) in (2.4.5, 2.4.7), we can describe the fermionic projectors in the asymp-
totic past and future with the S-matrix by

P∧in = P vac = P∨out , P∧out = SP vacS−1 , P∨in = S−1P vacS . (2.4.9)

What makes the scattering process interesting is the fact that the vacua in the
asymptotic past and future in general do not coincide. Consider for example the
physical system described by the fermionic projector P := P∧. For the observer in the
past, the system is in the vacuum. However, if P∧ 6= P∨, the system will not be in the
vacuum for the observer in the future. This means that for him, positive frequency
states are occupied and negative frequency states are unoccupied and thus the system
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contains particles and anti-particles. More precisely, if we write the fermionic projector
in analogy to (2.3.19) as

P (x, y) = P∨(x, y)

+ cnorm

np∑

k=1

|Ψk(x)≻≺Ψk(y)| − cnorm

na∑

l=1

|Φl(x)≻≺Φl(y)| , (2.4.10)

then the Ψk and Φl are the wave functions of the particles and anti-particles, respec-
tively. These particles and anti-particles are physical reality; the observer in the future
can detect them by making suitable experiments. This is the physical effect of pair
creation. Using (2.4.9) one can express the pair creation completely in terms of the
S-matrix. Other scattering processes are described similarly.

We point out that describing the scattering process with the two observers in the
past and future is merely a matter of convenience. The physical process can be de-
scribed equivalently (although maybe less conveniently) in the reference frame of any
other observer. To give a concrete example, we consider an observer in the future who
is in a reference frame moving with constant acceleration. This leads to the so-called
Unruh effect , which we now briefly outline (for details see e.g. [Wa2]). For the accel-
erated observer, space-time is stationary (i.e. his time direction is a Killing field, but
it is not a unit normal to the hypersurfaces t = const), and this allows him to use the
separation ansatz (2.1.2) with t his proper time. The sign of ω gives him a splitting
of the solution space into solutions of positive and negative energy. Using Dirac’s hole
interpretation corresponding to this splitting, he finds for the many-fermion system
described by P an infinite number of particles and anti-particles in a thermal equi-
librium. This bizarre effect shows that the interpretation of the physical system in
terms of particles and anti-particles does depend on the observer. Nevertheless, the
Unruh effect does not contradict the pair creation experiments made by the future
observer at rest. Namely, if the accelerated observer wants to explain the experiments
by the future observer at rest, he must take into account that he himself is feeling a
gravitational field, and that for him the experimental apparatus used by the observer
at rest is in accelerated motion. It turns out that these additional effects just com-
pensate the Unruh effect, so that the predictions by the accelerated observer are in
complete agreement with the observations of the particles and anti-particles in (2.4.10)
by the future observer at rest. More generally, all quantities which can be measured
in experiments can be expressed in terms of the S-matrix. Since the S-matrix does not
depend on the particle/anti-particle interpretation, it is clear that all experiments can
be explained equivalently in any reference frame.

We just saw that the particle/anti-particle interpretation of a fermionic system may
depend on the observer. Actually, the situation is even worse for an observer in the
time period t0 < t < t1 when the interaction takes place. For him, the system is neither
static nor stationary. Therefore, he has no notion of “negative-energy state”, and thus
for him the particle/anti-particle interpretation completely breaks down. Taking into
account that a scattering process is an idealized process and that in a real physical
situation there will be no region of space-time where no interaction takes place, we
come to the disillusioning conclusion that for a local observer under generic conditions,
a many-fermion system has no interpretation in terms of particles and anti-particles.

The causal perturbation expansion yields a canonical object P sea which describes
the Dirac sea in the scattering process, even in the region with interaction t0 < t < t1.
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Its construction is explicitly covariant and independent of a local observer. Decompos-
ing the fermionic projector in the form (2.3.19), we obtain a canonical interpretation
of the many-fermion system in terms of particles and anti-particles. One should keep
in mind that P sea does not correspond to the vacuum of any local observer, but is a
global object of space-time. As a consequence, also the particle/anti-particle interpre-
tation in (2.3.19) can be associated only to an abstract “global observer” in space-time.
More specifically, comparing Theorem 2.3.1 and (2.3.13) with (2.4.6, 2.4.8), one sees
that P sea coincides neither with P∧ nor with P∨. Since its perturbation expansion
involves both retarded and advanced Green’s functions, it can be considered as being
some kind of “interpolation” between P∧ and P∨.

Let us now discuss our assumption on the potential B as being external. As ex-
plained at the end of §2.1, this is no restriction in principle because one can first solve
the physical equations of the coupled system and then can define P sea for the external
potential B as given by the solution of the coupled system. Clearly, this procedure
cannot be carried out in practice, but this is of no relevance for the theoretical consid-
erations here. The important point is that P sea is not defined locally; for its definition
we need to know B in the whole space-time. This is puzzling because the conventional
physical equations are local and causal, and this is the first time that an object appears
which is defined in a non-local way. One might conclude that P sea is an object which is
not compatible with causality and should therefore have no physical significance. Our
concept is the opposite: We regard the appearance of a non-local object as a first hint
that locality and causality should be given up in the strict sense. In order to formulate
physical equations which could replace the conventional local and causal equations, we
shall consider the fermionic projector as the fundamental object in space-time.

Before we can make these ideas precise in Chapter 3, we need to analyze the
fermionic projector in the continuum in more detail. One task is to understand what
“causality” of the causal perturbation expansion means precisely. At the moment,
we know that causality was used for the definition of P sea, but that nevertheless the
fermionic projector is a nonlocal and non-causal object. We need to find out how these
seemingly contradicting facts fit together. Also, we must understand better how P sea

depends on B. More specifically, we need to analyze what information on the external
potentials is encoded in P sea, and how this information can be extracted. Finally,
we must specify how the fermionic states in (2.3.19) are to be normalized. The next
sections provide the mathematical tools for answering these questions.

2.5. The Light-Cone Expansion

The light-cone expansion is a very useful technique for analyzing the fermionic
projector near the light cone. In order to give a brief but self-contained introduction,
we will explain the methods and results of [F6] leaving out many proofs and technical
details. Our setting is that of §2.3 with several sectors and generations (2.3.1). It
suffices to consider the auxiliary fermionic projector because the fermionic projector
is obtained from it simply by taking the partial trace (2.3.20). We again assume that
the Dirac operator in (2.3.10) is causality compatible (2.3.18) and that the operator B
is Hermitian with respect to the inner product (2.3.6). Furthermore, we assume as
in [F6] that B is a multiplication operator composed of chiral and scalar/pseudoscalar
potentials,

B(x) = χL A/R(x) + χR A/L(x) + Φ(x) + iρ Ξ(x) . (2.5.1)
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We note for clarity that these potentials may act non-trivially on the sectors and

generations (e.g. writing the right-handed potential as a matrix, AR = (AR)
(aα)
(bβ) , the

matrix elements are independent vector fields with the only constraint that the matrix
must be Hermitian). In particular, the potentials in (2.5.1) do in general not commute,
and thus we must in products be careful with the order of multiplication. For an
operator B which involves bilinear and gravitational potentials see [F5].

Def. 2.5.1. A distribution A(x, y) on R4×R4 is of the order O((y−x)2p), p ∈ Z,
if the product

(y − x)−2p A(x, y)
is a regular distribution (=a locally integrable function). It has the light-cone ex-
pansion

A(x, y) =
∞∑

j=g

A[j](x, y) (2.5.2)

with g ∈ Z if the distributions A[j](x, y) are of the order O((y − x)2j) and if A is
approximated by the partial sums in the sense that for all p ≥ g,

A(x, y) −
p
∑

j=g

A[j](x, y) is of the order O((y − x)2p+2) . (2.5.3)

The light-cone expansion describes the behavior of a distribution near the light
cone. More precisely, the expansion parameter (y − x)2 vanishes if y lies on the

light cone centered at x, and thus the distributions A[j](x, y) approximate A(x, y)

for y in a neighborhood of Lx. The first summand A[g](x, y) gives the leading order

of A(x, y) on the light cone, A[g+1] gives the next order on the light cone, etc. If
the distribution A is singular on the light cone, the parameter g will be negative.
Note that the distributions A[j] are determined only up to contributions of higher
order O((y−x)2j+2), but this ambiguity will not lead to any problems in what follows.
We point out that we do not demand that the infinite series in (2.5.2) converges.
This series is defined only via the approximation by the partial sums (2.5.3). Despite
this formal character of the series, the light-cone expansion completely describes the
behavior of A(x, y) near the light cone. This situation can be seen in analogy to
the Taylor expansion of a smooth, nonanalytic function. Although the Taylor series
does in general not converge, the Taylor polynomials give local approximations of
the function. An important difference to a Taylor expansion is that the A[j](x, y)
approximate A(x, y) even for points x and y which are far apart. We only need that y
is close to the light cone Lx, which is an unbounded hypersurface in R4. In this sense,
the light-cone expansion is a non-local expansion.

For clarity, we begin with the light-cone expansion for the causal Green’s functions,
and we will later extend the results to the fermionic projector. In order to get a first
idea of how the light-cone expansion can be carried out, we consider the free advanced
Green’s function s∨m as defined by (2.1.7, 2.1.8). We can pull the Dirac matrices out
of the Fourier integral by setting

s∨m(x, y) = (i∂/x +m) S∨m2(x, y) , (2.5.4)

where S∨m2 is the advanced Green’s function of the Klein-Gordon operator,

S∨m2(x, y) = lim
εց0

∫
d4k

(2π)4
1

k2 −m2 − iεk0 e
−ik(x−y) . (2.5.5)
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This Fourier integral can be computed explicitly; we expand the resulting Bessel func-
tion in a power series,

S∨m2(x, y) = − 1

2π
δ(ξ2) Θ(ξ0) +

m2

4π

J1(
√

m2ξ2)
√

m2ξ2
Θ(ξ2) Θ(ξ0)

= − 1

2π
δ(ξ2) Θ(ξ0) +

m2

8π

∞∑

j=0

(−1)j
j! (j + 1)!

(m2ξ2)j

4j
Θ(ξ2) Θ(ξ0) , (2.5.6)

where we used the abbreviation ξ ≡ y − x. This calculation shows that S∨m2(x, y) has

a δ((y − x)2)-like singularity on the light cone. Furthermore, one sees that S∨m2 is a

power series in m2. The important point for us is that the contributions of higher
order in m2 contain more factors (y − x)2 and are thus of higher order on the light
cone. More precisely,

(
d

dm2

)n

S∨m2 |m2=0(x, y) is of the order O((y − x)2n−2) . (2.5.7)

According to (2.5.4), the Dirac Green’s function is obtained by taking the first partial
derivatives of (2.5.6). Thus s∨m(x, y) has a singularity on the light cone which is even
∼ δ′((y − x)2). The higher order contributions in m are again of increasing order on
the light cone. This means that we can view the Taylor expansion of (2.5.4) in m,

s∨m(x, y) =

∞∑

n=0

m2n

n!
(i∂/ +m)

(
d

dm2

)n

S∨m2 |m2=0(x, y) , (2.5.8)

as a light-cone expansion of the Green’s function.
Writing the light-cone expansion of s∨m in the form (2.5.8) clearly is more convenient

than working with the explicit formula (2.5.6). This is our motivation for using an
expansion with respect to the mass parameter also in the presence of the external field.
Expanding the perturbation expansion (2.3.11) in m gives a double series in powers
of m and B. In order to combine these two expansions in a single perturbation series,
we write the mass matrix and the scalar/pseudoscalar potentials together by setting

YL(x) = Y − 1

m
(Φ(x) + iΞ(x)) , YR(x) = Y − 1

m
(Φ(x)− iΞ(x)) . (2.5.9)

The matrices YL/R(x) are called dynamical mass matrices; notice that Y ∗L = YR. With
this notation, we can rewrite the Dirac operator as

i∂/+ B −mY = i∂/+B with (2.5.10)

B = χL (A/R −m YR) + χR (A/L −m YL) . (2.5.11)

For the light-cone expansion of the Green’s functions, we shall always consider B as
the perturbation of the Dirac operator. This has the advantage that the free theory
consists of zero-mass fermions, and thus the Green’s functions of the free Dirac operator
have the simple form

s∨(x, y) = i∂/x S
∨
m2=0(x, y) , s∧(x, y) = i∂/x S

∧
m2=0(x, y) . (2.5.12)

The Green’s functions with interaction are given in analogy to (2.3.11) by the pertur-
bation series

s̃∨ =
∞∑

k=0

(−s∨ B)ks∨ , s̃∧ =
∞∑

k=0

(−s∧ B)ks∧ . (2.5.13)
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We remark that this perturbation expansion around zero mass is most convenient,
but not essential for the light-cone expansion; see [F5] for a light cone expansion of a
massive Dirac sea.

Our first goal is to perform the light-cone expansion of each Feynman diagram
in (2.5.13). Using an inductive construction based on Lemma 2.5.2 below, this will
give us the result of Theorem 2.5.3. Since the construction is exactly the same for
the advanced and retarded Green’s functions, we will omit all superscripts ‘∨’ and ‘∧’.
The formulas for the advanced and retarded Green’s functions are obtained by adding
either superscripts ‘∨’ or ‘∧’ to all operators s and S. For the mass expansion of the
operator Sm2 , we set a = m2 and introduce the notation

S(l) =

(
d

da

)l

Sa|a=0 (l ≥ 0). (2.5.14)

Let us derive some computation rules for the S(l). Sa satisfies the defining equation of
a Klein-Gordon Green’s function

(− x − a) Sa(x, y) = δ4(x− y) .

Differentiating with respect to a yields

− xS
(l)(x, y) = δl,0 δ

4(x− y) + l S(l−1)(x, y) (l ≥ 0). (2.5.15)

For l = 0, this formula does not seem to make sense because S(−1) is undefined.
However, the expression is meaningful if one keeps in mind that in this case the factor
l is zero, and thus the whole second summand vanishes. We will also use this convention
in the following calculations. Next, we differentiate the formula for Sa in momentum
space,

S∨a (p) =
1

p2 − a− iεp0 , S∧a (p) =
1

p2 − a+ iεp0
, (2.5.16)

with respect to both p and a. Comparing the results gives the relation

∂

∂pk
Sa(p) = −2pk

d

da
Sa(p) ,

or, after expanding in the parameter a,

∂

∂pk
S(l)(p) = −2pk S(l+1)(p) (l ≥ 0). (2.5.17)

This formula also determines the derivatives of S(l) in position space. Namely,

∂

∂xk
S(l)(x, y) =

∫
d4p

(2π)4
S(l)(p) (−ipk) e−ip(x−y)

(2.5.17)
=

i

2

∫
d4p

(2π)4
∂

∂pk
S(l−1)(p) e−ip(x−y)

= − i
2

∫
d4p

(2π)4
S(l−1)(p)

∂

∂pk
e−ip(x−y)

=
1

2
(y − x)k S(l−1)(x, y) (l ≥ 1). (2.5.18)
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We iterate this relation to compute the Laplacian,

− xS
(l)(x, y) = −1

2

∂

∂xk

(

(y − x)k S(l−1)(x, y)
)

= 2 S(l−1)(x, y) − 1

4
(y − x)2 S(l−2)(x, y) (l ≥ 2).

After comparing with (2.5.15), we conclude that

(y − x)2 S(l)(x, y) = −4l S(l+1)(x, y) (l ≥ 0). (2.5.19)

Furthermore, S(l)(x, y) is only a function of (y − x), and thus

∂

∂xk
S(l)(x, y) = − ∂

∂yk
S(l)(x, y) (l ≥ 0). (2.5.20)

Finally, it is convenient to use the identity (2.5.18) also in the case l = 0 and to use it

as the definition of S(−1),

∂

∂xk
S(l)(x, y) =

1

2
(y − x)k S(l−1)(x, y) (l ≥ 0). (2.5.21)

Notice that S(−1) itself remains undefined, only the combination (y−x)kS(−1) is given

a mathematical meaning as the partial derivative of the distribution 2S(0).
The next lemma gives the light-cone expansion of an operator product where a

potential V is sandwiched between two mass-derivatives of the Green’s function. This
expansion is the key for the subsequent iterative light-cone expansion of all Feynman
diagrams. We always assume without saying that the potentials satisfy the regularity
conditions of Lemma 2.2.2.

Lemma 2.5.2. The operator product S(l) V S(r) with l, r ≥ 0 has the light-cone
expansion

(S(l) V S(r))(x, y) =

∞∑

n=0

1

n!

∫ 1

0
αl (1 − α)r (α− α2)n

× ( nV )|αy+(1−α)x dα S
(n+l+r+1)(x, y) . (2.5.22)

The fact that line integrals appear in this lemma can be understood in analogy to
the method of integration along characteristics (see e.g. [Ta, Fl]) for a solution of an
inhomogeneous wave equation (for a more detailed discussion of this point see [F5]).
The advantage of the above lemma is that it gives a whole series of line integrals. A
further difference is that the left side is an operator product, making it unnecessary
to specify initial or boundary values.

Proof of Lemma 2.5.2. Our method is to first compute the Laplacian of both
sides of (2.5.22). Comparing the structure of the resulting formulas, it will be possible
to proceed by induction in l.

On the left side of (2.5.22), we calculate the Laplacian with the help of (2.5.15) to

− x(S
(l) V S(r))(x, y) = δl,0 V (x) S(r)(x, y) + l (S(l−1) V S(r))(x, y) . (2.5.23)
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The Laplacian of the integral on the right side of (2.5.22) can be computed with
(2.5.21) and (2.5.15),

− x

∫ 1

0
αl (1− α)r (α− α2)n ( nV )|αy+(1−α)x dα S

(n+l+r+1)(x, y) (2.5.24)

= −
∫ 1

0
αl (1− α)r+2 (α− α2)n ( n+1V )|αy+(1−α)x dα S

(n+l+r+1)(x, y)

−
∫ 1

0
αl (1− α)r+1 (α− α2)n

× (∂k
nV )|αy+(1−α)x dα (y − x)k S(n+l+r)(x, y)

+(n+ l + r + 1)

×
∫ 1

0
αl (1− α)r (α− α2)n( nV )|αy+(1−α)x dα S

(n+l+r)(x, y) .

In the second summand, we rewrite the partial derivative as a derivative with respect
to α and integrate by parts,

∫ 1

0
αl (1− α)r+1 (α− α2)n (∂k

nV )|αy+(1−α)x dα (y − x)k

=

∫ 1

0
αl (1− α)r+1 (α− α2)n

d

dα
( nV )|αy+(1−α)x dα

= −δn,0 δl,0 V (x)

−(n+ l)

∫ 1

0
αl (1− α)r+2 (α− α2)n−1 ( nV )|αy+(1−α)x dα

+(n+ r + 1)

∫ 1

0
αl (1− α)r (α− α2)n ( nV )|αy+(1−α)x dα

= −δn,0 δl,0 V (x)

−n
∫ 1

0
αl (1− α)r+2 (α− α2)n−1 ( nV )|αy+(1−α)x dα

+(n+ l + r + 1)

∫ 1

0
αl (1− α)r (α− α2)n ( nV )|αy+(1−α)x dα

−l
∫ 1

0
αl−1 (1− α)r (α− α2)n ( nV )|αy+(1−α)x dα .

We substitute back into the original equation to obtain

(2.5.24) = δn,0 δl,0 V (x) S(r)(x, y)

+l

∫ 1

0
αl−1 (1− α)r (α− α2)n ( nV )|αy+(1−α)x dα S

(n+l+r)(x, y)

−
∫ 1

0
αl (1− α)r+2 (α− α2)n ( n+1V )|αy+(1−α)x dα S

(n+l+r+1)(x, y)

+n

∫ 1

0
αl (1− α)r+2 (α− α2)n−1 ( nV )|αy+(1−α)x dα S

(n+l+r)(x, y) .
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After dividing by n! and summing over n, the last two summands are telescopic and
cancel each other. Thus we get

−
∞∑

n=0

1

n!

∫ 1

0
αl (1− α)r (α− α2)n ( nV )|αy+(1−α)x dα S

(n+l+r+1)(x, y)

= δl,0 V (x) S(r)(x, y) + l

∞∑

n=0

1

n!

∫ 1

0
αl−1 (1− α)r (α− α2)n

× ( nV )|αy+(1−α)x dα S
(n+l+r)(x, y) . (2.5.25)

We now compare the formulas (2.5.23) and (2.5.25) for the Laplacian of both
sides of (2.5.22). In the special case l = 0, these formulas coincide, and we can
use a uniqueness argument for the solutions of the wave equation to prove (2.5.22):
We assume that we consider the advanced Green’s function (for the retarded Green’s
function, the argument is analogous). For given y, we denote the difference of both
sides of (2.5.22) by F (x). Since the support of F (x) is in the past light cone x ∈ L∧y , F
vanishes in a neighborhood of the hypersurface H = {z ∈ R4 | z0 = y0 +1}. Moreover,
the Laplacian of F is identically equal to zero according to (2.5.23) and (2.5.25). We
conclude that

F = 0 and F|H = ∂kF|H = 0 .

Since the wave equation has a unique solution for given initial data on the Cauchy
surface H, F vanishes identically.

The general case follows by induction in l: Suppose that (2.5.22) holds for given

l̂ (and arbitrary r). Then, according to (2.5.23, 2.5.25) and the induction hypothesis,

the Laplacian of both sides of (2.5.22) coincides for l = l̂ + 1. The above uniqueness
argument for the solutions of the wave equation again gives (2.5.22).

The above lemma can be used iteratively for the light-cone expansion of more
complicated operator products. To explain the method, we look at the example of
three factors S(0) and two potentials V , W ,

(S(0) V S(0) W S(0))(x, y) =

∫

d4z S(0)(x, z) V (z) (S(0) W S(0))(z, y) . (2.5.26)

Having split up the operator product in this form, we can apply Lemma 2.5.2 to the
factor S(0)WS(0),

=

∞∑

n=0

1

n!

∫

d4z S(0)(x, z)

{

V (z)

∫ 1

0
(α− α2)n ( nW )|αy+(1−α)z dα

}

S(n+1)(z, y) .

Now we rewrite the z-integral as the operator product (S(0)gyS
(0))(x, y), where gy(z) is

the function in the curly brackets. The y-dependence of gy causes no problems because
we can view y as a fixed parameter throughout. Thus we can simply apply Lemma
2.5.2 once again to obtain

=
∞∑

m,n=0

1

m! n!

∫ 1

0
dβ (1− β)n+1 (β − β2)m

∫ 1

0
dα (α− α2)n

× m
z

(
V (z) ( nW )|αy+(1−α)z

)

|z=βy+(1−β)x
S(m+n+2)(x, y) .
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Now the Laplacian m
z can be carried out with the Leibniz rule. Notice that the

manipulations of the infinite series are not problematic because the number of terms
is finite to every order on the light cone.

The Feynman diagrams in (2.5.13) can be expanded with this iterative method,
but they are a bit more difficult to handle. One complication is that pulling the Dirac
matrices out of the Green’s functions according to (2.5.12) gives one additional partial
derivative per Green’s function. However, this causes no major problems, because
these partial derivatives can be carried out after each induction step by differentiating
through the light-cone expansion of Lemma 2.5.2. Another issue is to keep track of
the chirality of the potentials. To this end, one must use that the zero mass Green’s
function s and the factors A/L/R are odd, whereas the dynamical mass matrices are

even. Thus the chirality of the potentials changes each time a dynamical mass matrix
appears, as in the example of the operator product

χL s A/L s · · · s A/L s YL s A/R s · · · s A/R s YR s A/L s · · · . (2.5.27)

The last difficulty is that partial derivatives inside the line integrals may be contracted
with a factor (y − x), like for example in the expression

∫ 1

0
(y − x)j ∂jV|αy+(1−α)x dα .

Such derivatives act in direction of the line integral and are thus called tangential.
Writing them as derivatives with respect to the integration variable, we can integrate
by parts, e.g.

∫ 1

0
(y − x)j ∂jV|αy+(1−α)x dα =

∫ 1

0

d

dα
V (αy + (1− α)x) dα = V (y)− V (x) .

Going through the calculations and the combinatorics in detail, one finds that with
such integrations by parts we can indeed get rid of all tangential derivatives, and one
ends up with terms of th following structure (for the proof see [F6]).

Theorem 2.5.3. (light-cone expansion of the kth order Feynman diagram)
Using a multi-index notation and the abbreviation
∫ y

x
[l, r | n] f(z) dz :=

∫ 1

0
dα αl (1− α)r (α− α2)n f(αy + (1− α)x) , (2.5.28)

the light-cone expansion of the kth order contribution to the perturbation series (2.5.13)
can be written as an infinite sum of expressions of the form

χc C (y − x)K W (0)(x)

∫ y

x
[l1, r1 | n1] dz1 W (1)(z1)

∫ y

z1

[l2, r2 | n2] dz2 W (2)(z2)

· · ·
∫ y

zα−1

[lα, rα | nα] dzα W (α)(zα) γ
J S(h)(x, y) , α ≤ k . (2.5.29)

Here the factors W (β) are composed of the potentials and their partial derivatives,

W (β) = (∂Kaβ
paβV

(aβ)
Jaβ ,caβ

) · · · (∂Kbβ
pbβV

(bβ)
Jbβ ,cbβ

) (2.5.30)

with a1 = 1, aβ+1 = bβ + 1, bβ ≥ aβ − 1 (in the case bβ = aβ − 1, W (β) is identically
equal to one) and bα = k. Furthermore, c, ca ∈ {L,R} are chiral indices, C is a
complex number, and the parameters la, ra, na, and pa are non-negative integers. The



2.5. THE LIGHT-CONE EXPANSION 57

functions V
(a)
Ja,ca

coincide with any of the individual potentials in (2.5.11) with chirality
ca, i.e.

V (a)
ca = Aca (in which case |Ja| = 1) or

V (a)
ca = mYca (in which case |Ja| = 0) . (2.5.31)

The chirality ca of the potentials is determined by the following rules:

(i) The chirality c1 of the first potential coincides with the chirality of the factor
χc.

(ii) The chirality of the potentials is reversed at every mass matrix, i.e.

ca and ca+1

{

coincide if V
(a)
ca = Aca

are opposite if V
(a)
ca = mYca .

The tensor indices of the multi-indices are all contracted with each other, according to
the following rules:

(a) No two tensor indices of the same multi-index are contracted with each other.
(b) The tensor indices of the factor γJ are all contracted with different multi-

indices.
(c) The tensor indices of the factor (y − x)K are all contracted with the tensor

indices of the factors V
(a)
Ja

or γJ , but not with the partial derivatives ∂Ka .

To every order h on the light cone, the number of terms of the form (2.5.29) is finite.
Furthermore,

2h = k − 1− |K|+
k∑

a=1

(|Ka|+ 2pa) . (2.5.32)

The rules (i) and (ii) correspond precisely to our observation that the chirality
changes at each dynamical mass matrix (2.5.27). The restrictions (a) and (b) on the
possible contractions of tensor indices prevent an abuse of our multi-index notation.
More precisely, (a) avoids factors (y− x)2 in (y−x)I , an unnecessary large number of
γ-matrices in γJ and “hidden” Laplacians inside the partial derivatives ∂Iaza . The rule

(b), on the other hand, prevents factors (y−x)2 and hidden Laplacians in combinations

of the form (y − x)i (y − x)j γi γj and ∂ijV
(a)
Ja

γi γj, respectively. The rule (c) means
that no tangential derivatives appear. The rules (a)–(c) imply that the tensor indices
of the multi-index K are all contracted with the chiral potentials, except for one index
which may be contracted with the factor γJ . Since at most k chiral potentials appear,
we get the inequality |K| ≤ k + 1. Using this inequality in (2.5.32) we get the bound

h ≥ −1 + 1

2

k∑

a=1

(|Ka|+ 2pa) . (2.5.33)

This shows that h never becomes smaller than −1 and that derivatives of the potentials
increase the order on the light cone. In the case h = −1, it follows from (2.5.32)
that |K| ≥ 1, meaning that at least one factor (y−x) appears in (2.5.29). We conclude

that the factor S(h) in (2.5.29) is always well-defined by either (2.5.14) or (2.5.21).
So far the Green’s function was described perturbatively by a sum of Feynman di-

agrams (2.5.13). In order to get from this perturbative description to non-perturbative
formulas of the light-cone expansion, we shall now carry out the sum over all Feynman
diagrams to any fixed order on the light cone. This procedure is called resummation of
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the light-cone expansion. In order to give a first idea of how the resummation works,
we consider the leading singularity on the light cone by neglecting all terms of the
order O((y − x)−2). According to (2.5.7), we need to take into account only the con-
tributions (2.5.29) with h = −1. The inequality (2.5.33) implies that no derivatives
of the potentials appear. Moreover, we obtain from (2.5.32) that |K| = k + 1. Again
using the contraction rules (a)–(c), we conclude that one tensor index of the multi-
index K is contracted with a Dirac matrix, whereas the remaining k indices of K
are all contracted with chiral potentials. Therefore, all k potentials are chiral, and
no dynamical mass matrices appear. A detailed calculation yields for the kth order
Feynman diagram a term of precisely this structure,

χc ((−s B)ks)(x, y) = χc (−i)k
∫ y

x
dz1 (y − x)j1 Aj1

c (z1)

×
∫ y

z1

dz2 (y − z1)j2 Aj2
c (z2) · · ·

∫ y

zk−1

dzk (y − zk)j2 Ajk
c (zk) s(x, y)

+O((y − x)−2) ,
where we used for the line integrals the short notation

∫ y

x
f(z) dz :=

∫ y

x
[0, 0 | 0] f(z) dz =

∫ 1

0
f(αy + (1− α)x) dα . (2.5.34)

The obtained nested line integrals can be identified with the summands of the familiar
Dyson series. This allows us to carry out the sum over all Feynman diagrams,

χc s̃(x, y) = χc Pexp

(

−i
∫ y

x
(y − x)j Aj

c(z) dz

)

s(x, y) + O((y − x)−2) , (2.5.35)

where we again used the notation (2.5.34) and the following definition of Pexp.

Def. 2.5.4. For a smooth one-parameter family of matrices F (α), α ∈ R, the
ordered exponential Pexp(

∫
F (α) dα) is given by the Dyson series

Pexp

(∫ b

a
F (α) dα

)

= 11 +

∫ b

a
dt0 F (t0) dt0 +

∫ b

a
dt0 F (t0)

∫ b

t0

dt1 F (t1)

+

∫ b

a
dt0 F (t0)

∫ b

t0

dt1 F (t1)

∫ b

t1

dt2 F (t2) + · · · . (2.5.36)

The appearance of the ordered exponential in (2.5.35) can be understood from
the local gauge invariance. We explain this relation for simplicity in the example of
dynamical mass matrices and chiral potentials of the form

YL = YR = 0 , AL(x) = AR(x) = iU(x) (∂U−1(x)) ,

where U = U
(aα)
(bβ) is a unitary matrix on the sectors and generations. In this case,

the Dirac operator is related to the free Dirac operator simply by a local unitary
transformation,

i∂/+B = U i∂/ U−1 .

Interpreting this local transformation as in §1.4 as a gauge transformation (1.4.3), we
can say that the external potential can be transformed away globally by choosing a
suitable gauge. Using the well-known behavior of the Green’s function under gauge
transformations, we obtain the simple formula

s̃(x, y) = U(x) s(x, y) U−1(y) . (2.5.37)
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Let us verify that this is consistent with (2.5.35). Setting V (α) = U(αy + (1 − α)x)
and using the relation V (V −1)′ = (V V −1)′ − V ′V −1 = −V ′V −1, we can write the
integrand of the ordered exponential as

− i(y − x)j Aj
c(z) = −V ′(α) V −1(α) . (2.5.38)

Differentiating (2.5.36) with respect to a as well as evaluating it for a = b, one sees
that the ordered exponential can be characterized as the solution of the initial value
problem

d

da
Pexp

(∫ b

a
F

)

= −F (a) Pexp
(∫ b

a
F

)

, Pexp

(∫ b

b
F

)

= 11 .

In the case F = −V ′V −1, it is easily verified that the solution to this initial value
problem is

Pexp

(

−
∫ b

a
V ′(α) V −1(α) dα

)

= V (a) V −1(b) .

Using (2.5.38), we conclude that

Pexp

(

−i
∫ y

x
(y − x)j Aj

c(z) dz

)

= U(x) U−1(y) .

Thus the ordered exponential in (2.5.35) gives precisely the factor U(x) U(y)−1 needed
for the correct behavior under gauge transformations (2.5.37).

To higher order on the light cone, the situation clearly is more complicated. Nev-
ertheless, it is very helpful to imagine that after rearranging the summands of the
light-cone expansion in a suitable way, certain subseries can be summed up explicitly
giving rise to ordered exponentials of the chiral potentials. As in (2.5.27), the chirality
of the potentials should change each time a dynamical mass matrix appears. This
conception is made precise by the following definition and theorem, proving that the
light-cone expansion of the Green’s function can be obtained to any given order on
the light cone by taking a finite number of terms of the form (2.5.28) and inserting
suitable ordered exponentials.

Def. 2.5.5. A contribution (2.5.28) to the light-cone expansion of Theorem 2.5.3

is called phase-free if all the tangential potentials V
(a)
Ja

are differentiated, i.e.

|Ka|+ 2pa > 0 whenever Ja is contracted with (y − x)K .

From every phase-free contribution the corresponding phase-inserted contribution is
obtained as follows: We insert ordered exponentials according to the replacement rule

W (β)(zβ) −→ W (β)(zβ) Pexp

(

−i
∫ zβ+1

zβ

A
jβ
cβ (zβ+1 − zβ)

)

, β = 0, . . . , α ,

where we set z0 = x and zα+1 = y. The chiralities cβ are determined by the rela-
tions c0 = c and

cβ−1 and cβ

{
coincide

are opposite

}

if W (β−1) contains an

{
even
odd

}

number of factors Y..

Theorem 2.5.6. To every order on the light cone, the number of phase-free con-
tributions is finite. The light-cone expansion of the Green’s function s̃(x, y) is given
by the sum of the corresponding phase-inserted contributions.
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For the proof we refer to [F6]. In short, the first statement follows directly from the
contraction rules (a)–(c) and (2.5.32), whereas for the second part one uses for fixed x
and y the behavior of the Green’s function under non-unitary local transformations of
the spinors.

Our constructions have led to a convenient procedure for performing the light-cone
expansion of the Green’s function. One only needs to compute to any order on the
light cone the finite number of phase-free contributions. Then one inserts ordered ex-
ponentials according to Def. 2.5.5. For the computation of the phase-free contributions
we use a computer program. Appendix B lists those phase-free contributions which
will be of relevance in Chapters 6–8.

In the remainder of this section we describe how the above methods can be adapted
to the fermionic projector. We begin for simplicity with the fermionic projector cor-
responding to one Dirac sea in the vacuum (2.2.1). Similar to (2.5.4) we pull out the
Dirac matrices,

P sea(x, y) = (i∂/x +m) Tm2(x, y) , (2.5.39)

where Tm2 is the Fourier transform of the lower mass shell,

Tm2(x, y) =

∫
d4k

(2π)4
δ(k2 −m2) Θ(−k0) e−ik(x−y) . (2.5.40)

Computing this Fourier integral and expanding the resulting Bessel functions gives

Tm2(x, y) = − 1

8π3

(
PP

ξ2
+ iπδ(ξ2) ε(ξ0)

)

+
m2

32π3
(
log |m2ξ2|+ CE + iπ Θ(ξ2) ǫ(ξ0)

)
∞∑

j=0

(−1)j
j! (j + 1)!

(m2ξ2)j

4j

− m2

32π3

∞∑

j=0

(−1)j
j! (j + 1)!

(m2ξ2)j

4j
(Φ(j + 1) + Φ(j)) . (2.5.41)

Here ξ ≡ y − x, CE = 2C − 2 log 2 with Euler’s constant C, and Φ is the function

Φ(0) = 0 , Φ(n) =

n∑

k=1

1

k
for n ≥ 1 .

Similar to (2.5.6), this expansion involves distributions which are singular on the light
cone. But in addition to singularities ∼ δ((y − x)2 and ∼ Θ((y − x)2, now also
singularities of the form PP/(y − x)2 and log |(y − x)2| appear. In particular, Tm2

is not causal in the sense that suppTm2(x, .) 6⊂ Lx. Another similarity to (2.5.6) is
that power series in m2(y − x)2 appear. This suggests that in analogy to (2.5.7), the
higher orders in m2 should be of higher order on the light cone. However, due to the
term log |m2ξ2|, the distribution Tm2 is not a power series in m2. This means that the
higher mass derivatives of Tm2 do not exist, and the analog of (2.5.7) breaks down.
This so-called logarithmic mass problem reflects a basic infrared problem in the light-
cone expansion of the fermionic projector. In the vacuum, it can be resolved with the
following simple construction. We subtract the problematic log |m2|-terms by setting

T reg
m2 (x, y) = Tm2(x, y) − m2

32π3
log |m2|

∞∑

j=0

(−1)j
j! (j + 1)!

(m2ξ2)j

4j
. (2.5.42)
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This distribution is a power series in m2, and in analogy to (2.5.14) we can set

T (l) =

(
d

da

)l

T reg
a |a=0 (l ≥ 0). (2.5.43)

Furthermore, we introduce T (−1) similar to (2.5.21) as the distributional derivative

of T (0). Similar to (2.5.7),

T (n)(x, y) is of the order O((y − x)2n−2) ,
and thus the mass expansion of T reg

m2 gives us its light-cone expansion. The point is

that the difference of Tm2 and T reg
m2 ,

Tm2 − T reg
m2 =

m2

32π3
log |m2|

∞∑

j=0

(−1)j
j! (j + 1)!

(m2ξ2)j

4j
,

is an absolutely convergent power series in ξ2 and is thus a smooth function in position
space. This smooth contribution is of no relevance as long as the singularities on the
light cone are concerned. This leads us to write the fermionic projector in the form

P sea(x, y) =

∞∑

n=0

m2n

n!
(i∂/x +m) T (n)(x, y) + P lc(x, y) , (2.5.44)

with

P lc := (i∂/x +m)
(
Tm2 − T reg

m2

)
.

The series in (2.5.44) is a light-cone expansion which completely describes the singu-
lar behavior of the fermionic projector on the light cone. The so-called low-energy
contribution P lc, on the other hand, is a smooth function.

This method of performing a light-cone expansion modulo smooth functions on
the light cone also works for the general fermionic projector with interaction. But the
situation is more complicated and at the same time more interesting, in particular be-
cause the space-time dependence of the involved external potentials reveals the causal
structure of the fermionic projector. The first construction step is to use the identity
on the left side of (2.3.12) to carry over the light-cone expansion from the Green’s

function to the distribution k̃. Next, comparing (2.2.6) with the formula

pm(k) = (k/ +m) δ(k2 −m2)

=
1

2πi
(k/ +m) lim

εց0

[
1

k2 −m2 − iε −
1

k2 −m2 + iε

]

,

one sees that the distributions p and k differ from each only by the iε-regularization
in momentum space. The key step of the construction is the so-called residual ar-
gument, which relates the light-cone expansion of k̃ to an expansion in momentum
space. Using that the latter expansion remains unchanged if the poles of the distri-
butions are suitably shifted in momentum space, one obtains the light-cone expansion
for an operator p̃res, which can be regarded as a perturbation of p, but with a dif-
ferent combinatorics than in the expansion of Theorem 2.3.1. More precisely, p̃ can
be obtained from p̃res by replacing pairs of factors k in the perturbation expansion
by corresponding factors p. The argument (2.4.2) shows that the difference p̃ − p̃res
vanishes in the static case, and more generally one can say that p̃ − p̃res will be of
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significance only if the frequency of the external potentials is of the order of the mass
gap. Therefore, the operator

P he :=
1

2
X (p̃ − p̃res)

is called the high-energy contribution to the fermionic projector. Moreover, resolving
the logarithmic mass problem we obtain again a low-energy contribution P le. We thus
obain a representation of the fermionic projector of the form

P sea(x, y) =

∞∑

n=−1

(phase-inserted line integrals) × T (n)(x, y)

+P le(x, y) + P he(x, y) . (2.5.45)

Here the series is a light-cone expansion which describes the singular behavior of the
fermionic projector on the light cone non-perturbatively. It is obtained from the light-
cone expansion of the Green’s functions by the simple replacement rule

S(n) −→ T (n) .

In particular, the phase-inserted line integrals are exactly the same as those for the
Green’s functions (see Def. 2.5.5). The contributions P le and P he, on the other hand,
are given perturbatively by a series of terms which are all smooth on the light cone (we
expect that the perturbation series for P le and P le should converge, but this has not yet
been proven). The “causality” of the causal perturbation expansion can be understood
from the fact that the phase-inserted line integrals in (2.5.45) are all bounded integrals
along the line segment joining the points x and y (whereas the light-cone expansion
of general operator products involves unbounded line integrals [F1]). In particular,
when y lies in the causal future or past of x, the light-cone expansion in (2.5.45)
depends on the external potential only inside the “diamond” (J∨x ∩ J∧y ) ∪ (J∧x ∩ J∨y ).
Nevertheless, the light-cone expansion is not causal in the strict sense because there
are contributions for y 6∈ Jx. Furthermore, the low- and high-energy contributions
cannot be described with line integrals and violate locality as well as causality. This
non-locality can be understood from the fact that the fermionic projector is a global
object in space-time (see the discussion in §2.4). Mathematically, it is a consequence
of the non-local operation of taking the absolute value of an operator (2.2.17) in the
definition of the fermionic projector. We conclude that the singular behavior of the
fermionic projector on the light-cone can be described explicitly by causal line integrals,
whereas the smooth contributions to the fermionic projector are governed by non-local
effects.

Inspecting the explicit formulas of Appendix B, one sees immediately that from the
line integrals of the light-cone expansion one can reconstruct the chiral and scalar/pseu-
doscalar potentials. In this sense, P sea encodes all information on the external poten-
tial. Furthermore, the fermionic projector gives via its representation (2.3.19) all
information on the fermions and anti-fermions of the system. We thus come to the
important conclusion that the fermionic projector describes the physical system com-
pletely.

2.6. Normalization of the Fermionic States

In §2.2 we disregarded that the fermionic states are in general not normalizable
in infinite volume. We avoided this problem using a δ-normalization in the mass
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parameter (see e.g. (2.2.26)). In this section we will analyze the normalization in
detail by considering the system in finite volume and taking the infinite volume limit.
Apart from justifying the formalism introduced in §2.2, this will clarify in which sense
the fermionic projector is idempotent (Theorem 2.6.1). Furthermore, we will see that
the probability integral has a well-defined infinite volume limit (Theorem 2.6.2), and
this will also determine the normalization constant cnorm in (2.3.19) (see (2.6.24)). We
postpone the complications related to the chiral fermions to Appendix C and thus
assume here that the chiral asymmetry matrix X = 11. We work again in the setting
of §2.3 and assume that the external potential B satisfies the regularity assumptions
of Lemma 2.2.2. Furthermore, we make the physically reasonable assumption that the
masses are non-degenerate in the generations, meaning that

maα 6= maβ for all a and α 6= β . (2.6.1)

In order to ensure that all normalization integrals are finite, we need to introduce
an infrared regularization. For clarity, we explain the construction for a single Dirac
sea of mass m in the vacuum. First, we replace space by the three-dimensional box

T 3 = [−l1, l1]× [−l2, l2]× [−l3, l3] with 0 < li <∞ (2.6.2)

and set V = |T 3| = 8 l1l2l3. We impose periodic boundary conditions; this means that

we restrict the momenta ~k to the lattice L3 given by

L3 =
π Z

l1
× π Z

l2
× π Z

l3
⊂ R3 .

In order to carry over the operators pm, km and sm (see §2.2) to finite volume, we leave
the distributions in momentum space unchanged. In the transformation to position
space, we replace the Fourier integral over 3-momentum by a Fourier series according
to

∫
d~k

(2π)3
−→ 1

V

∑

~k∈L3

. (2.6.3)

When taking products of the resulting operators, we must take into account that the
spatial integral is now finite. For example, we obtain that

(pm pm′)(x, y) =

∫

IR×T 3

pm(x, z) pm′(z, y) d4z

=

∫

IR×T 3

d4z

∫ ∞

−∞

dk0

2π

1

V

∑

~k∈L3

pm(k) e−ik(x−z)

×
∫ ∞

−∞

dl0

2π

1

V

∑

~l∈L3

pm′(l) e−il(z−y)

=

∫ ∞

−∞

dk0

2π

1

V

∑

~k∈L3

pm(k) e−ikx

×
∫ ∞

−∞

dl0

2π

1

V

∑

~l∈L3

pm′(l) eily 2π δ(k0 − l0) V δ~k,~l

=

∫ ∞

−∞

dk0

2π

1

V

∑

~k∈L3

pm(k) pm′(k) e−ik(x−y)
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= δ(m−m′) pm(x, y) , (2.6.4)

where pm(k) = (k/+m)δ(k2−m2). More generally, the calculation rules (2.2.26–2.2.32)
for products of the operators km, pm and sm remain valid in finite 3-volume.

In (2.6.4) we are still using a δ-normalization in the mass parameter. In order to
go beyond this formalism and to get into the position where we can multiply operators
whose mass parameters coincide, we “average” the mass over a small interval [m,m+δ].
More precisely, we set

p̄m =
1

δ

∫ m+δ

m
pµ dµ and k̄m =

1

δ

∫ m+δ

m
kµ dµ . (2.6.5)

Then

p̄m p̄m =
1

δ2

∫ m+δ

m
dµ

∫ m+δ

m
dµ′ pµ pµ′

=
1

δ2

∫ m+δ

m
dµ

∫ m+δ

m
dµ′ δ(µ − µ′) pµ =

1

δ2

∫ m+δ

m
pµ dµ =

1

δ
p̄m ,

and thus, apart from the additional factor δ−1, p̄m is idempotent. Similarly, we have
the relations

k̄m k̄m =
1

δ
p̄m and k̄m p̄m = p̄m k̄m =

1

δ
k̄m .

Thus, introducing the infrared regularized fermionic projector corresponding to a Dirac
sea of mass m by

P sea =
δ

2
(p̄m − k̄m) , (2.6.6)

this operator is indeed a projector,

(P sea)∗ = P sea and (P sea)2 = P sea . (2.6.7)

The infinite volume limit corresponds to taking the limits l1, l2, l3 →∞ and δ ց 0.
Let us discuss the above construction. Clearly, our regularization method relies on

special assumptions (3-dimensional box with periodic boundary conditions, averaging
of the mass parameter). This is partly a matter of convenience, but partly also a
necessity, because much more general regularizations would lead to unsurmountable
technical difficulties. Generally speaking, infrared regularizations change the system
only on the macroscopic scale near spatial infinity and possibly for large times. Due
to the decay assumptions on the external potentials in Lemma 2.2.2, in this region the
system is only weakly interacting. This should make infrared regularizations insensitive
to the details of the regularization procedure, and it is reasonable to expect (although it
is certainly not proven) that if the infinite volume limit exists, it should be independent
of which regularization method is used. Here we simply take this assumption for
granted and thus restrict attention to a special regularization scheme. But at least we
will see that the infinite volume limit is independent of how the limits li → ∞ and
δ ց 0 are taken.

It is worth noting that not every infrared regularization has a well-defined in-
finite volume limit. To see this, we consider the example of a regularization in a
4-dimensional box. Restricting the time integral to the finite interval t ∈ [−T, T ], we



2.6. NORMALIZATION OF THE FERMIONIC STATES 65

obtain

(pm pm)(x, y)

=

∫ T

−T
dt

∫ ∞

−∞

dk0

2π

∫ ∞

−∞

dl0

2π

1

V

∑

~k,~l∈L3, ~k=~l

e−i(k
0−l0)t pm(k) pm(l) eikx−ily

=

∫ T

−T
dt

∫ ∞

−∞

dk0

2π

∫ ∞

−∞

dl0

2π

1

V

∑

~k,~l∈L3, ~k=~l

e−i(k
0−l0)t

× (k/ +m) (l/ +m) δ((k0)2 − (l0)2) δ(k2 −m2) eikx−ily

=

∫ ∞

−∞

dk0

2π

1

V

∑

~k∈L3

mT

|k0| pm(k) e−ik(x−y) + O(T 0) ,

and due to the factor |k0|−1 in the last line, this is not a multiple of pm(x, y). This
problematic factor |k0|−1 also appears under more general circumstances (e.g. when we
introduce boundary conditions at t = ±T and/or take averages of the mass parameter),
and thus it seems impossible to arrange that the fermionic projector is idempotent.
We conclude that a 4-dimensional box does not give a suitable regularization scheme.

The mass averaging in (2.6.5) leads to the bizarre effect that for fixed ~k, a whole
continuum of states of the fermionic projector, namely all states with

k0 ∈
[

−
√

|~k|2 + (m+ δ)2, −
√

|~k|2 +m2

]

, (2.6.8)

are occupied. If one prefers to occupy only a finite number of states for every ~k, one
can achieve this by taking the mass averages for the bra- and ket-states separately.
For example, instead of (2.6.6) we could define the fermionic projector by

P (x, y) = δ

∫ ∞

−∞

dk0

2π

∫ ∞

−∞

dl0

2π

1

V

∑

~k,~l∈L3, ~k=~l

t̄m(k) t̄m(l) e−ikx+ily (2.6.9)

with t̄m = 1
2(p̄m − k̄m). This fermionic projector is for every ~k composed of a finite

number of states. Furthermore, it is a projector in the sense of (2.6.7). In con-
trast to (2.6.6), (2.6.9) is not homogeneous in time, but decays on the scale t ∼ δ−1.
However, if we restrict attention to a fixed region of space-time for which t ≪ δ−1,
then (2.6.6) and (2.6.9) differ only by terms of higher order in δ, and therefore we
can expect that (2.6.5) and (2.6.7) should have the same infinite volume limit. The
definition (2.6.6) has the advantage that it will be easier to introduce the interaction.

After these preparations, we come to the general construction of the fermionic
projector in the three-dimensional box T 3. Since we want to “smear out” the mass
similar to (2.6.5), the mass parameter needs to be variable. To this end, we introduce
a parameter µ > 0 which shifts all masses by the same amount. Thus we describe the
system in the vacuum by the Dirac operator

i∂/−mY − µ11 . (2.6.10)

The external field is described by an operator B in the space-time R × T 3, which we
again insert into the Dirac operator,

i∂/+ B −mY − µ11 .
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Now we can introduce the operators p, k and their perturbation expansions exactly as
in §2.3. For clarity, we denote the dependence on the parameter µ by an additional
index +µ. In particular, we denote the operator products in Theorem 2.3.1 by p̃+µ

and k̃+µ. Since the multiplication rules (2.2.26–2.2.32) also hold in finite 3-volume,

all the computations of §2.3 are still true. In particular, the operators p̃+µ and k̃+µ

satisfy the δ-normalization conditions4

p̃+µ p̃+µ′ = k̃+µ k̃+µ′ = δ(µ − µ′) p̃+µ (2.6.11)

p̃+µ k̃+µ′ = k̃+µ p̃+µ′ = δ(µ − µ′) k̃+µ . (2.6.12)

In analogy to (2.6.5) and (2.6.6) we define the auxiliary fermionic projector by

P sea =
1

2

∫ δ

0
(p̃+µ − k̃+µ) dµ , (2.6.13)

and the fermionic projector is again obtained by taking the partial trace (2.3.20),

(P sea)ab =

g(a)
∑

α=1

g(b)
∑

β=1

(P sea)
(aα)
(bβ) . (2.6.14)

The next theorem shows that the fermionic projector is idempotent in the infinite
volume limit, independent of how the limits li →∞ and δ ց 0 are taken.

Theorem 2.6.1. (idempotence of the fermionic projector) Consider a system
composed of massive fermions with non-degenerate masses (2.6.1). Then the fermionic
projector defined by (2.6.13) and (2.6.14) satisfies the relations

∫

IR×T 3

d4z

N∑

b=1

(P sea)ab (x, z) (P
sea)bc(z, y) = (P sea)ac (x, y) + δ2 Qa

c (x, y) ,

where Q has an expansion as a sum of operators which all have a well-defined infinite
volume limit.

Proof. For simplicity we omit the superscript ‘sea’. It follows immediately
from (2.6.11–2.6.13) that the auxiliary fermionic projector is idempotent,

∑

b,β

P
(aα)
(bβ) P

(bβ)
(cγ) = P

(aα)
(cγ) . (2.6.15)

Thus it remains to show that
∑

b

∑

α,γ

∑

β,β′ with β 6=β′

P
(aα)
(bβ) P

(bβ)
(cγ) = δ2 Qa

c (x, y) . (2.6.16)

According to the non-degeneracy assumption (2.6.1), there are constants c, δ > 0 such
that for all sufficiently small δ,

|(mbβ + µ)− (mbβ′ + µ′)| ≥ c for all b, β 6= β′, and 0 < µ, µ′ < δ . (2.6.17)

4
Online version: As noticed by A. Grotz, these relations are in general violated to higher order

in perturbation theory. In order to cure the problem, one needs to rescale the states of the fermionic
projector, as is worked out in the paper [6] (listed in the references in the preface to the second online
edition).
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On the left side of (2.6.16) we substitute (2.6.13) and the operator product expansions
of Theorem 2.3.1. Using (2.6.17), the resulting operator products are all finite and can
be estimated using the relations

∫ δ

0
dµ

∫ δ

0
dµ′ (· · ·A+µ)

(aα)
(bβ)

(
A+µ′ · · ·

)(bβ′)

(cγ)
= c−1 O(δ2) , (2.6.18)

where each factor A stands for p, k or s. This gives (2.6.16).

At this point we can make a remark on the name “partial trace.” The notion of a
trace suggests that two matrix indices should be set equal and summed over; thus one
may want to define the fermionic projector instead of (2.3.20) by5

P a
b (x, y) =

3∑

α=1

P
(aα)
(bα) (x, y) . (2.6.19)

This alternative definition suffers from the following problem. The off-diagonal el-

ements of P
(aα)
(bβ) , α 6= β, are important to make the auxiliary fermionic projector

idempotent, because

P
(aα)
(cγ)

(2.6.15)
=

8∑

b=1

3∑

β=1

P
(aα)
(bβ) P

(bβ)
(cγ)

in general

6=
8∑

b=1

P
(aα)
(bα) P

(bγ)
(cγ) .

But these off-diagonal elements do not enter the definition (2.6.19), and this makes
it difficult to arrange that P a

b is idempotent. In more technical terms, defining the
fermionic projector by (2.6.19) would in the proof of the above theorem lead instead
of (2.6.16) to the conditions

8∑

b=1

3∑

α,β=1

(

P
(aα)
(bα) P

(bβ)
(cβ) − P

(aα)
(bβ) P

(bβ)
(cα)

)

= δ2 Qa
c(x, y) .

As a consequence, we would in (2.6.18) get contributions with β = β′, which are
singular. The only way to avoid these singular contributions would be to consider
perturbations which are diagonal on the generations. But in this special case, also
the auxiliary fermionic projector is diagonal on the generations, and so the defini-
tions (2.6.19) and (2.3.20) coincide. We conclude that (2.3.20) is the more general and
thus preferable definition of the partial trace.

We next consider the normalization of the individual states of the fermionic pro-
jector. In finite 3-volume in the vacuum, a Dirac sea of mass m is composed of a
discrete number of fermionic states. More precisely,

P sea(x, y) =

∫
dk0

2π

1

V

∑

~k∈L3

(k/ +m) δ(k2 −m2) Θ(−k0) e−ik(x−y)

=
1

2πV

∑

~k∈L3

1

2 |k0| (k/ +m) e−ik(x−y)
∣
∣
∣
k0=−

√
|~k|2+m2

. (2.6.20)

5
Online version: This potential source of confusion is the reason why in more recent works on the

fermionic projector, the partial trace is referred to as the sectorial projection.



68 2. THE FERMIONIC PROJECTOR IN THE CONTINUUM

Here the image of (k/ + m) is two-dimensional; it is spanned by the two plane-wave
solutions of the Dirac equation of momentum k with spin up and down, respectively.
Thus we can write the fermionic projector in analogy to (2.2.1) as

P sea(x, y) =
∑

~k∈L3

∑

s=±1

−|Ψ~ks
(x)≻≺Ψ~ks

(y)| , (2.6.21)

where Ψ~ks
are the suitably normalized negative-energy plane-wave solutions of the

Dirac equation, and s denotes the two spin orientations. If an external field is present, it
is still possible to decompose the fermionic projector similar to (2.6.21) into individual
states. But clearly, each of these states is perturbed by B; we denote these perturbed
states by a tilde. The next theorem shows that the probability integral for these states
is independent of the interaction and of the size of T 3.

Theorem 2.6.2. (probability integral) Under the assumptions of Theorem 2.6.1,

every state Ψ̃ of the fermionic projector is normalized according to
∫

T 3

≺Ψ̃|γ0 Ψ̃≻(t, ~x) d~x =
1

2π
. (2.6.22)

Proof. Since Ψ̃ is a solution of the Dirac equation (i∂/ + B −mY − µ11)Ψ̃ = 0,
it follows from current conservation (see 1.2.16) that the probability integral (2.6.22)
is time independent. Thus it suffices to compute it in the limits t → ±∞, in which
according to our decay assumptions on B the system is non-interacting. Since in the
vacuum, the fermionic projector splits into a direct sum of Dirac seas, we may restrict
attention to a single Dirac sea (2.6.21). Using that the probability integral is the same
for both spin orientations,

∫

T 3

≺Ψ~ks
|γ0 Ψ~ks

≻(t, ~x) d~x =

∫

T 3

1

2

∑

s=±

Tr
(
γ0 |Ψ~ks

≻≺Ψ~ks
|
)
d~x ,

and comparing with (2.6.20) gives
∫

T 3

≺Ψ~ks|γ
0Ψ~ks≻(t, ~x) d~x =

1

4π V

∫

T 3

1

2k0
Tr(γ0 (k/ +m))

∣
∣
k0=−

√
|~k|2+m2

d~x

=
1

4π V

∫

T 3

4k0

2k0
d~x =

1

2π
.

Let us discuss what this result means for the states of the fermionic projec-
tor (2.6.13, 2.6.14). As pointed out in the paragraph of (2.6.8), the fermionic projector

of the vacuum is composed for each ~k ∈ L3 of a continuum of states (2.6.8). However,
if we choose the space-time points in the fixed time interval −T < t < T and let
δ ց 0, we need not distinguish between the frequencies in (2.6.8) and obtain that only

the discrete states with ~k ∈ L3, k0 = −
√

|~k|2 +m2 are occupied (see the discussion

after (2.6.8)). In the causal perturbation expansion, each of these states is perturbed,
and thus also the interacting fermionic projector for small δ can be regarded as being
composed of discrete states. We write in analogy to (2.6.21),

P (x, y) =
∑

a

−|Ψ̃a≻≺Ψ̃a| ,
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where a runs over all the quantum number of the fermions. According to (2.6.13) and
Theorem 1.5.5, the probability integral is

∫

T 3

≺Ψ̃a | γ0 Ψ̃a≻(t, ~x) d~x =
δ

2π
. (2.6.23)

By substituting the formulas of the light-cone expansion of §2.5 into (2.6.13), one
sees that the contributions of the light-cone expansion to the fermionic projector all
involve at least one factor δ. Thus after rescaling P by a factor δ−1, the probability
integral (2.6.20) as well as the formulas of the light-cone expansion have a well-defined
and non-trivial continuum limit. In particular, using that the particle and anti-particle
states are to be normalized in accordance with the states of the sea, we can specify the
normalization constant cnorm in (2.3.19). If the wave functions Ψk and Φl in (2.3.19)
are normalized according to (1.2.15), we must choose

cnorm = − 1

2π
. (2.6.24)

We finally remark that Theorem 1.5.5 can be generalized in a straightforward way
to include a gravitational field, if (2.6.22) is replaced by (1.5.22), with H a space-like
hypersurface with future-directed normal ν. However, we need to assume that the
gravitational field decays at infinity in the sense that space-time is asymptotically flat
and for t→ ±∞ goes over asymptotically to Minkowski space. In particular, realistic
cosmological models like the Friedman-Robertson-Walker space-times are excluded.
We do not expect that the large-scale structure of space-time should have an influence
on the normalization6, but this is an open problem which remains to be investigated.

6
Online version: This picture has been confirmed by the paper arXiv:0901.0602 [math-ph].





CHAPTER 3

The Principle of the Fermionic Projector

In this chapter we introduce a new mathematical framework intended for the for-
mulation of physical theories. We first generalize the notions of relativistic quantum
mechanics and classical field theory in several construction steps. This will be done
in a very intuitive way. The aim is to work out the essence of the underlying physical
principles by dropping all additional and less important structures. This will lead us
to a quite abstract mathematical framework. The “principle of the fermionic projec-
tor” states that the fundamental physical equations should be formulated within this
framework. We conclude this chapter with a brief physical overview and discussion.

3.1. Connection between Local Gauge Freedom and the
Measurability of Position and Time

In this section we give a possible explanation as to why local gauge freedom occurs
in nature. This physical consideration will provide a formalism which will be the
starting point for the constructions leading to the principle of the fermionic projector.
We begin for simplicity with the example of the U(1) gauge transformations of the
magnetic field for a Schrödinger wave function Ψ in nonrelativistic quantum mechanics.
Since it will be sufficient to consider the situation for fixed time, we only write out the
spatial dependence of the wave function, Ψ = Ψ(~x) with ~x ∈ R3. In the nonrelativistic
and static limit, the gauge freedom of electrodynamics (1.4.1, 1.4.2) reduces to the
transformations

~A(~x) −→ ~A(~x) + ~∇Λ(~x) (3.1.1)

Ψ(~x) −→ eiΛ(~x) Ψ(~x) , (3.1.2)

where the so-called vector potential ~A consists of the three spatial components of
the electromagnetic potential A. Similar to (1.4.4), we introduce the gauge-covariant
derivative by

~D = ~∇− i ~A . (3.1.3)

With the transformation (3.1.2) we can arbitrarily change the phase of the wave func-
tion Ψ at any point ~x. This is consistent with the quantum mechanical interpretation of
the wave function, according to which the phase of a wave function is not an observable
quantity, only its absolute square |Ψ(~x)|2 has a physical meaning as the probability
density of the particle. One can even go one step further and take the point of view
that the inability to determine the local phase of a quantum mechanical wave function
is the physical reason for the local gauge freedom (3.1.1, 3.1.2). Then the U(1) gauge
transformations of the magnetic field become a consequence of the principles of quan-
tum mechanics. This argument becomes clearer when stated in more mathematical
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terms: We consider on the Schrödinger wave functions the usual scalar product

<Ψ | Φ> =

∫

IR3
Ψ(~x) Φ(~x) d~x

and denote the corresponding Hilbert space by H. On H, the position operators ~X
are given as the multiplication operators with the coordinate functions,

~X Ψ(~x) = ~xΨ(~x) .

As it is common in quantum mechanics, we consider H as an abstract Hilbert space
(i.e. we forget about the fact that H was introduced as a space of functions). Then
the wave function Ψ(~x) corresponding to a vector Ψ ∈ H is obtained by constructing
a position representation of the Hilbert space. In bra/ket notation, this is done by
choosing an “eigenvector basis” |~x> of the position operators,

~X |~x> = ~x |~x> , <~x | ~y> = δ3(~x− ~y) , (3.1.4)

and the wave function is then introduced by

Ψ(~x) = <~x |Ψ> (3.1.5)

(we remark that the formal bra/ket notation can be made mathematically precise using
spectral measures [F3]). The important point for us is that the “eigenvectors” |~x> of
the position operators are determined only up to a phase. Namely, the transformation

|~x> −→ exp (−iΛ(~x)) |~x> (3.1.6)

leaves invariant the conditions (3.1.4) for the “eigenvector basis.” If we substitute
(3.1.6) into (3.1.5), we obtain precisely the transformation (3.1.2) of the wave function.
The transformation properties of the gauge-covariant derivative (3.1.3) and of the
gauge potentials in (3.1.1) follow from (3.1.2) if one assumes that the gauge-covariant

derivatives ~D are operators on H (and thus do not depend on the representation of

H as functions in position space). In physics, the operators ~π = −i ~D are called the
“canonical momentum operators.”

The relation just described between the position representation of quantum me-
chanical states and the U(1) gauge transformations of the magnetic field was noticed
long ago. However, the idea of explaining local gauge freedom from quantum mechan-
ical principles was not regarded as being of general significance. In particular, it was
never extended to the relativistic setting or to more general gauge groups. The prob-
able reason for this is that these generalizations are not quite straightforward; they
make it necessary to formulate relativistic quantum mechanics in a particular way as
follows. We again consider on the four-component Dirac spinors (Ψα(x))α=1,...,4 in
Minkowski space the spin scalar product (1.2.8) and denote the vector space of all
Dirac wave functions by H. Integrating the spin scalar product over space-time, we
obtain an indefinite scalar product on H,

<Ψ | Φ> =

∫

IR4
≺Ψ | Φ≻(x) d4x . (3.1.7)

Furthermore, we introduce on H time/position operators (Xi)i=0,...,3 by multiplication
with the coordinate functions,

Xi Ψ(x) = xi Ψ(x) .

We now consider (H, <.|.>) as an abstract scalar product space. In order to con-
struct a time/position representation of H, we must choose an “eigenvector basis”



3.1. LOCAL GAUGE FREEDOM ←→ MEASURABILITY OF POSITION AND TIME 73

of the time/position operators. Since the wave functions have four components, an
“eigenvector basis” has in bra/ket notation the form |xα>, x ∈ R4, α = 1, . . . , 4; it is
characterized by the conditions

Xi |xα> = xi |xα> , <xα | yβ> = sα δαβ δ
4(x− y) (3.1.8)

with sα as in (1.2.8). The wave function corresponding to a vector Ψ ∈ H is defined
by

Ψα(x) = <xα |Ψ> . (3.1.9)

The conditions (3.1.8) determine the basis |xα> only up to local isometries of a scalar
product of signature (2, 2), i.e. up to transformations of the form

|xα> −→
4∑

β=1

(U(x)−1)αβ |xβ> with U(x) ∈ U(2, 2) . (3.1.10)

If we identify these transformations with gauge transformations and substitute into
(3.1.9), we obtain local gauge freedom of the form

Ψ(x) −→ U(x) Ψ(x) . (3.1.11)

Since gauge transformations correspond to changes of the “eigenvector basis” |xα>,
we also refer to |xα> as a gauge.

From the mathematical point of view, (3.1.8–3.1.10) is a straightforward gener-
alization of (3.1.4–3.1.6) to the four-dimensional setting and four-component wave
functions, taking into account that the spin scalar product has signature (2, 2). How-
ever, our construction departs from the usual description of physics, because the time
operator X0 is not commonly used in relativistic quantum mechanics and because
the scalar product (3.1.7) is unconventional. In particular, one might object that the
scalar product (3.1.7) may be infinite for physical states, because the time integral
diverges. However, this is not a serious problem, which could be removed for example
by considering the system in finite 4-volume and taking a suitable infinite volume limit.
Furthermore, one should keep in mind that the scalar product (3.1.7) gives us the spin
scalar product, and using the spin scalar product one can introduce the usual posi-
tive scalar product (.|.) by integrating over a space-like hypersurface (see (1.2.17) or
more generally (1.5.22)). Therefore, it causes no principal problems to consider <.|.>
instead of (.|.) as the fundamental scalar product. We conclude that (3.1.7–3.1.10) is
certainly an unconventional point of view, but it is nevertheless consistent and indeed
mathematically equivalent to the usual description of relativistic quantum mechanics
as outlined in §1.2.

The above explanation of local gauge freedom fits together nicely with our de-
scription of Dirac spinors in the gravitational field in §1.5: We let (H,<.|.>) be the
vector space of wave functions on a manifold M , endowed with the indefinite scalar
product (1.5.23). For every coordinate system xi we introduce the corresponding mul-
tiplication operators Xi. Considering H as an abstract vector space, the arbitrariness
of the time/position representation of H again yields the local U(2, 2) gauge free-
dom (3.1.11). We thus obtain precisely the gauge transformations (1.5.2). In this way,
(3.1.8–3.1.10) is not only consistent with all the constructions in §1.5, but it also gives
a simple explanation for the gauge group U(2, 2).

The U(2, 2) gauge symmetry describes gravitation and electrodynamics, but it
does not include the weak and strong interactions. In order to obtain additional gauge
freedom, we must extend the gauge group. Since our gauge group is the isometry group
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of the spin scalar product, this can be accomplished only by increasing the number of
components of the wave functions. In general, one can take wave functions with p+ q
components and a spin scalar product of signature (p, q),

≺Ψ | Φ≻(x) =

p+q
∑

α=1

sα Ψα(x)∗ Φα(x) with

s1 = · · · = sp = 1 , sp+1 = · · · = sp+q = −1 . (3.1.12)

We call (p, q) the spin dimension. Repeating the above construction (3.1.7–3.1.9) for
this spin scalar product yields local gauge freedom with gauge group U(p, q). Unfortu-
nately, it is not possible to introduce the Dirac operator in this generality. Therefore,
we will always assume that the spin dimension is (2N, 2N) with N ≥ 1. In this case,
one can regard the 4N component wave functions as the direct sum of N Dirac spinors,
exactly as we did in the general definition of the fermionic projector (2.3.1). Then our
above argument yields the gauge group U(2N, 2N). The interaction can be described
for example as in §2.3 by inserting a multiplication operator B into the Dirac opera-
tor (2.3.10) and taking the partial trace (2.3.20). More generally, one can modify the
first order terms of the Dirac operator in analogy to Def. 1.5.1. Our concept is that
the U(2n, 2n) gauge symmetry should be related to corresponding gauge potentials
in the Dirac operator, and that this should, in the correct model, give rise to the
gravitational, strong and electroweak gauge fields.

For clarity, we finally point out the differences of our approach to standard gauge
theories. Usually, the gauge groups (e.g. the SU(2)w or SU(3)s in the standard model)
act on separate indices of the wave functions (called the isospin and color indices,
respectively). In contrast to this, our U(2, 2) gauge transformations simply act on
the spinor index. In our generalization to higher spin dimension (3.1.12), we make
no distinction between the spinor index and the index of the gauge fields; they are
both combined in one index α = 1, . . . , 4N . In our setting, the gauge group and the
coupling of the gauge fields to the Dirac particles are completely determined by the
spin dimension. Compared to standard gauge theories, where the gauge groups and
their couplings can be chosen arbitrarily, this is a strong restriction for the formulation
of physical models.

3.2. Projection on Fermionic States

The fermionic projector was introduced in Chapter 2 in order to resolve the external
field problem, and we used it to describe a general many-fermion system (2.3.19). We
now discuss the concept of working with a “projector” in a more general context. A
single Dirac particle is clearly described by its wave function Ψα(x) = <xα|Ψ>, or,
in a gauge-independent way, by a vector Ψ ∈ H. Since the phase and normalization
of Ψ have no physical significance, we prefer to describe the Dirac particle by the
one-dimensional subspace <Ψ> ≡ {λΨ, λ ∈ C} ⊂ H. Now consider the system of n
Dirac particles, which occupy the one-particle states Ψ1, . . . ,Ψn ∈ H. Generalizing
the subspace <Ψ> of the one-particle system, it seems natural to describe the many-
particle system by the subspace <Ψ1, . . . ,Ψn> ⊂ H spanned by Ψ1, . . . ,Ψn. We
consider for simplicity only the generic case that this subspace is non-degenerate (i.e.
there should be no vectors 0 6= Ψ ∈ Y with <Ψ|Φ> = 0 for all Φ ∈ Y ). Just
as in positive definite scalar product spaces, every non-degenerate subspace Y ⊂ H
uniquely determines a projector PY on this subspace, characterized by the conditions
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P ∗Y = PY = P 2
Y and Im(PY ) = Y , where the star denotes the adjoint with respect to

the scalar product <.|.>. Instead of working with the subspace <Ψ1, . . . ,Ψn> ⊂ H,
it is more convenient for us to consider the corresponding projector P ,

P = P<Ψ1,...,Ψn> .

We call P the fermionic projector. In this work we will always describe the Dirac
particles of the system by a fermionic projector.

The concept of the fermionic projector departs from the usual description of a
many-particle state by a vector of the fermionic Fock space (as introduced in §1.3).
Let us discuss this difference in detail. In many-particle quantum mechanics, the
system of Dirac particles Ψ1, . . . ,Ψn is described by the anti-symmetric product wave
function

Ψ = Ψ1 ∧ · · · ∧Ψn . (3.2.1)

The wave functions of the form (3.2.1) are called n-particle Hartree-Fock states. They
span the n-particle Fock space Fn =

∧nH. In the fermionic Fock space formalism, a
quantum state is a linear combination of Hartree-Fock states, i.e. a vector of the Fock
space F =

⊕∞
n=0 F

n (see §1.3 for details). In order to connect the fermionic projector
with the Fock space formalism, we can associate to a projector PY on a subspace
Y = <Ψ1, . . . ,Ψn> ⊂ H the wave function (3.2.1). This mapping clearly depends on

the choice of the basis of Y . More precisely, choosing another basis Φi =
∑n

j=1 κ
j
iΨj,

we have

Φ1 ∧ · · · ∧Φn = det(κ) Ψ1 ∧ · · · ∧Ψn .

This shows that, due to the anti-symmetrization, the mapping is unique up to a com-
plex factor. Therefore, with the mapping

P<Ψ1,...,Ψn> → <Ψ1 ∧ · · · ∧Ψn> ⊂ Fn

we can associate to every projector a unique one-dimensional subspace of the Fock
space. Since the image of this mapping is always a Hartree-Fock state, we obtain
a one-to-one correspondence between the projectors PY on n-dimensional subspaces
Y ⊂ H and n-particle Hartree-Fock states. In this way, one sees that the description of
a many-particle state with the fermionic projector is equivalent to using a Hartree-Fock
state. With this correspondence, the formalism of the fermionic projector becomes a
special case of the Fock space formalism, obtained by restricting to Hartree-Fock states.
In particular, we conclude that the physical concepts behind fermionic Fock spaces,
namely the Pauli Exclusion Principle and the fact that quantum mechanical particles
are indistinguishable (see page 17), are also respected by the fermionic projector. How-
ever, we point out that the the fermionic projector is not mathematically equivalent
to a state of the Fock space, because a vector of the Fock space can in general be
represented only by a linear combination of Hartree-Fock states.

Let us analyze what this mathematical difference means physically. If nature is
described by a fermionic projector, the joint wave function of all fermions of the Uni-
verse must be a Hartree-Fock state. However, this condition cannot be immediately
verified in experiments, because measurements can never take into account all exist-
ing fermions. In all realistic situations, one must restrict the observations to a small
subsystem of the Universe. As is worked out in Appendix A, the effective wave func-
tion of a subsystem need not be a Hartree-Fock state; it corresponds to an arbitrary
vector of the Fock space of the subsystem, assuming that the number of particles of
the whole system is sufficiently large. From this we conclude that the description of
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the many-particle system with the fermionic projector is indeed physically equivalent
to the Fock space formalism. For theoretical considerations, it must be taken into
account that the fermionic projector merely corresponds to a Hartree-Fock state; for
all practical purposes, however, one can just as well work with the whole Fock space.

We saw after (3.2.1) that the description of a many-particle state with the fermionic
projector implies the Pauli Exclusion Principle. This can also be understood directly
in a non-technical way as follows. For a given state Ψ ∈ H, we can form the projector
P<Ψ> describing the one-particle state, but there is no projector which would cor-
respond to a two-particle state (notice that the naive generalization 2P<Ψ> is not a
projector). More generally, every vector Ψ ∈ H either lies in the image of P , Ψ ∈ P (H),
or it does not. Via these two conditions, the fermionic projector encodes for every state
Ψ ∈ H the occupation numbers 1 and 0, respectively, but it is impossible to describe
higher occupation numbers. In this way, the fermionic projector naturally incorporates
the Pauli Exclusion Principle in its formulation that each quantum mechanical state
may be occupied by at most one fermion.

As explained at the end of §2.5, the fermionic projector contains all the information
about the physical system in the sense that from a given fermionic projector one can
uniquely reconstruct the fermionic states as well as the Dirac operator with interaction.
Therefore, it is consistent to consider the fermionic projector as the basic object in
space-time and to regard the Dirac operator merely as an auxiliary object which is
useful in describing the interaction of the fermions via classical fields.

3.3. Discretization of Space-Time

The ultraviolet divergences of perturbative QFT indicate that the current descrip-
tion of physics should break down at very small distances. It is generally believed
that the length scale where yet unknown physical effects should become important
is given by the Planck length. Here we will assume that space-time consists on the
Planck scale of discrete space-time points. The simplest way to discretize space-time
would be to replace the space-time continuum by a four-dimensional lattice (as it is
e.g. done in lattice gauge theories). In the following construction, we go much further
and discretize space-time in a way where notions like “lattice spacing” and “neighbor-
ing lattice points” are given up. On the other hand, we will retain the principles of
general relativity and our local gauge freedom.

We first consider the situation in a given coordinate system xi in space-time1. For
the discretization we replace the time/position operators Xi by mutually commut-
ing operators with a purely discrete spectrum. We take the joint spectrum of these
operators, i.e. the set

M = {x ∈ R4 | there is u ∈ H with Xiu = xiu for all i = 0, . . . , 3} ,

as our discrete space-time points. We assume that the joint eigenspaces ex of the Xi,

ex = {u | Xiu = xiu for all i = 0, . . . , 3} , x ∈M ,

1We assume for simplicity that the chart xi describes all space-time. The generalization to a
non-trivial space-time topology is done in a straightforward way by gluing together different charts;
for details see [F3].
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are 4N -dimensional subspaces of H, on which the scalar product <.|.> has the signa-
ture (2N, 2N). Then we can choose a basis |xα>, x ∈M , α = 1, . . . , 4N satisfying

Xi |xα> = xi |xα> , <xα | yβ> = sα δαβ δxy with

s1 = · · · = s2N = 1 , s2N+1 = · · · = s4N = −1 . (3.3.1)

These relations differ from (3.1.8) only by the replacement δ4(x−y)→ δxy. It is useful
to introduce the projectors Ex on the eigenspaces ex by

Ex =

p+q
∑

α=1

sα |xα><xα| ; (3.3.2)

they satisfy the relations

Xi Ex = xi Ex and (3.3.3)

E∗x = Ex , Ex Ey = δxy Ex ,
∑

x∈M

Ex = 11 , (3.3.4)

where the star denotes the adjoint with respect to the scalar product <.|.> (these rela-
tions immediately follow from (3.3.1) and the fact that |xα> is a basis). The operators
Ex are independent of the choice of the basis |xα>, they are uniquely characterized
by (3.3.3, 3.3.4) as the spectral projectors of the operators Xi.

If we change the coordinate system to x̃i = x̃i(x), the discrete space-time points
M ⊂ R4 are mapped to different points in R4, more precisely

M̃ = x̃(M) , Ẽx̃(x) = Ex . (3.3.5)

With such coordinate transformations, the relative position of the discrete space-time
points in R4 can be arbitrarily changed. Taking general coordinate invariance seriously
on the Planck scale, this is consistent only if we forget about the fact that M and M̃
are subsets of R4 and consider them merely as index sets for the spectral projectors.
In other words, we give up the ordering of the discrete space-time points, which is
inherited from the ambient vector space R4, and consider M and M̃ only as point
sets. After this generalization, we can identify M with M̃ (via the equivalence relation
x̃(x) ≃ x). According to (3.3.5), the spectral projectors (Ep)p∈M are then independent
of the choice of coordinates.

We regard the projectors (Ep)p∈M as the basic objects describing space-time. The
time/position operators can be deduced from them. Namely, every coordinate system
yields an injection of the discrete space-time points

x : M →֒ R4 , (3.3.6)

and the corresponding time/position operators Xi can be written as

Xi =
∑

p∈M

xi(p) Ep . (3.3.7)

Since every injection of the discrete space-time points into R4 can be realized by a
suitable choice of coordinates (i.e. for every injection ι : M →֒ R4 there is a chart xi

such that x(M) = ι(M)), we can drop the condition that x is induced by a coordinate
system. We can thus take for x in (3.3.6, 3.3.7) any embedding of M into R4.

Let us summarize the result of our construction. We shall describe space-time by
an indefinite scalar product space (H, <.|.>) and projectors (Ep)p∈M onH, whereM is
a (finite or countable) index set. The projectors Ep are characterized by the conditions
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(3.3.4). Furthermore, we assume that the spin dimension is (2N, 2N), i.e. Ep(H) ⊂ H
is for all p ∈ M a subspace of signature (2N, 2N). We call (H, <.|.>, (Ep)p∈M )
discrete space-time. The equivalence principle is taken into account via the freedom
in choosing the embeddings (3.3.6, 3.3.7) of the discrete space-time points. Moreover,
one can choose a basis |pα>, p ∈M , α = 1, . . . , 4N , of H satisfying the conditions

Ep |qα> = δpq |pα> , <pα | qβ> = sα δαβ δpq

with sα as in (3.3.1); such a basis is called a gauge. It is determined only up to
transformations of the form

|pα> →
2N∑

β=1

(U(p)−1)αβ |pβ> with U(p) ∈ U(2N, 2N) . (3.3.8)

These are the local gauge transformations of discrete space-time.

3.4. The Principle of the Fermionic Projector

For the complete description of a physical system we must introduce additional
objects in discrete space-time (H, <.|.>, (Ep)p∈M ). As mentioned at the end of §3.2,
one can in the space-time continuum regard the fermionic projector as the basic phys-
ical object. Therefore, it seems promising to carry over the fermionic projector to
discrete space-time. We introduce the fermionic projector of discrete space-time P as
a projector acting on the vector space H of discrete space-time.

In analogy to the situation for the continuum, we expect that a physical system
can be completely characterized by a fermionic projector in discrete space-time. At
this stage, however, it is not at all clear whether this description makes any physical
sense. In particular, it seems problematic that neither the Dirac equation nor the
classical field equations can be formulated in or extended to discrete space-time; thus
it becomes necessary to replace them by equations of completely different type. We
take it as an ad-hoc postulate that this can actually be done; namely we assert

The Principle of the Fermionic Projector:
A physical system is completely described by the fermionic projector
in discrete space-time. The physical equations should be formulated
exclusively with the fermionic projector in discrete space-time, i.e.
they must be stated in terms of the operators P and (Ep)p∈M on H.

Clearly, the validity and consequences of this postulate still need to be investigated;
this is precisely the aim of the present work. The physical equations formulated with
P and (Ep)p∈M are called the equations of discrete space-time.

3.5. A Variational Principle

Before coming to the general discussion of the principle of the fermionic projector,
we want to give an example of a variational principle in discrete space-time. This is
done to give the reader an idea of how one can formulate equations in discrete space-
time. This example will serve as our model variational principle, and we will often
come back to it. A more detailed motivation of our Lagrangian is given in Chapter 5.

Let us first discuss the general mathematical form of possible equations in discrete
space-time. The operators P and (Ep)p∈M all have a very simple structure in that
they are projectors acting on H. Therefore, it is not worth studying these operators
separately; for physically promising equations, we must combine the projectors P
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and (Ep)p∈M in a mathematically interesting way. Composite expressions in these
operators can be manipulated using the idempotence of P and the relations (3.3.4)
between the projectors (Ep)p∈M : First of all, the identities

∑

p∈M Ep = 11 and E2
p = Ep

allow us to insert factors Ep into the formulas; e.g.

Ex P Ψ = Ex P




∑

y∈M

Ey



Ψ =
∑

y∈M

(Ex P Ey) Ey Ψ .

Writing

P (x, y) ≡ Ex P Ey ,

we obtain the identity

Ex (P Ψ) =
∑

y∈M

P (x, y) Ey Ψ .

This representation of P by a sum over the discrete space-time points resembles the
integral representation of an operator in the continuum with an integral kernel. There-
fore, we call P (x, y) the discrete kernel of the fermionic projector. The discrete kernel
can be regarded as a canonical representation of the fermionic projector of discrete
space-time, induced by the projectors (Ep)p∈M . Now consider a general product of
the operators P and (Ep)p∈M . Using the relations P 2 = P and Ex Ey = δxy Ex, every
operator product can be simplified to one with alternating factors P and Ep, i.e. to an
operator product of the form

Ex1 P Ex2 P Ex3 · · ·Exn−1 P Exn with xj ∈M . (3.5.1)

Again using that E2
p = Ep, we can rewrite this product with the discrete kernel as

P (x1, x2) P (x2, x3) · · · P (xn−1, xn) . (3.5.2)

We conclude that the equations of discrete space-time should be formed of products
of the discrete kernel, where the second argument of each factor must coincide with
the first argument of the following factor. We refer to (3.5.2) as a chain.

In analogy to the Lagrangian formulation of classical field theory, we want to set
up a variational principle. Our “action” should be a scalar functional depending on
the operators P and Ep. Most scalar functionals on operators (like the trace or the
determinant) can be applied only to endomorphisms (i.e. to operators which map a
vector space into itself). The chain (3.5.2) is a mapping from the subspaceExn(H) ⊂ H
to Ex1(H). This makes it difficult to form a scalar, unless x1 = xn. Therefore, we will
only consider closed chains

P (x, y1) P (y1, y2) · · ·P (yk, x) : Ex(H)→ Ex(H) .

In the simplest case k = 0, the closed chain degenerates to a single factor P (x, x).
This turns out to be too simple for the formulation of a physically interesting action,
mainly because the light-cone structure of the fermionic projector (see §2.5) would
then not enter the variational principle. Thus we are led to considering closed chains
of two factors, i.e. to the operator product P (x, y)P (y, x). Suppose that we are given a
real-valued functional L on the endomorphisms of Ex(H) ⊂ H (this will be discussed
and specified below). Then L[P (x, y) P (y, x)] is a real function depending on two
space-time arguments, and we get a scalar by summing over x and y. Therefore, we
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take for our action S the ansatz

S =
∑

x,y∈M

L[P (x, y) P (y, x)] . (3.5.3)

This ansatz is called a two-point action, and in analogy to classical field theory we call
L the corresponding Lagrangian.

We shall now introduce a particular Lagrangian L. The requirement which will
lead us quite naturally to this Lagrangian is that L should be positive. Positivity of the
action is desirable because it is a more convincing concept to look for a local minimum
of the action than merely for a critical point of an action which is unbounded below.

Let us first consider how one can form a positive functional on P (x, y)P (y, x). The
closed chain P (x, y) P (y, x) is an endomorphism of Ex(H); we abbreviate it in what
follows by A. In a given gauge, A is represented by a 4N × 4N matrix. Under gauge
transformations (3.3.8), this matrix transforms according to the adjoint representation,

A → U(x) A U(x)−1 .

Furthermore, A is Hermitian on Ex(H), i.e.

<AΨ | Φ> = <Ψ |A Φ> for Ψ,Φ ∈ Ex(H) , (3.5.4)

or simply A∗ = A. In positive definite scalar product spaces, the natural positive
functional on operators is an operator norm, e.g. the Hilbert-Schmidt norm ‖B‖2 =

tr(B∗B)
1
2 . In our setting, the situation is more difficult because our scalar product

<.|.> is indefinite on Ex(H) (of signature (2N, 2N)). As a consequence, Hermitian
matrices do not have the same nice properties as in positive definite scalar product
spaces; in particular, the matrix A might have complex eigenvalues, and it is in general
not even diagonalizable. Also, the operator product A∗A need not be positive, so that
we cannot introduce a Hilbert-Schmidt norm. In order to analyze the situation more
systematically, we decompose the characteristic polynomial of A into linear factors

det(λ−A) =

K∏

k=1

(λ− λk)nk . (3.5.5)

This decomposition is useful because every functional on A can be expressed in terms
of the roots and multiplicities of the characteristic polynomial; thus it is sufficient
to consider the λk’s and nk’s in what follows. Each root λk corresponds to an nk-
dimensional A-invariant subspace of Ex(H), as one sees immediately from a Jordan
representation of A. The roots λk may be complex. But since A is Hermitian (3.5.4),
we know at least that the characteristic polynomial of A is real,

det(λ−A) = det(λ−A) for λ ∈ R.

This means that the complex conjugate of every root is again a root with the same
multiplicity (i.e. for every λk there is a λl with λk = λl and nk = nl). The reality
of the characteristic polynomial is verified in detail as follows. In a given gauge, we
can form the transposed, complex conjugated matrix of A, denoted by A†. For clarity,
we point out that A† is not an endomorphism of Ex(H), because it has the wrong
behavior under gauge transformations (in particular, the trace tr(A†A) depends on
the gauge and is thus ill-defined). Nevertheless, the matrix A† is useful because we
can write the adjoint of A in the form A∗ = SA†S, where S is the spin signature matrix,
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S = diag((sα)α=1,...,4N ). Since S2 = 11, and since the determinant is multiplicative, we
conclude that for any real λ,

det(λ−A) = det(λ−A†) = det(λ− S2 A†)

= det(λ− SA†S) = det(λ−A∗) = det(λ−A) .
It is worth noting that every Lagrangian is symmetric in the two arguments x and y,

as the following consideration shows. For any two quadratic matrices B and C, we
choose ε not in the spectrum of C and set Cε = C−ε11. Taking the determinant of the
relation Cε(BCε−λ) = (CεB−λ)Cε, we can use that the determinant is multiplicative
and that detCε 6= 0 to obtain the equation det(BCε− λ) = det(CεB−λ). Since both
determinants are continuous in ε, this equation holds even for all ε ∈ R, proving the
elementary identity

det(BC − λ11) = det(CB − λ11) . (3.5.6)

Applying this identity to the closed chain,

det(P (x, y)P (y, x) − λ11) = det(P (y, x)P (x, y) − λ11) ,
we find that the characteristic polynomial of the matrix A remains the same if the two
arguments x and y are interchanged. Hence

L[P (x, y)P (y, x)] = L[P (y, x)P (x, y)] . (3.5.7)

An obvious way to form a positive functional is to add up the absolute values of
the roots, taking into account their multiplicities. We thus define the spectral weight
|A| of A by

|A| =
K∑

k=1

nk |λk| . (3.5.8)

This functional depends continuously on the λk, and also it behaves continuously when
the roots of the characteristic polynomial degenerate and the multiplicities nk change.
Thus the spectral weight | . | is a continuous functional. Furthermore, the spectral
weight is zero if and only if the characteristic polynomial is trivial, det(λ−A) = λ4N .
This is equivalent to A being nilpotent (i.e. Ak = 0 for some k). Thus, in contrast
to an operator norm, the vanishing of the spectral weight does not imply that the
operator is zero. On the other hand, it does not seem possible to define an operator
norm in indefinite scalar product spaces, and therefore we must work instead with the
spectral weight.

Using the spectral weight, one can write down many positive Lagrangians. The
simplest choice would be L[A] = |A|. Minimizing the corresponding action (3.5.3)
yields a variational principle which attempts to make the absolute values of the roots
|λk| as small as possible. This turns out to be a too strong minimizing principle. It is
preferable to formulate a variational principle which aspires to equalize the absolute
values of all roots. This can be accomplished by combining the expressions |A2| and
|A|2. Namely, using that the sum of the multiplicities equals the dimension of the

vector space,
∑K

k=1 nk = 4N , the Schwarz inequality yields that

|A2| =
K∑

k=1

nk |λk|2 ≥
1

4N

(
K∑

k=1

nk |λk|
)2

=
1

4N
|A|2 ,
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and equality holds only if the absolute values of all roots are equal. Thus it is reasonable
to minimize |A2|, keeping |A|2 fixed. This is our motivation for considering the two-
point action:

minimize S =
∑

x,y∈M

∣
∣(P (x, y) P (y, x))2

∣
∣ (3.5.9)

under the constraint

T :=
∑

x,y∈M

|P (x, y) P (y, x)|2 = const . (3.5.10)

This is our model variational principle.
We next consider a stationary point of the action and derive the corresponding

“Euler-Lagrange equations.” For simplicity, we only consider the case that the matrix
P (x, y) P (y, x) can be diagonalized. This is the generic situation; the case of a non-
diagonalizable matrix can be obtained from it by an approximation procedure. Having
this in mind, we may assume that the endomorphism A = P (x, y)P (y, x) has a spectral
decomposition of the form

A =
K∑

k=1

λk Fk , (3.5.11)

where λk are the roots in (3.5.5), and the Fk are operators mapping onto the corre-
sponding eigenspaces (A, K, the λk, and the Fk clearly depend on x and y, but we
will, for ease in notation, usually not write out this dependence). Since the underlying
scalar product space is indefinite, the spectral decomposition (3.5.11) requires a brief
explanation. Suppose that we choose a basis where A is diagonal. In this basis, the
operators Fk are simply the diagonal matrices with diagonal entries 1 if the corre-
sponding diagonal elements of A are λk, and 0 otherwise. Clearly, these operators
map onto the eigenspaces and are orthonormal and complete, i.e.

A Fk = λk Fk , Fk Fl = δkl Fk and

K∑

k=1

Fk = 11Ex(H) .

However, the Fk are in general not Hermitian (with respect to the spin scalar prod-
uct). More precisely, taking the adjoint swaps the operators corresponding to complex
conjugated eigenvalues,

F ∗k = Fl when λk = λl . (3.5.12)

These relations can be understood immediately because they ensure that the spectral
decomposition (3.5.11) is Hermitian,

(
K∑

k=1

λk Fk

)∗

=
K∑

k=1

λk F
∗
k

(3.5.12)
=

K∑

k=1

λk Fk .

Since the eigenvalues are in general complex, we can introduce a new matrix by taking
the complex conjugate of the eigenvalues but leaving the spectral projectors unchanged,

A =
K∑

k=1

λk Fk (3.5.13)

We refer to A as the spectral adjoint of A.
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We now consider continuous variations P (τ) and (Ep(τ))p∈M , −ε < τ < ε, of
our operators. The structure of the operators must be respected by the variations;
this means that P (τ) should be a projector and that the relations (3.3.4) between the
operators (Ep)p∈M should hold for all τ . Continuity of the variation implies that the
rank of P and the signature of its image do not change. This implies that the variation
of P can be realized by a unitary transformation

P (τ) = U(τ) P U(τ)−1 , (3.5.14)

where U(τ) is a unitary operator on H with U(0) = 11. Similarly, the variations of
the projectors (Ep)p∈M are also unitary. From (3.3.4) we can conclude the stronger
statement that the variations of all operators (Ep)p∈M can be realized by one unitary
transformation, i.e.

Ep(τ) = V (τ) Ep V (τ)−1

with a unitary operator V (τ) and V (0) = 11. Since our action is invariant under unitary
transformations of the vector space H, we can, instead of unitarily transforming both
P and (Ep)p∈M , just as well keep the (Ep)p∈M fixed and vary only the fermionic
projector by (3.5.14). To first order in τ , this variation becomes

δP ≡ d

dτ
P (τ)|τ=0 = i [B, P ] , (3.5.15)

where B = −iU ′(0) is a Hermitian operator on H. We will only consider variations
where B has finite support , i.e. where the kernel B(x, y) ≡ Ex B Ey of B satisfies the
condition

B(x, y) = 0 except for x, y ∈ N ⊂M with #N finite.

This condition can be regarded as the analogue of the assumption in the classical
calculus of variations that the variation should have compact support.

Let us compute the variation of the action (3.5.9) (the constraint (3.5.10) will be
considered afterwards). Writing out the action with the eigenvalues λk and multiplic-
ities nk, we obtain

S =
∑

x,y∈M

K∑

k=1

nk |λk|2 .

The variation can be computed in perturbation theory to first order,

δS = 2 Re
∑

x,y∈M

K∑

k=1

λk tr(Fk δA)

= 2 Re
∑

x,y∈M

K∑

k=1

λk tr (Fk (δP (x, y) P (y, x) + P (x, y) δP (y, x))) ,

where “tr” denotes the trace in the vector space H. Exchanging the names of x and y
in the first summand in the trace and using cyclicity of the trace, this expression can
be written as an operator product,

δS = 2 Re tr(Q1 δP ) , (3.5.16)

where the kernel Q1(x, y) ≡ Ex Q1 Ey of Q1 has the form

Q1(x, y) =

[
K∑

k=1

λk Fk

]

xy

P (x, y) + P (x, y)

[
K∑

k=1

λk Fk

]

yx

, (3.5.17)
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and the subscripts “xy” and “yx” indicate that the corresponding brackets contain the
spectral decomposition of the operators P (x, y) P (y, x) and P (y, x) P (x, y), respec-
tively. Note that the trace in (3.5.16) is well-defined because the trace is actually
taken only over a finite-dimensional subspace of H. At this point the following lemma
is useful.

Lemma 3.5.1. Let B and C be two matrices and assume that their products A :=
BC and Ã := CB are both diagonalizable. Then they have the same eigenvalues
λ1, . . . , λK with the same multiplicities n1, . . . , nK . The corresponding spectral projec-
tors Fk and F̃k satisfy the relations

Fk B = B F̃k . (3.5.18)

Proof. It immediately follows from (3.5.6) that the matrices A and Ã have the
same eigenvalues with the same multiplicities. For any λ not in the spectrum of A, we
multiply the identity B(CB − λ) = (BC − λ)B from the left and right by (A − λ)−1
and (Ã− λ)−1, respectively. This gives

(A− λ)−1B = B (Ã− λ)−1 .
Integrating λ over a contour around any of the eigenvalues λk and using the Cauchy
integral formulas

Fk = − 1

2πi

∮

∂Bǫ(λk)
(A− λ)−1 dλ , F̃k = − 1

2πi

∮

∂Bǫ(λk)
(Ã− λ)−1 dλ ,

we obtain (3.5.18).

This lemma allows us to simplify (3.5.17) to

Q1(x, y) = 2

[
K∑

k=1

λk Fk

]

xy

P (x, y) . (3.5.19)

A short straightforward computation using (3.5.12) and Lemma 3.5.18 shows that the
operator Q1 is Hermitian. Thus the trace in (3.5.16) is real, and we conclude that

δS = 2 tr(Q1 δP ) .

The variation of our constraint (3.5.10) can be computed similarly, and one gets

δT = 2 tr(Q2 δP ) with

Q2(x, y) = 2

[
( K∑

l=1

nl |λl|
) K∑

k=1

λk
|λk|

Fk

]

xy

P (x, y) .

Now consider a local minimum of the action. Handling the constraint with a
Lagrange multiplier µ, we obtain the condition

0 = δS − µ δT = 2 tr ((Q1 − µQ2) δP )
(3.5.15)

= 2i tr ((Q1 − µQ2) [B,P ]) .

Assume that the products (Q1−µQ2)P and P (Q1−µQ2) are well-defined operators.
Since B has finite support, we can then cyclically commute the operators in the trace
and obtain

0 = 2i tr (B [P, Q1 − µQ2]) .
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Since B is arbitrary, we conclude that [P, Q1−µQ2] = 0, where our notation with the
commutator implicitly contains the condition that the involved operator products must
be well-defined. Thus our Euler-Lagrange equations are the commutator equations

[P, Q] = 0 with Q(x, y) = 2Cxy P (x, y) , (3.5.20)

Cxy =
K∑

k=1

[

λk − µ
λk
|λk|

K∑

l=0

nl |λl|
]

xy

Fk . (3.5.21)

In the formula (3.5.21) for Cxy, we consider the spectral decomposition (3.5.5, 3.5.11)
of the closed chain P (x, y) P (y, x). The equations (3.5.20, 3.5.21) are the equations of
discrete space-time corresponding to the variational principle (3.5.9, 3.5.10).

3.6. Discussion

In the previous sections the principle of the fermionic projector was introduced in
a rather abstract mathematical way. Our constructions departed radically from the
conventional formulation of physics, so much so that the precise relation between
the principle of the fermionic projector and the notions of classical and quantum
physics is not obvious. In order to clarify the situation, we now describe the general
physical concept behind the principle of the fermionic projector and explain in words
the connection to classical field theory, relativistic quantum mechanics and quantum
field theory. Since we must anticipate results which will be worked out later, the
description in this section is clearly not rigorous and is intended only to give a brief
qualitative overview.

The constructions in §3.1 and §3.2 are merely a reformulation of classical field
theory and relativistic quantum mechanics. Although they are an important prepara-
tion for the following construction steps, they do not by themselves have new physical
implications. Therefore, we need not consider them here and begin by discussing the
concept of discrete space-time of §3.3. With our definition of discrete space-time, the
usual space-time continuum is given up and resolved into discrete space-time points.
A-priori, the discrete space-time points are merely a point set without any relations
(like for example the nearest-neighbor relation on a lattice) between them. Thus one
may think of discrete space-time as a “disordered accumulation of isolated points.”
There exists no time parameter, nor does it make sense to speak of the “spatial dis-
tance” between the space-time points. Clearly, this concept of a pure point set is too
general for a reasonable description of space-time. Namely, we introduced discrete
space-time with the intention of discretizing the space-time continuum on the Planck
scale. Thus, for systems which are large compared to the Planck length, the discrete
nature of space-time should not be apparent. This means that discrete space-time
should, in a certain continuum limit, go over to a Lorentzian manifold. However, since
M is merely a point set, discrete space-time (H, <.|.>, (Ep)p∈M ) is symmetric under
permutations of the space-time points. Taking a naive continuum limit would imply
that the points of space-time could be arbitrarily exchanged, in clear contradiction to
the topological and causal structure of a Lorentzian manifold.

In order to avoid this seeming inconsistency, one must keep in mind that we intro-
duced an additional object in space-time: the fermionic projector P . Via its discrete
kernel P (x, y), the fermionic projector yields relations between the discrete space-time
points. Our idea is that the discrete kernel should provide all structures needed for a
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reasonable continuum limit. In more detail, our concept is as follows. In the space-
time continuum (see Chapter 2), the fermionic projector is built up of all quantum
mechanical states of the fermionic particles of the system. Closely following Dirac’s
original concept, we describe the vacuum by the “sea” of all negative-energy states;
systems with particles and anti-particles are obtained by occupying positive-energy
states and removing states from the Dirac sea, respectively. The fermionic projector
of the continuum completely characterizes the physical system. In particular, its in-
tegral kernel P (x, y) is singular if and only if y lies on the light cone centered at x.
In this way, the fermionic projector of the continuum encodes the causal, and thus
also topological, structure of the underlying space-time. We have in mind that the
fermionic projector of discrete space-time should, similar to a regularization on the
Planck scale, approximate the fermionic projector of the continuum. This means that
on a macroscopic scale (i.e. for systems comprising a very large number of space-time
points), the fermionic projector of discrete space-time can, to good approximation,
be identified with a fermionic projector of the continuum. Using the just-mentioned
properties of the continuum kernel, we conclude that the discrete kernel induces on
discrete space-time a structure which is well-approximated by a Lorentzian manifold.
However, on the Planck scale (i.e. for systems involving only few space-time points),
the discrete nature of space-time becomes manifest, and the notions of space, time and
causality cease to exit.

The critical step for making this concept precise is the formulation of the phys-
ical equations intrinsically in discrete space-time. Let us describe in principle how
this is supposed to work. In the continuum description of Chapter 2, the fermionic
projector satisfies the Dirac equation (2.3.10); furthermore the potentials entering the
Dirac equation obey classical field equations. As a consequence of these equations,
the fermionic projector of the continuum is an object with very specific properties.
Our idea is that, using the special form of the fermionic projector, it should be possi-
ble to restate the Dirac equation and classical field equations directly in terms of the
fermionic projector. Thus we wish to formulate equations into which the fermionic
projector enters as the basic object, and which are equivalent to, or a generalization
of, both the Dirac equation and the classical field equations. It turns out that it is
impossible to state equations of this type in the space-time continuum, because com-
posite expressions in the fermionic projector are mathematically ill-defined. But one
can formulate mathematically meaningful equations in discrete space-time, removing
at the same time the ultraviolet problems of the continuum theory. The variational
principle (3.5.9, 3.5.10) leading to the Euler-Lagrange equations (3.5.20, 3.5.21) is an
example for such equations. Note that this variational principle and the corresponding
Euler-Lagrange equations in discrete space-time are clearly not causal, but, for consis-
tency with relativistic quantum mechanics and classical field theory, we demand that
they should, in the continuum limit, reduce to local and causal equations (namely, to
the Dirac and classical field equations). Since the fermionic projector is not an object
which is commonly considered in physics, it is difficult to give an immediate physical
interpretation for the equations of discrete space-time; only a detailed mathematical
analysis can provide an understanding of the variational principle. If one wishes, one
can regard the equations of discrete space-time as describing a direct particle-particle
interaction between all the states of the fermionic projector. The collective interaction
of the fermions of the Dirac sea with the additional particles and holes should, in the
continuum limit, give rise to an effective interaction of fermions and anti-fermions via
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classical fields. Ultimately, the collective particle-particle interaction should even give
a microscopic justification for the appearance of a continuous space-time structure.

Let us now describe the relation to quantum field theory. Since the coupled Dirac
and classical field equations, combined with the pair creation/annihilation of Dirac’s
hole theory, yield precisely the Feynman diagrams of QFT (see e.g. [BD1]), it is clear
that all results of perturbative quantum field theory, in particular the high precision
tests of QFT, are also respected by our ansatz (provided that the equations of discrete
space-time have the correct continuum limit). Thus the only question is if the partic-
ular effects of quantized fields, like the Planck radiation and the photo electric effect,
can be explained in our framework. The basic physical assumption behind Planck’s
radiation law is that the energy levels of an electromagnetic radiation mode do not
take continuous values, but are quantized in steps of E = ~ω. While the quantitative
value ~ω of the energy steps can be understood via the quantum mechanical identifi-
cation of energy and frequency (which is already used in classical Dirac theory), the
crucial point of Planck’s assumption lies in the occurrence of discrete energy levels.
The photo electric effect, on the other hand, can be explained by a “discreteness” of
the electromagnetic interaction: the electromagnetic wave tends not to transmit its
energy continuously, but prefers to excite few atoms of the photographic material. We
have the conception (which will, however, not be worked out in this book) that these
different manifestations of “discreteness” should follow from the equations of discrete
space-time if one goes beyond the approximation of an interaction via classical fields.

If this concept of explaining the effects of quantized fields from the equations of
discrete space-time were correct, it would even have consequences for the interpretation
of quantum mechanics. Namely, according to the statistical interpretation, quantum
mechanical particles are point-like; the absolute value |Ψ(~x)|2 of the wave function
gives the probability density for the particle to be at the position ~x. Here, we could
regard the wave function itself as the physical object; the particle character would
come about merely as a consequence of the “discreteness” of the interaction of the
wave function with e.g. the atoms of a photographic material. The loss of determinism
could be explained naturally by the non-causality of the equations of discrete space-
time.

We conclude that the principle of the fermionic projector raises quite fundamen-
tal questions on the structure of space-time, the nature of field quantization and the
interpretation of quantum mechanics. Before entering the study of these general ques-
tions, however, it is most essential to establish a quantitative connection between the
equations of discrete space-time and the Dirac and classical field equations. Namely,
the principle of the fermionic projector can make physical sense only if it is consistent
with classical field theory and relativistic quantum mechanics; thus it is of importance
to first check this consistency. Even this comparatively simple limiting case is of high-
est physical interest. Indeed, the principle of the fermionic projector provides a very
restrictive framework for the formulation of physical models; for example there is no
freedom in choosing the gauge groups, the coupling of the gauge fields to the fermions,
or the masses of the gauge bosons. This means that, if a connection could be estab-
lished to relativistic quantum mechanics and classical field theory, the principle of the
fermionic projector would give an explanation for the interactions observed in nature
and would yield theoretical predictions for particle masses and coupling constants. We
begin with this study in the next chapters.





CHAPTER 4

The Continuum Limit

According to the principle of the fermionic projector, we want to formulate physics
with the fermionic projector P in discrete space-time (H, <.|.>, (Ep)p∈M ). In this
chapter we will establish a mathematically sound connection between this description
and the usual formulation of physics in a space-time continuum. More precisely, we
will develop a general technique with which equations in discrete space-time, like for
example the Euler-Lagrange equations (3.5.20, 3.5.21), can be analyzed within the
framework of relativistic quantum mechanics and classical field theory. Our approach
is based on the assumption that the fermionic projector of discrete space-time can be
obtained from the fermionic projector of the continuum by a suitable regularization
process on the Planck scale. The basic difficulty is that composite expressions in the
fermionic projector (like in (3.5.20)) depend essentially on how the regularization is
carried out; our task is to analyze this dependence in detail. We will show that, if
we study the behavior close to the light cone, the dependence on the regularization
simplifies considerably and can be described by a finite number of parameters. Tak-
ing these parameters as free parameters, we will end up with a well-defined effective
continuum theory.

We point out that, since we deduce the fermionic projector of discrete space-time
from the fermionic projector of the continuum, the causal and topological structure
of the space-time continuum, as well as the Dirac equation and Dirac’s hole theory,
will enter our construction from the very beginning. Thus the continuum limit cannot
give a justification or even derivation of these structures from the equations of discrete
space-time (for such a justification one must go beyond the continuum limit; see §5.6
for a first attempt in this direction). The reason why it is nevertheless interesting to
analyze the continuum limit is that we do not need to specify the classical potentials
which enter the Dirac equation; in particular, we do not assume that they satisfy
the classical field equations. Thus we can hope that an analysis of the equations
of discrete space-time should give constraints for the classical potentials; this means
physically that the equations of discrete space-time should in the continuum limit
yield a quantitative description of the interaction of the Dirac particles via classical
fields. This quantitative analysis of the continuum limit of interacting systems will be
explained in Chapters 6–8.

For clarity we will mainly restrict attention to a fermionic projector consisting of
one Dirac sea of mass m. The generalizations to systems of fermions with different
masses and to chiral fermions (as introduced in §2.3) are given in §4.5. Having gauge
fields in mind, which are in quantum field theory described by bosons, we often refer
to the external potentials contained in the operator B in the Dirac equation (2.3.10)
as bosonic potentials and the corresponding fields as bosonic fields.
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4.1. The Method of Variable Regularization

Let us consider how one can get a relation between the continuum fermionic projec-
tor and the description of physics in discrete space-time. As discussed in §3.6, discrete
space-time should for macroscopic systems go over to the usual space-time contin-
uum. For consistency with relativistic quantum mechanics, the fermionic projector of
discrete space-time should in this limit coincide with the continuum fermionic projec-
tor. Using furthermore that the discretization length should be of the order of the
Planck length, we conclude that the fermionic projector of discrete space-time should
correspond to a certain “regularization” of the continuum fermionic projector on the
Planck scale. Thus it seems a physically reasonable method to construct the fermionic
projector of discrete space-time from the fermionic projector of the continuum by a
suitable regularization process on the Planck scale.

Regularizations of the continuum theory are also used in perturbative QFT in or-
der to make the divergent Feynman diagrams finite. However, there is the following
major difference between the regularizations used in QFT and our regularization of
the fermionic projector. In contrast to QFT, where the regularization is merely a
mathematical technique within the renormalization procedure, we here consider the
regularized fermionic projector as the object describing the physical reality. The reg-
ularized fermionic projector should be a model for the fermionic projector of discrete
space-time, which we consider as the basic physical object. As an important conse-
quence, it is not inconsistent for us if the effective continuum theory depends on how
the regularization is carried out. In this case, we must regularize in such a way that
the regularized fermionic projector is a good microscopic approximation to the “physi-
cal” fermionic projector of discrete space-time; only such a regularization can yield the
correct effective continuum theory. This concept of giving the regularization a physical
significance clearly suffers from the shortcoming that we have no detailed information
about the microscopic structure of the fermionic projector in discrete space-time, and
thus we do not know how the correct regularization should look like. In order to deal
with this problem, we shall consider a general class of regularizations. We will ana-
lyze in detail how the effective continuum theory depends on the regularization. Many
quantities will depend sensitively on the regularization, so much so that they are unde-
termined and thus ill-defined in the continuum limit. However, certain quantities will
be independent of the regularization and have a simple correspondence in the contin-
uum theory; we call these quantities macroscopic. We will try to express the effective
continuum theory purely in terms of macroscopic quantities. We cannot expect that
the effective continuum theory will be completely independent of the regularization.
But for a meaningful continuum limit, it must be possible to describe the dependence
on the regularization by a small number of parameters, which we consider as empiric
parameters modelling the unknown microscopic structure of discrete space-time. We
refer to this general procedure for constructing the effective continuum theory as the
method of variable regularization.

In order to illustrate the method of variable regularization, we mention an analogy
to solid state physics. On the microscopic scale, a solid is composed of atoms, which
interact with each other quantum mechanically. On the macroscopic scale, however,
a solid can be regarded as a continuous material, described by macroscopic quantities
like the density, the pressure, the conductivity, etc. The macroscopic quantities satisfy
macroscopic physical equations like the equations of continuum mechanics, Ohm’s law,
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etc. Both the macroscopic characteristics of the solid and the macroscopic physical
laws can, at least in principle, be derived microscopically from many-particle quantum
mechanics. However, since the details of the microscopic system (e.g. the precise form
of the electron wave functions) are usually not known, this derivation often does not
completely determine the macroscopic physical equations. For example, it may happen
that a macroscopic equation can be derived only up to a proportionality factor, which
depends on unknown microscopic properties of the solid and is thus treated in the
macroscopic theory as an empirical parameter. The physical picture behind the method
of variable regularization is very similar to the physics of a solid, if one considers on
the microscopic scale our description of physics in discrete space-time and takes as
the macroscopic theory both relativistic quantum mechanics and classical field theory.
Clearly, the concept of discrete space-time is more hypothetical than atomic physics
because it cannot at the moment be verified directly in experiments. But we can
nevertheless get indirect physical evidence for the principle of the fermionic projector
by studying whether or not the method of variable regularization leads to interesting
results for the continuum theory.

In the remainder of this section we will specify for which class of regularizations
we shall apply the method of variable regularization. Our choice of the regularization
scheme is an attempt to combine two different requirements. On one hand, we must
ensure that the class of regularizations is large enough to clarify the dependence of the
effective continuum theory on the regularization in sufficient detail; on the other hand,
we must keep the technical effort on a reasonable level. Consider the integral kernel
of the continuum fermionic projector (2.3.19, 2.5.45). Under the reasonable assump-
tion that the fermionic wave functions Ψk and Φl are smooth, the projectors on the
particle/anti-particle states in (2.3.19) are smooth in x and y. The non-causal low-
and high-energy contributions P le and P he as well as the phase-inserted line integrals
in (2.5.45) also depend smoothly on x and y. The factors T (n), however, have singu-
larities and poles on the light cone (see (2.5.42) and (2.5.43)). Let us consider what
would happen if we tried to formulate a variational principle similar to that in §3.5
with the continuum kernel (instead of the discrete kernel). The just-mentioned smooth
terms in the kernel would not lead to any difficulties; we could just multiply them with
each other when forming the closed chain P (x, y) P (y, x), and the resulting smooth
functions would influence the eigenvalues λk(x, y) in (3.5.5) in a continuous way. How-

ever, the singularities of T (n) would cause severe mathematical problems because the
multiplication of T (n)(x, y) with T (n)(y, x) leads to singularities which are ill-defined
even in the distributional sense. For example, the naive product P (x, y)P (y, x) would
involve singularities of the form ∼ δ′((y − x)2) δ((y − x)2) and ∼ δ((y − x)2)2. This
simple consideration shows why composite expressions in the fermionic projector make
mathematical sense only after regularization. Furthermore, one sees that the regular-
ization is merely needed to remove the singularities of T (n). Hence, it seems reasonable
to regularize only the factors T (n) in (2.5.45), but to leave the fermionic wave func-
tions Ψa, Φa as well as the bosonic potentials unchanged. This regularization method
implies that the fermionic wave functions and the bosonic potentials are well-defined
also for the regularized fermionic projector; using the notation of page 90, they are
macroscopic quantities. Therefore, we call our method of only regularizing T (n) the
assumption of macroscopic potentials and wave functions.

The assumption of macroscopic potentials and wave functions means physically
that energy and momentum of all bosonic fields and of each particle/anti-particle of
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the physical system should be small compared to the Planck energy. In other words,
we exclude the case that the physical potentials and wave functions have oscillations or
fluctuations on the Planck scale. Namely, such microscopic inhomogeneities could not
be described by smooth functions in the continuum limit and are thus not taken into
account by our regularization method. If, conversely, the potentials and wave functions
are nearly constant on the Planck scale, the unregularized and the (no matter by which
method) regularized quantities almost coincide, and it is thus a good approximation
to work in the regularized fermionic projector with the unregularized potentials and
wave functions.

According to the assumption of macroscopic potentials and wave functions, it re-
mains to regularize the factors T (n) in (2.5.45). Recall that we constructed the dis-

tributions T (n) from the continuum kernel of the fermionic projector of the vacuum
(2.2.1) via (2.5.39) and the expansion in the mass parameter (2.5.43). An essential step
for getting a meaningful regularization scheme is to extend this construction to the
case with regularization. Namely, this extension makes it sufficient to specify the regu-
larization of the fermionic projector of the vacuum; we can then deduce the regularized
T (n) and obtain, by substitution into (2.5.45), the regularized fermionic projector with

interaction (if it were, on the contrary, impossible to derive the regularized T (n) from
the regularized fermionic projector of the vacuum, the independent regularizations of
all functions T (n), n = −1, 0, 1, . . ., would involve so many free parameters that the
effective continuum theory would be under-determined). Having in mind the extension
of (2.5.39) and (2.5.43) to the case with regularization (which will be carried out in
§4.5 and Appendix D), we now proceed to describe our regularization method for the
fermionic projector of the vacuum. In the vacuum and for one Dirac sea, the kernel of
the continuum fermionic projector P (x, y) is given by the Fourier integral (2.2.2),

P (x, y) =

∫
d4k

(2π)4
(k/ +m) δ(k2 −m2) Θ(−k0) e−ik(x−y) . (4.1.1)

This distribution is invariant under translations in space-time, i.e. it depends only on
the difference vector y − x. It seems natural and is most convenient to preserve the
translation symmetry in the regularization. We thus assume that the kernel of the
regularized fermionic projector of the vacuum, which we denote for simplicity again
by P (x, y), is translation invariant,

P (x, y) = P (y − x) for x, y ∈M ⊂ R4 . (4.1.2)

We refer to (4.1.2) as a homogeneous regularization of the vacuum. Notice that the
assumption (4.1.2) allows for both discrete and continuum regularizations. In the first
case, the set M is taken to be a discrete subset of R4 (e.g. a lattice), whereas in
the latter case, M = R4. According to our concept of discrete space-time, it seems
preferable to work with discrete regularizations. But since continuous regularizations
give the same results and are a bit easier to handle, it is worth considering them too.
The assumption of a homogeneous regularization of the vacuum means physically that
the inhomogeneities of the fermionic projector on the Planck scale should be irrelevant
for the effective continuum theory. Since such microscopic inhomogeneities can, at
least in special cases, be described by microscopic gravitational or gauge fields, this
assumption is closely related to the assumption of macroscopic potentials and wave
functions discussed above.
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Figure 4.1. Example for P̂ , the regularized fermionic projector of the
vacuum in momentum space.

Taking the Fourier transform in the variable y− x, we write (4.1.2) as the Fourier
integral

P (x, y) =

∫
d4p

(2π)4
P̂ (p) e−ip(x−y) (4.1.3)

with a distribution P̂ . If one considers a discrete regularization, P̂ may be defined
only in a bounded region of R4 (for a lattice regularization with lattice spacing d, for
example, one can restrict the momenta to the “first Brillouin zone” p ∈ (−π

d ,
π
d )

4).

In this case, we extend P̂ to all R4 by setting it to zero outside this bounded region.
Although it will be of no relevance for what follows, one should keep in mind that for
a discrete regularization, x and y take values only in the discrete set M . Let us briefly
discuss the properties of the distribution P̂ . First of all, P (x, y) should be the kernel
of a Hermitian operator; this implies that P (x, y)∗ = P (y, x) and thus

P̂ (p)∗ = P̂ (p) for all p (4.1.4)

(where the star again denotes the adjoint with respect to the spin scalar product).
For consistency with the continuum theory, the regularized kernel (4.1.3) should, for
macroscopic systems, go over to the continuum kernel (4.1.1). Thus we know that

P̂ (p) should, for small energy-momentum p (i.e. when both the energy p0 and the
momentum |~p| are small compared to the Planck energy), coincide with the distribution
(p/ +m) δ(p2 −m2) Θ(−p0). This is illustrated in the example of Figure 4.1. In the

region I close to the origin, P̂ looks similar to a hyperbola on the lower mass shell.
Furthermore, we know that P̂ is a regularization on the Planck scale. This means that,
in contrast to the integrand in (4.1.1), P̂ should decay at infinity, at least so rapidly
that the integral (4.1.3) is finite for all x and y. The length scale for this decay in
momentum space should be of the order of the Planck energy EP = l−1P . However,

the precise form of P̂ for large energy or momentum is completely arbitrary, as is
indicated in Figure 4.1 by the “high energy region” II. This arbitrariness reflects our
freedom in choosing the regularization.

We finally make an ansatz for P̂ which seems general enough to include all relevant
regularization effects and which will considerably simplify our analysis. According to
(4.1.4), P̂ (p) is a Hermitian 4 × 4 matrix and can thus be written as a real linear
combination of the basis of the Dirac algebra 11, iρ, ργj and σjk (with the pseudoscalar
matrix ρ = iγ0γ1γ2γ3 and the bilinear covariants σjk = i

2 [γ
j , γk]). The integrand of the
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continuum kernel (4.1.1) contains only vector and scalar components. It is reasonable
to assume that the regularized kernel also contains no pseudoscalar and pseudovector
components, because the regularization would otherwise break the symmetry under
parity transformations. The inclusion of a bilinear component in P̂ , on the other hand,
would cause technical complications but does not seem to give anything essentially new.
Thus we make an ansatz where P̂ is composed only of a vector and a scalar component,
more precisely

P̂ (p) = (vj(p) γ
j + φ(p) 11) f(p) (4.1.5)

with a vector field v and a scalar field φ; f is a distribution. We also need to assume
that P̂ is reasonably regular and well-behaved; this will be specified in the following
sections. We refer to the ansatz (4.1.5) as the assumption of a vector-scalar structure
for the fermionic projector of the vacuum.

4.2. The Regularized Product P (x, y) P (y, x) in the Vacuum

According to the method of variable regularization, we must analyze how the
effective continuum theory depends on the choice of the regularization. We shall now
consider this problem for the simplest composite expression in the fermionic projector,
the closed chain P (x, y) P (y, x) in the vacuum. The discussion of this example will
explain why we need to analyze the fermionic projector on the light cone. Working out
this concept mathematically will eventually lead us to the general formalism described
in §4.5.

Using the Fourier representation (4.1.3), we can calculate the closed chain to be

P (x, y) P (y, x) =

∫
d4k1
(2π)4

∫
d4k2
(2π)4

P̂ (k1) P̂ (k2) e
−i(k1−k2)(x−y)

=

∫
d4p

(2π)4

[∫
d4q

(2π)4
P̂ (p + q) P̂ (q)

]

e−ip(x−y) , (4.2.1)

where we introduced new integration variables p = k1−k2 and q = k2. Thus the Fourier
transform of the closed chain is given by the convolution in the square brackets. This
reveals the following basic problem. The convolution in the square bracket involves P̂
for small and for large energy-momentum. Even when p is small, a large q leads to
a contribution where both factors P̂ (p + q) and P̂ (q) are evaluated for large energy-
momenta. If we look at the example of Figure 4.1, this means that (4.2.1) depends

essentially on the behavior of P̂ in the high-energy region II and can thus have an
arbitrary value. More generally, we conclude that, since the form of P̂ for large energy
or momentum is unknown, the value of (4.2.1) is undetermined.

At first sight, it might seem confusing that the pointwise product P (x, y) P (y, x)
of the regularized fermionic projector should be undetermined, although the unregu-
larized kernel (4.1.1) is, for y− x away from the light cone, a smooth function, and so
pointwise multiplication causes no difficulties. In order to explain the situation in a
simple example, we briefly discuss the fermionic projector P̃ obtained by adding to P
a plane wave,

P̃ (x, y) = P (x, y) + e−ik(x−y) 11 .

If the energy or the momentum of the plane wave is of the order of the Planck energy,
the plane wave is highly oscillatory in space-time. Such an oscillatory term is irrelevant
on the macroscopic scale. Namely, if P̃ acts on a macroscopic function η, the oscillatory
term is evaluated in the weak sense, and the resulting integral

∫
exp(iky)η(y)d4y gives
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almost zero because the contributions with opposite signs compensate each other. This
“oscillation argument” can be made mathematically precise using integration by parts,
e.g. in the case of high energy k0 ∼ EP ,

∫

eiky f(y) d4y = − 1

ik0

∫

eiky (∂tf) d
4y ∼ 1

EP
.

In the corresponding closed chain

P̃ (x, y) P̃ (y, x) = P (x, y) P (y, x) + P (x, y) e−ik(y−x) + e−ik(x−y) P (y, x) + 11 ,

the second and third summands are also oscillatory. In the last summand, however,
the oscillations have dropped out, so that this term affects the macroscopic behavior
of the closed chain. This elementary consideration illustrates why the unknown high-
energy contribution to the fermionic projector makes it impossible to determine the
closed chain pointwise. We remark that for very special regularizations, for example
the regularization by convolution with a smooth “mollifier” function having compact
support, the pointwise product makes sense away from the light cone and coincides
approximately with the product of the unregularized kernels. But such regularizations
seem too restrictive. We want to allow for the possibility that the fermionic projector
describes non-trivial (yet unknown) high-energy effects. Therefore, the high-energy
behavior of the fermionic projector should not be constrained by a too simple regular-
ization method.

The fact that the product P (x, y) P (y, x) is undetermined for fixed x and y does
not imply that a pointwise analysis of the closed chain is mathematically or physi-
cally meaningless. But it means that a pointwise analysis would essentially involve
the unknown high-energy behavior of P̂ ; at present this is a problem out of reach.
Therefore, our strategy is to find a method for evaluating the closed chain in a way
where the high-energy behavior of P̂ becomes so unimportant that the dependence on
the regularization can be described in a simple way. We hope that this method will
lead us to a certain limiting case in which the equations of discrete space-time become
manageable.

The simplest method to avoid the pointwise analysis is to evaluate the closed chain
in the weak sense. The Fourier representation (4.2.1) yields that

∫

P (x, y) P (y, x) η(x) d4x =

∫
d4p

(2π)4
η̂(p)

[∫
d4q

(2π)4
P̂ (p + q) P̂ (q)

]

, (4.2.2)

where η̂ is the Fourier transform of a smooth function η. For macroscopic η (i.e. a
function which is nearly constant on the Planck scale), the function η̂(p) is localized
in a small neighborhood of p = 0 and has rapid decay. Thus, exactly as (4.2.1), the

integral (4.2.2) depends on the form of P̂ for large energy-momentum. Hence this type
of weak analysis is not helpful. In order to find a better method, we consider again
the Fourier integral (4.1.3) in the example of Figure 4.1. We want to find a regime for
y − x where the “low energy region” I plays an important role, whereas the region II
is irrelevant. This can be accomplished only by exploiting the special form of P̂ in the
low-energy region as follows. The hyperbola of the lower mass shell in region I comes
asymptotically close to the cone C = {p2 = 0}. If we choose a vector (y−x) 6= 0 on the
light cone L = {(y−x)2 = 0}, then the hypersurface H = {p |p(y−x) = 0} is null and
thus tangential to the cone C. This means that for all states on the hyperbola which
are close to the straight line C ∩ H, the exponential in (4.1.3) is approximately one.
Hence all these states are “in phase” and thus yield a large contribution to the Fourier
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integral (4.1.3). The states in the high-energy region II, however, are not in phase;
they will give only a small contribution to (4.1.3), at least when the vector (y−x) ∈ L
is large, so that the exponential in (4.1.3) is highly oscillatory on the scale p ∼ EP .
This qualitative argument shows that by considering the fermionic projector on the
light cone, one can filter out information on the behavior of P̂ in the neighborhood of
a straight line along the cone C. This should enable us to analyze the states on the
lower mass shell without being affected too much by the unknown high-energy behavior
of P̂ . We point out that if P (x, y) depends only on the behavior of P̂ close to the
cone C, then the same is immediately true for composite expressions like the product
P (x, y) P (y, x). Thus restricting our analysis to the light cone should simplify the
dependence on the regularization considerably, also for composite expressions like the
closed chain. Our program for the remainder of this chapter is to make this qualitative
argument mathematically precise and to quantify it in increasing generality.

4.3. The Regularized Vacuum on the Light Cone, Scalar Component

For simplicity we begin the analysis on the light cone for the scalar component of
(4.1.5), i.e. we consider the case

P̂ (p) = φ(p) f(p) (4.3.1)

(the vector component will be treated in the next section). We can assume that the
spatial component of the vector y − x in (4.1.3) points in the direction of the x-axis
of our Cartesian coordinate system, i.e. y − x = (t, r, 0, 0) with r > 0. Choosing
cylindrical coordinates ω, k, ρ and ϕ in momentum space, defined by p = (ω, ~p) and
~p = (k, ρ cosϕ, ρ sinϕ), the Fourier integral (4.1.3) takes the form

P (x, y) =
1

(2π)4

∫ ∞

−∞
dω

∫ ∞

−∞
dk

∫ ∞

0
ρ dρ

∫ 2π

0
dϕ P̂ (ω, k, ρ, ϕ) eiωt−ikr . (4.3.2)

Since the exponential factor in this formula is independent of ρ and ϕ, we can write
the fermionic projector as the two-dimensional Fourier transform

P (x, y) = 2

∫ ∞

−∞
dω

∫ ∞

−∞
dk h(ω, k) eiωt−ikr (4.3.3)

of a function h defined by

h(ω, k) =
1

2 (2π)4

∫ ∞

0
ρ dρ

∫ 2π

0
dϕ (φ f)(ω, k, ρ, ϕ) . (4.3.4)

We want to analyze P (x, y) close to the light cone (y − x)2 = 0 away from the origin
y = x. Without loss of generality, we can restrict attention to the upper light cone
t = r. Thus we are interested in the region t ≈ r > 0. The “light-cone coordinates”

s =
1

2
(t− r) , l =

1

2
(t+ r) (4.3.5)

are well-suited to this region, because the “small” variable s vanishes for t = r, whereas
the “large” variable l is positive and non-zero. Introducing also the associated momenta

u = −k − ω , v = k − ω , (4.3.6)

we can write the fermionic projector as

P (s, l) =

∫ ∞

−∞
du

∫ ∞

−∞
dv h(u, v) e−i(us+vl) . (4.3.7)
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Figure 4.2. Example for h(u, v), the reduced two-dimensional distribution.

Let us briefly discuss the qualitative form of the function h, (4.3.4). According
to the continuum kernel (4.1.1), the scalar component (4.3.1) should, for energy and
momentum small compared to the Planck energy EP , go over to the δ-distribution on
the lower mass shell P̂ = m δ(p2 −m2) Θ(−p0). In this limit, the integral (4.3.4) can
be evaluated to be

h =
m

2 (2π)4

∫ ∞

0
ρ dρ

∫ 2π

0
dϕ δ(ω2 − k2 − ρ2 −m2) Θ(−ω)

=
m

4 (2π)3
Θ(ω2 − k2 −m2) Θ(−ω) =

m

32π3
Θ(uv −m2) Θ(u) ; (4.3.8)

thus integrating out ρ and ϕ yields a constant function in the interior of the two-di-
mensional “lower mass shell” ω2 − k2 = m2, ω < 0. From this we conclude that for
u, v ≪ EP , h(u, v) should have a discontinuity along the hyperbola {uv = m2, u > 0},
be zero below (i.e. for uv < m2) and be nearly constant above. Furthermore, we know
that h decays at infinity on the scale of the Planck energy. Similar to our discussion
of P̂ after (4.1.4), the precise form of h for large energy or momentum is completely
arbitrary. The function h(u, v) corresponding to the example of Figure 4.1 is shown
in Figure 4.2. The two branches of the hyperbola asymptotic to the u and v axes are
labeled by “A” and “B,” respectively.

It is instructive to consider the energy scales of our system. The scale for high
energies is clearly given by the Planck energy EP . The relevant low-energy scale,
on the other hand, is m2/EP (it is zero for massless fermions). This is because the
hyperbola uv = m2 comes as close to the v-axis as v ∼ m2/EP before leaving the
low-energy region. These two energy scales are also marked in Figure 4.2. Since we
want to analyze the situation close to the light cone, we choose the “small” light-cone
parameter s on the Planck scale, i.e.

s ∼ E−1P or s < E−1P . (4.3.9)

The “large” light-cone parameter l, on the other hand, is non-zero and thus yields a
third energy scale. We shall always choose this scale between the two extremal energy
scales, more precisely

1

EP
≪ l < lmax ≪

EP

m2
. (4.3.10)
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The parameter lmax was introduced here in order to avoid l being chosen too large.
Namely, we will always regard l as being small compared to the length scales of macro-
scopic physics (a reasonable value for lmax would e.g. be the Fermi length). One should
keep in mind that the quotient of the two fundamental energy scales is in all physical
situations extremely large; namely E2

P /m
2 ≫ 1035. Thus the constraints (4.3.10) can

be easily satisfied and still leave us the freedom to vary l on many orders of magnitude.
In the remainder of this section we shall evaluate the Fourier integral (4.3.7) using

the scales (4.3.9) and (4.3.10). In preparation, we discuss and specify the function
h(u, v) for fixed u, also denoted by hu(v). As one sees in Figure 4.2, hu will in general
not be continuous. More precisely, in the example of Figure 4.2, hu has a discontinuous
“jump” from zero to a finite value on the hyperbola (and its extension to the high-
energy region) and maybe has a second jump to zero for large v (e.g. on the curve
“a”). For simplicity, we assume that hu is always of this general form, i.e.

hu(v) =

{
0 for v < αu or v > βu

smooth for αu ≤ v ≤ βu (4.3.11)

with parameters αu < βu. The case of less than two discontinuities can be obtained
from (4.3.11) by setting hu(αu) or hu(βu) equal to zero, or alternatively by moving the
position of the discontinuities αu or βu to infinity. We remark that the discontinuity
at v = βu will become irrelevant later; it is here included only to illustrate why
the behavior of the fermionic projector on the light cone is independent of many
regularization details. Without regularization, hu(v) is for v ≥ αu a constant function,
(4.3.8). Thus the v-dependence of hu(v) for αu ≤ v ≤ βu is merely a consequence
of the regularization, and it is therefore reasonable to assume that the v-derivatives
of hu(v) scale in inverse powers of the regularization length EP . More precisely, we
demand that there is a constant c1 ≪ lEP with

|h(n)u (v)| ≤
(
c1
EP

)n

max |hu| for αu ≤ v ≤ βu , (4.3.12)

where the derivatives at v = αu and βu are understood as the right- and left-sided
limits, respectively. This regularity condition is typically satisfied for polynomial,
exponential and trigonometric functions, but it excludes small-scale fluctuations of
hu. Clearly, we could also consider a more general ansatz for hu with more than two
discontinuities or weaker regularity assumptions. But this does not seem to be the
point because all interesting effects, namely the influence of discontinuities for small
and large v, as well as of smooth regions, can already be studied in the setting (4.3.11,
4.3.12).

Let us analyze the v-integral of the Fourier transform (4.3.7),

Pu(l) :=

∫ ∞

−∞
hu(v) e

−ivl dv . (4.3.13)

According to the first inequality in (4.3.10), the exponential factor in (4.3.13) is highly
oscillatory on the scale v ∼ EP . Thus we can expect that the smooth component of
hu gives only a small contribution to the integral (4.3.13), so that the discontinuities
at αu and βu play the dominant role. In order to make this picture mathematically
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precise, we iteratively integrate in (4.3.13) K times by parts,

Pu(l) =

∫ βu

αu

hu(v) e
−ivl dv = − 1

il

∫ βu

αu

dv hu(v)
d

dv
e−ivl

= − 1

il
hu(v) e

−ivl
∣
∣
∣

βu

αu

+
1

il

∫ βu

αu

h′u(v) e
−ivl dl = · · · =

= − 1

il

K−1∑

n=0

(
1

il

)n

h(n)u (v) e−ivl
∣
∣
∣

βu

αu

+

(
1

il

)K ∫ βu

αu

h(K)
u (v) e−ivl dl . (4.3.14)

If we bound all summands in (4.3.14) using the first inequality in (4.3.10) and the
regularity condition (4.3.12), each v-derivative appears in combination with a power
of l−1, and this gives a factor c1/(lEP ) ≪ 1. Thus we can in the limit K → ∞ drop
the integral in (4.3.14) and obtain

Pu(l) = − 1

il

∞∑

n=0

(
1

il

)n

h(n)u (v) e−ivl
∣
∣
∣

βu

αu

. (4.3.15)

This expansion converges, and its summands decay like (c1/(lEP ))
n.

Using (4.3.13), we can write the Fourier transform (4.3.7) as

P (s, l) =

∫ ∞

−∞
Pu(l) e

−ius du . (4.3.16)

Notice that, apart from the constraints (4.3.10), the “large” variable l can be freely
chosen. We want to study the functional dependence of (4.3.16) on the parameter l.
In preparation, we consider an integral of the general form

∫ b

a
f(u) e−iγ(u) l du , (4.3.17)

where we assume that (u, γ(u)) is a curve in the high-energy region, more precisely
γ ∼ EP . Assume furthermore that γ is monotone with |γ′| ∼ 1 and that (b−a) ∼ EP .
By transforming the integration variable, we can then write (4.3.17) as the Fourier
integral

∫ γ(b)

γ(a)
f |γ′|−1 e−iγl dγ . (4.3.18)

If the function f |γ′|−1 is smooth, its Fourier transform (4.3.18) has rapid decay in
the variable l. Under the stronger assumption that f |γ′|−1 varies on the scale EP ,
we conclude that the length scale for this rapid decay is of the order l ∼ E−1P . As a
consequence, the rapid decay can be detected even under the constraint l < lmax im-
posed by (4.3.10), and we say that (4.3.18) has rapid decay in l. The reader who feels
uncomfortable with this informal definition can immediately make this notion mathe-
matically precise by an integration by parts argument similar to (4.3.14) imposing for
f |γ′|−1 a condition of type (4.3.12). The precise mathematical meaning of rapid decay
in l for the integral (4.3.17) is that for every integer k there should be constants c ∼ 1
and lmin ≪ lmax such that for all l ∈ (lmin, lmax),

∫ b

a
f(u) e−iγ(u) l du ≤ c (lEP )

−k

∫ b

a
|f(u)| du .
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We return to the analysis of the integral (4.3.16). The boundary terms of (4.3.15)
at βu yield contributions to P (s, l) of the form

−
(
1

il

)n+1 ∫ ∞

−∞
h(n)u (βu) e

−iβul−ius du . (4.3.19)

Recall that the points (u, βu) are in the high-energy region (in the example of Fig-
ure 4.2, these points lie on curve “a”). According to (4.3.9), the length scale for the
oscillations of the factor exp(−ius) is u ∼ EP . Under the reasonable assumption that

βu is monotone and that the functions |β′(u)|−1 and h
(n)
u (βu) vary on the scale EP ,

the integral (4.3.19) is of the form (4.3.18), and the above consideration yields that
(4.3.19) has rapid decay in l. We remark that this argument could be extended to the
case where βu has extremal points (basically because the extrema give contributions
only for isolated momenta u and thus can be shown to be negligible), but we will
not go into this here. Having established rapid decay in l for (4.3.19), it remains to
consider the boundary terms in (4.3.19) at αu, more precisely

P (s, l) =

∞∑

n=0

(
1

il

)n+1 ∫ ∞

−∞
h(n)u (αu) e

−iαul−ius du

+ (rapid decay in l) . (4.3.20)

We cannot again apply our “oscillation argument” after (4.3.17), because αu tends
asymptotically to zero on branch “A” of the hyperbola (see Figure 4.2), so that the
factor exp(−iαul) is non-oscillating in this region. We expand this factor in a Taylor
series,

P (s, l) =
∞∑

n,k=0

1

k!
(il)k−n−1

∫ ∞

−∞
h(n)u (αu) (−αu)

k e−ius du . (4.3.21)

In the region where lαu 6≪ 1, this expansion might seem problematic and requires a
brief explanation. First of all, αu becomes large near u = 0 (on branch “B” of the
hyperbola in Figure 4.2). In the case without regularization, the power expansion
of the factor exp(−iαu l) corresponds to an expansion in the mass parameter (recall
that in this case, αu = m2/u according to (4.3.8)), and in (4.3.21) it would lead to
a singularity of the integrand at the origin. Indeed, this difficulty is a special case
of the logarithmic mass problem which was mentioned in §2.5 and was resolved by
working with the “regularized” distribution T reg

a (2.5.42). Using these results, the
behavior of the unregularized P (s, l) for small momenta u ≪ EP is well understood.
Our oscillation argument after (4.3.17) yields that the regularization for u≪ EP (i.e.
the form of the extension of branch “B” of the hyperbola to the high-energy region)
affects P (s, l) merely by rapidly decaying terms. Thus it is sufficient to consider here
the integrand in (4.3.21) away from the origin u = 0. When combined with the results
in §2.5, our analysis will immediately yield a complete description of the regularized
fermionic projector near the light cone. Furthermore, the function αu might become
large for u ∼ EP , and this is a more subtle point. One way of justifying (4.3.21)
would be to simply assume that lmaxαu ≪ 1 along the whole extension of branch
“A” to the high-energy region. A more general method would be to split up the
curve (u, αu) in the high-energy region u ∼ EP into one branch where the expansion
(4.3.21) is justified and another branch where our oscillation argument after (4.3.17)
applies. The intermediate region lαu ∼ 1, where none of the two methods can be
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used, is generically so small that it can be neglected. In order to keep our analysis
reasonably simple, we here assume that αu is sufficiently small away from the origin,
more precisely

αu < αmax ≪ l−1max for u ∼ EP . (4.3.22)

For a fixed value of k − n, all summands in (4.3.21) have the same l-dependence.
Let us compare the relative size of these terms. According to our regularity assumption

(4.3.12), the derivatives of h scale like h
(n)
u ∼ E−nP . Using the bound (4.3.22), we con-

clude that, for a fixed power of l, the summands in (4.3.21) decrease like (αmax/EP )
n.

Thus it is a very good approximation to drop the summands for large n. At first sight,
it might seem admissible to take into account only the first summand n = 0. But the
situation is not quite so simple. For example, it may happen that, when restricted
to the curve (u, αu), the function h(u, v) is so small that the summands for n = 0
in (4.3.21) are indeed not dominant. More generally, we need to know that for some

n0 ≥ 0, the function h
(n0)
u (αu) is really of the order given in (4.3.12), i.e.

|h(n0)
u (αu)| ≥ c

(
c1
EP

)n0

max |hu| for u ∼ EP (4.3.23)

with a positive constant c which is of the order one. If this condition is satisfied, we
may neglect all summands for n > n0, and collecting the terms in powers of l, we
conclude that

P (s, l)

=
1

(il)n0+1

∞∑

k=0

(−il)k
n0∑

n=max(n0−k,0)

(−1)n0−n

(k − n0 + n)!

∫ ∞

−∞
h(n)u (αu) α

k−n0+n
u e−ius du

+
∞∑

n=n0+1

1

(il)n+1

∫ ∞

−∞
h(n)u (αu) e

−ius du + (rapid decay in l)

+ (higher orders in (αmax/EP )) . (4.3.24)

We point out that, according to (4.3.22),

αmax/EP ≪ (lmaxEP )
−1 ,

and this explains why we disregard the higher orders in αmax/EP . In our case, the
function hu has in the low-energy region according to (4.3.8) the form hu(αu) =
m/(32π3) Θ(u). Hence it is natural to assume that (4.3.23) is satisfied for n0 = 0.
Introducing the shorter notation

h(u) := hu(α(u)) , h[n](u) := h(n)u (αu) , α(u) := αu , (4.3.25)

we have thus derived the following result.

Expansion of the scalar component: Close to the light cone (4.3.9, 4.3.10), the
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scalar component (4.3.1) of the fermionic projector of the vacuum has the expansion

P (s, l) =
1

il

∞∑

k=0

(−il)k
k!

∫ ∞

−∞
h αk e−ius du (4.3.26)

+

∞∑

n=1

1

(il)n+1

∫ ∞

−∞
h[n] e−ius du (4.3.27)

+ (rapid decay in l) + (higher orders in (αmax/EP ) (4.3.28)

with suitable regularization functions h, h[n] and α. In the low-energy region u≪ EP ,
the regularization functions are

h(u) =
m

32π3
Θ(u) , h[n](u) = 0 , α(u) = αu =

m2

u
. (4.3.29)

In this expansion, the l-dependence is written out similar to a Laurent expansion.
The main simplification compared to our earlier Fourier representation (4.1.3) is that
the dependence on the regularization is now described by functions of only one variable,
denoted by h, h[n] and α. In composite expressions in P (s, l), we will typically get
convolutions of these functions; such one-dimensional convolutions are convenient and
can be easily analyzed. The simplification to one-dimensional regularization functions
became possible because many details of the regularization affect only the contribution
with rapid decay in l, which we do not consider here. Notice that the summands in
(4.3.26) and (4.3.27) decay like (l αmax)

k/k!≪ (l/lmax)
k/k! and (lEP )

−n, respectively.
In the low-energy limit (4.3.29), the expansion (4.3.26) goes over to a power series
in m2, and we thus refer to (4.3.26) as the mass expansion. In the mass expansion,
the regularization is described by only two functions h and α. The series (4.3.27),
on the other hand, is a pure regularization effect and is thus called the regularization
expansion. It involves an infinite number of regularization functions h[n]. Accordingly,
we will use the notions of mass and regularization expansions also for other expansions
of type (4.3.24).

In the expansion (4.3.24), the fermionic projector is described exclusively in terms
of the function h(u, v) in a neighborhood of the discontinuity along the curve (u, αu).
Let us go back to the definition of h, (4.3.4), and consider what this result means for
the regularized fermionic projector in momentum space (4.3.1). In the case without
regularization (4.3.8), we saw that integrating out the cylindrical coordinates ρ and ϕ
yields a discontinuity of h whenever the 2-plane (ω, k) = const meets and is tangential
to the hyperboloid ω2 − k2 − ρ2 = m2. This picture is true in the general case in
the sense that the discontinuity of h can be associated to a contribution to P̂ which
describes a hypersurface in four-dimensional momentum space. The simplest way to
recover the discontinuity of h when integrating out the cylindrical coordinates would
be to choose P̂ of the form (4.3.1) with a function φ and the spherically symmetric
distribution f = δ(|~p| − ω − α(−|~p| − ω)). Since spherically symmetric regularizations
seem too restrictive, it is preferable to describe the discontinuity of h more generally
by a contribution to P̂ of the form

φ(~p) δ(ω − Ω(~p)) , (4.3.30)

which is singular on the hypersurface ω = Ω(~p). For small momentum |~p| ≪ EP ,

the surface should clearly go over to the mass shell given by Ω = −
√

|~p|2 +m2 and
φ = m/|2Ω|; also, it is reasonable to assume that φ and Ω are smooth and sufficiently
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regular. This consideration shows that for the behavior of the fermionic projector on
the light cone (4.3.24), the essential role is played by states lying on a hypersurface.
We refer to these one-particle states as the surface states of the fermionic projector
of the vacuum. This result seems physically convincing because the surface states
naturally generalize the states on the lower mass shell known from relativistic quantum
mechanics. By integrating out the cylindrical coordinates for the ansatz (4.3.30),

one can express the regularization functions h
(n)
u in (4.3.24) in terms of φ and the

geometry of the hypersurface. But we point out that, in contrast to the just discussed
discontinuity of h, the partial derivatives of h depend also on states other than surface
states. For example, a contribution to P̂ of the form b(ω, ~p) Θ(ω −Ω(~p)) with Ω as in
(4.3.30) and a smooth function b has a discontinuity on the surface Ω and affects all

the regularization functions h
(n)
u for n ≥ 1 (as one verifies by a short computation).

Thinking of the decomposition of the fermionic projector into the one-particle states,
such non-surface contributions would consist of a large number of states and would thus
make it necessary to introduce many additional fermions into our system. It does not
seem quite reasonable or appropriate to considerably increase the number of particles
of the system with the only purpose of having more freedom for the derivative terms
of h in (4.3.24). It seems easiest and physically most convincing to assume that all the
regularization functions in (4.3.24) come about as a consequence of surface states. We
refer to this assumption as the restriction to surface states. It is of no relevance for
the scalar component (4.3.26, 4.3.28), but it will yield an important relation between
the regularization functions for the vector component in the next section. To avoid
confusion, we point out that the restriction to surface states clearly does not imply
that P̂ is of the form (4.3.30). It imposes a condition only on the behavior of P̂ in a
neighborhood of our hypersurface; namely that the only distributional or non-regular
contribution to P̂ in this neighborhood should be the hypersurface itself.

For clarity, we finally review our assumptions on the regularization. Our first
assumption was that the function h(u, v) has, for every fixed u, at most two disconti-
nuities at α(u) and β(u), and is sufficiently regular otherwise (4.3.12). Furthermore,
the function β(u) had to be monotone and again sufficiently regular. For the func-

tion α(u), we assumed that (4.3.22) holds. Since h is obtained from P̂ , (4.3.1), by
integrating out the cylindrical coordinates (4.3.4), these assumptions implicitly pose
conditions on the fermionic projector of the vacuum. Although they could clearly be
weakened with more mathematical effort, these conditions seem sufficiently general for
the moment. In order to understand this better, one should realize that integrating out
the cylindrical coordinates does generically (i.e. unless there are singularities parallel
to the plane (ω, k) = const) improve the regularity. The restriction to the generic case
is in most situations justified by the fact that the direction y − x and the coordinate
system in (4.3.2) can be freely chosen. Using the above assumptions on h(u, v), we
showed that the dominant contribution to the fermionic projector on the light cone
comes from states on a hypersurface in four-dimensional momentum space. With the
“restriction to surface states” we assumed finally that the behavior on the light cone
(4.3.24) is completely characterized by these states.
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4.4. The Regularized Vacuum on the Light Cone, Vector Component

We shall now extend the previous analysis to the vector component in (4.1.5).
More precisely, we will analyze the Fourier integral (4.1.3) for

P̂ (p) = vj(p) γ
j f(p) (4.4.1)

close to the light cone. We again choose light-cone coordinates (s, l, x2, x3) with y−x =
(s, l, 0, 0) (s and l are given by (4.3.5), while x2 and x3 are Cartesian coordinates in
the orthogonal complement of the sl-plane). The associated momenta are denoted by
p = (u, v, p2, p3) with u and v according to (4.3.6). As in (4.3.3), we integrate out the
coordinates perpendicular to u and v,

hj(u, v) :=
1

2 (2π)4

∫ ∞

−∞
dp2

∫ ∞

−∞
dp3 (vj f)(u, v, p2, p3) , (4.4.2)

and obtain a representation of the fermionic projector involving two-dimensional Fourier
integrals

P (s, l) = γj Pj(s, l)

with

Pj(s, l) :=

∫ ∞

−∞
du

∫ ∞

−∞
dv hj(u, v) e

−i(us+vl) . (4.4.3)

The tensor indices in (4.4.2) and (4.4.3) refer to the coordinate system (s, l, x2, x3).
For clarity, we denote the range of the indices by j = s, l, 2, 3; thus

γs =
1

2
(γ0 − γ1) , γl =

1

2
(γ0 + γ1) , (4.4.4)

where γ0, . . . , γ3 are the usual Dirac matrices of Minkowski space. According to the
continuum kernel (4.1.1), P̂ has in the case without regularization the form P̂ =
p/ δ(p2 −m2) Θ(−p0) and hj can be computed similar to (4.3.8) to be

γj hj(u, v) =
1

32π3
(−uγs − vγl) Θ(uv −m2) Θ(u) . (4.4.5)

This limiting case specifies the regularized hj(u, v) for small energy-momentum u, v ≪
EP . In order to keep the form of the functions hj in the high-energy region sufficiently
general, we merely assume in what follows that the hj satisfy all the conditions we
considered for the function h in the previous section (see the summary in the last
paragraph of §4.3). Our main result is the following.

Expansion of the vector component: Close to the light cone (4.3.9, 4.3.10), the
vector component (4.4.1) of the fermionic projector of the vacuum has the expansion
P = γjPj with
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Ps(s, l) =
1

il

∞∑

k=0

(−il)k
k!

∫ ∞

−∞
−u gs αk e−ius du

+

∞∑

n=1

1

(il)n+1

∫ ∞

−∞
−u g[n]s e−ius du

+ (rapid decay in l) + (higher orders in (αmax/EP ) (4.4.6)

Pl(s, l) =
1

(il)2

∞∑

k=0

(−il)k
k!

∫ ∞

−∞

[

(k − 1) αk + k
b

u
αk−1

]

gl e
−ius du

+

∞∑

n=1

1

(il)n+2

∫ ∞

−∞
−(n+ 1) g

[n]
l e−ius du

+ (rapid decay in l) + (higher orders in (αmax/EP ) (4.4.7)

P2/3(s, l) =
1

(il)2

∞∑

k=0

(−il)k
k!

∫ ∞

−∞

[

αk + k
b2/3

u
αk−1

]

g2/3 e
−ius du

+
∞∑

n=1

1

(il)n+2

∫ ∞

−∞
g
[n]
2/3 e

−ius du

+ (rapid decay in l) + (higher orders in (αmax/EP ) (4.4.8)

and suitable regularization functions gj , g
[n]
j , b, b2/3 and the mass regularization func-

tion α as in (4.3.26, 4.3.29). In the low energy region u ≪ EP , the regularization
functions have the form

gs(u) =
1

32π3
Θ(u) , g[n]s (u) = 0 (4.4.9)

gl(u) =
1

32π3
Θ(u) , g

[n]
l (u) = b(u) = 0 (4.4.10)

g2/3(u) = g2/3(u) = b2/3(u) = 0 . (4.4.11)

Before entering the derivation, we briefly discuss these formulas. To this end, we
consider the situation where, like in the case without regularization, the vector v(p) in
(4.4.1) points into the direction p. In this case we can write the vector component as

P̂ (p) = pjγ
j (φf)(p) , (4.4.12)

where (φf) has the form of the scalar component considered in §4.3. Since multipli-
cation in momentum space corresponds to differentiation in position space, we obtain
for (4.4.3)

P (s, l) = −i
(

γs
∂

∂s
+ γl

∂

∂l
+ γ2

∂

∂x2
+ γ3

∂

∂x3

)

Pscalar(s, l) ,

where Pscalar is the scalar component (4.3.7) with h as in (4.3.4). We now substitute
for Pscalar the expansion on the light cone (4.3.26–4.3.28) and carry out the partial
derivatives. For the s- and l-components, this gives exactly the expansions (4.4.6,
4.4.7) with

gs = gl = h , g[n]s = g
[n]
l = h[n] , b = 0 . (4.4.13)
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For the components j = 2, 3, the calculation of the partial derivatives is not quite
so straightforward because the expansion of the scalar component (4.3.26–4.3.28) was
carried out for fixed x2 and x3. Nevertheless, one can deduce also the expansion (4.4.8)
from (4.3.26–4.3.28) if one considers x2 and x3 as parameters of the regularization

functions h, h[n] and α, and differentiates through, keeping in mind that differentiation
yields a factor 1/l (to get the scaling dimensions right). In this way, the simple example
(4.4.12) explains the general structure of the expansions (4.4.6–4.4.8). We point out
that the regularization function b vanishes identically in (4.4.13). This means that b is
non-zero only when the direction of the vector field v is modified by the regularization.
Thinking in terms of the decomposition into the one-particle states, we refer to this
regularization effect as the shear of the surface states.

We shall now derive the expansions (4.4.6–4.4.8). Since the Fourier integrals in
(4.4.3) are of the form (4.3.7), they have the expansion (4.3.24), valid close to the light
cone (4.3.9, 4.3.10). It remains to determine the parameter n0 in (4.3.24). We consider
the components j = s, l, 2 and 3 separately. According to (4.4.5), the function hs in
the low-energy region looks similar to the hyperbola depicted in Figure 4.2. The main
difference to the low-energy behavior of the scalar component (4.3.8) is the additional
factor u in hs which grows linearly along branch “A” of the hyperbola. Thus in the
low-energy region away from the origin,

(hs)u(αu) ∼ EP and max
v∈(0,EP )

|(hs)u(v)| ∼ EP . (4.4.14)

Hence it is natural to assume that hs satisfies the bound (4.3.23) with n0 = 0. Because
of the linearly growing factor u in the low-energy region, it is convenient to write the
regularization functions in the form

(hs)u(αu) =: −u gs(u) , (hs)
(n)
u (αu) =: −u g[n]s (u) (4.4.15)

with suitable functions gs and g
[n]
s (this can be done because, as explained after (4.3.21),

close to the origin u = 0, we can work with the unregularized fermionic projector).
This yields the expansion (4.4.6). According to (4.4.5) and (4.4.15), the regularization
functions have the low-energy limit (4.4.9). For the l-component, the situation is much
different. According to (4.4.5), the function hl in the low-energy limit has the form

hl(u, v) = − 1

32π3
v Θ(uv −m2) . (4.4.16)

The factor v decreases like m2/u along branch “A” of the hyperbola. Thus in the
low-energy region away from the origin,

(hl)u(αu) ∼ m2/EP whereas max
v∈(0,EP )

|(hl)u(v)| ∼ EP . (4.4.17)

Therefore, we cannot assume that hl satisfies the bound (4.3.23) with n0 = 0. But

(hl)
(1)
u (αu) ∼ 1 in the low-energy region, and thus we may choose n0 = 1. We conclude

that it is necessary to take into account two inner summands in (4.3.24), more precisely

Pl(s, l) =
1

(il)2

∞∑

k=0

(−il)k
k!

∫ ∞

−∞

[

(hl)
′
u(αu) α

k
u − k (hl)u(αu) α

k−1
u

]

e−ius du

+ · · · , (4.4.18)
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where “· · · ” stands for the regularization expansion and all terms neglected in (4.3.24).
In the low-energy region, we have according to (4.4.16, 4.3.29),

(hl)u(αu) = − 1

32π3
m2

u
= (hl)

′
u(αu) αu .

Thus in this region, the two summands in the square brackets of (4.4.18) are of the
same order of magnitude, and none of them can be neglected. In view of the low-energy
limit, we introduce the regularization functions as

(hl)
′
u(αu) =: −gl(u)

(hl)
[1+n]
u (αu) =: −(n+ 1) g

[n]
l (u)

(hl)
′
u(αu) αu − (hl)u(αu) =:

b(u)

u
gl(u) ; (4.4.19)

this yields the expansion (4.4.7). According to (4.4.5), the regularization functions
have the low-energy limit (4.4.10). We finally consider the components j = 2 and 3.
According to (4.4.5), these components are identically equal to zero in the low-energy
limit. But for u ∼ EP , they might behave similar to Ps or Pl. To be on the safe side,
we choose n0 = 1. Denoting the regularization functions by

(h2/3)
′
u(αu) =: g2/3(u)

(h2/3)
[1+n]
u (αu) =: g

[n]
2/3(u)

−(h2/3)u(αu) =:
b2/3(u)

u
g2/3(u) , (4.4.20)

we obtain the expansion (4.4.8). According to (4.4.5), the regularization functions g2/3,

g
[h]
2/3

and b2/3 vanish in the low-energy region, (4.4.11).

For clarity, we point out that choosing n0 = 1 (as in (4.4.7, 4.4.8)) is a generaliza-
tion of setting n0 = 0 (as in (4.4.6)), obtained by taking into account more summands
of the expansion (4.3.21). Nevertheless, the different behavior in the low-energy region
(4.4.14, 4.4.17) suggests that (4.4.7) and (4.4.8) should not be merely more general
formulas than (4.4.6), but that the behavior of Pj(s, l), j = l, 2, 3, should be really
different from that of Ps(s, l). We shall now make this difference precise. Compar-
ing (4.4.14) and (4.4.17) (and using that h2/3 vanishes in the low-energy region), it is
reasonable to impose that there should be a constant εshear > 0 with

|(hj)u(αu)| < εshear |(hs)u(αu)| for u ∼ EP and j = l, 2, or 3. (4.4.21)

In view of (4.4.14) and (4.4.17), εshear should be as small as

εshear ∼
m2

E2
P

. (4.4.22)

However, if the surface states have shear (as defined earlier in this section), the constant
εshear must in general be chosen larger. In order to keep our analysis as general as
possible, we will not specify here how εshear scales in the Planck energy, but merely
assume that m2/E2

P < εshear ≪ 1. Using (4.4.15), (4.4.19) and (4.4.20), the condition
(4.4.21) can be expressed in terms of the regularization functions gj and bj as

(
b

u
+ αu

)

gl,
b2/3

u
g2/3 < εshear u gs for u ∼ EP . (4.4.23)
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It is interesting to discuss what the condition (4.4.21) means for the functions Pj .
We begin with the case without regularization. In this case, the vector component of
P (x, y) points into the direction y−x, more precisely P (x, y) = i(y−x)jγjS(x, y) with
a scalar distribution S. In a composite expression like the closed chain P (x, y)P (y, x),
one can contract the tensor indices and obtains in a formal calculation P (x, y)P (y, x) =
(y − x)2 S(x, y) S(y, x) with a scalar factor (y − x)2 which vanishes on the light cone.
Let us consider this contraction in our light-cone coordinates. Before the contraction,
each factor (y−x)jγj = 2l γs+2s γl ≈ 2lγs is, if we take only the leading contribution
on the light cone (i.e. the lowest order in s/l), proportional to l. After the contraction,
however, the product (y−x)2 = 4ls is proportional to both l and s. Thus the contrac-
tion yields, to leading order on the light cone, a dimensionless factor s/l. While the
factor l−1 changes the scaling behavior in the “large” variable, the factor s tends to
make the composite expression “small” near the light cone. The analysis of the scaling
behavior in l can immediately be extended to the case with regularization by looking
at the expansions (4.4.6) and (4.4.7). Let us consider as an example the leading term
of the mass expansion. For the expansion (4.4.6), this is the summand k = 0, and
it scales like Ps(s, l) ∼ 1/l. If we assume that (4.4.21) holds with εshear according to
(4.4.22), then (4.4.23) shows that b(u) ∼ 1, and the summands in the square bracket in
(4.4.7) are of comparable size. Hence the leading term of the expansion (4.4.7) is also
the summand k = 0, and it scales in l like Pl(s, l) ∼ 1/l2. Hence the leading term of
the sum γlPl+γ

sPs behaves like P ∼ 1/l+O(1/l2). Since s and l are null directions, a
contraction of the tensor indices in the closed chain leads only to mixed products of the
form PsPl, and this mixed product scales in l like PsPl ∼ 1/l3. Thus, exactly as in the
case without regularization, the contraction of the tensor indices yields an additional
factor l−1. If on the other hand, the condition (4.4.21) were violated, the regulariza-
tion function b could be chosen arbitrarily large. But if b becomes large enough, the
cominant contribution to (4.4.7) is the summand k = 1 (notice that b does not appear
in the summand k = 0), and hence Pl(s, l) ∼ 1/l. This implies that Ps Pl ∼ 1/l2, and
the contraction does no longer yield an additional factor l−1. This consideration is
immediately extended to the components P2/3 by considering the l-dependence of the
summands in (4.4.8). We conclude that the condition (4.4.21) with εshear ≪ 1 means
that the contraction of the tensor indices yields a scalar factor which is small on the
light cone. We refer to this condition by saying that the vector component is null
on the light cone. If one wishes, one can simply take this condition as an additional
assumption on the fermionic projector of the vacuum. However, the property of the
vector component being null on the light cone also arises in the study of composite
expressions in the fermionic projector as a compatibility condition and can thus be
derived from the equations of discrete space-time (see Remark 6.2.4)).

The next question is if our regularization functions α, gj, g
[n]
j and b, which appear

in our expansions (4.4.6–4.4.8), are all independent of each other, or whether there
are some relations between them. Recall that the regularization functions are given in
terms of the boundary values of the functions ∂nv hj(u, v), n ≥ 0, on the curve (u, αu)
(see (4.4.15, 4.4.19, 4.4.20)). Since the (hj)j=s,l,2,3 were treated in our two-dimensional
Fourier analysis as four independent and (apart from our regularity assumptions) arbi-
trary functions, we can certainly not get relations between the regularization functions
by looking at the situation in the uv-plane. But we can hope that when we consider
the surface states in four-dimensional momentum space (as introduced in §4.3), the
geometry of the hypersurface defined by these states might yield useful restrictions for



4.4. THE REGULARIZED VACUUM ON THE LIGHT CONE, VECTOR COMPONENT 109

the regularization functions. First of all, we mention that our discussion of surface
states of the previous section applies without changes also to the vector component;
we will in what follows make use of the restriction to surface states. Since in the
low-energy region the regularization is irrelevant and the results of §2.5 apply, we can

furthermore restrict attention to large energy and momentum ω, |~k| ∼ EP . We choose

polar coordinates (ω, k = |~k|, ϑ, ϕ) in momentum space and introduce the “mass shell
coordinates”

U = −|~k| − ω , V = |~k| − ω . (4.4.24)

Notice that, in contrast to the coordinates u and v, (4.3.6), the variables (4.4.24) are
the spherically symmetric part of a four-dimensional coordinate system (U, V, ϑ, ϕ).
Extending also the notation (4.4.4) in a spherically symmetric way, we introduce the
Dirac matrix

γS =
1

2

(

γ0 − ~γ~k

k

)

.

Let us consider what the expansions (4.4.6–4.4.8) tell us about the surface states.
Similar as explained before (4.3.30), the discontinuities of hj come about in (4.4.2)
when the plane (u, v) = const meets and is tangential to the hypersurface of the surface
states. We denote the tangential intersection point of the surface (u, v) = const with
the hypersurface by Q = (U, V, ϑ, ϕ). In the high-energy region under consideration,
the variable U is of the order EP . The variable V , on the other hand, will be of
order α(U) < αmax. Thus our hypersurface is close to the mass cone in the sense
that V/U ∼ αmax/EP ≪ 1. As a consequence, the coordinate ϑ of the intersection

point Q must be small (more precisely, ϑ ≤
√

αmax/EP ), and we conclude that, to
leading order in αmax/EP , V = α(U). Hence we can write the hypersurface as a graph
V = A(U, ϑ, ϕ) with a function A satisfying the condition

A(U, ϑ = 0, ϕ) = α(U) + (higher orders in αmax/EP ) .

One can think of the function A(u, ϑ, ϕ) as the extension of α to the four-dimensional
setting. In order to determine the structure of the Dirac matrices, we first recall that
the assumption that the vector component is null on the light cone implied in our
consideration after (4.4.6) that the parameter n0 corresponding to Pl, P2 and P3 was
equal to one. This means that to leading order in αmax/EP , only the function hs(u, v)

is discontinuous on the curve (u, αu), and we conclude that the distribution P̂ is on
the hypersurface at the point Q a scalar multiple of γs; we use the short notation
P̂ (Q) ∼ γs. Using again that ϑ is small, we obtain that to leading order in αmax/EP ,

P̂ (U,A(U, ϑ = 0), ϑ = 0) ∼ γs. Since the spatial direction of the vector y−x in (4.1.3)
can be chosen arbitrarily, we can by rotating our coordinate system immediately extend
this result to general ϑ and ϕ, and obtain that P̂ (U,α(U, ϑ, ϕ), ϑ, ϕ) ∼ γS . Hence the

surface states are described by a contribution to P̂ of the form

− 32π3 g(U, ϑ, ϕ) γS δ(V −A(U, ϑ, ϕ)) + (higher orders in αmax/EP ) (4.4.25)

with some function g. It is reasonable to assume that the functions in (4.4.25) are
sufficiently regular. Similar to our regularity condition (4.3.12) for h, we here assume
that the derivatives of A and gS have the natural scaling behavior in EP . More
precisely, for all n1, n2, n3 ≥ 0 there should exist a constant c≪ lEP with

|∂n1
U ∂n2

ϑ ∂n3
ϕ A(U, ϑ, ϕ)| + |∂n1

U ∂n2
ϑ ∂n3

ϕ g(U, ϑ, ϕ)| ≤ c E−n1
P max(|A|+ |g|) (4.4.26)

for all U ∼ EP .
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The form of the surface states (4.4.25) allows us to calculate the regularization

functions gj , g
[n]
j and bj . For this, we first represent the matrix γS in (4.4.25) in

the Dirac basis (γj)j=s,l,2,3; this yields the contributions of the surface states to the
distributions (vj f). By substituting into (4.4.2) and carrying out the integrals over
p2 and p3, one obtains the functions hj . Finally, the regularization functions can be
computed via (4.4.15, 4.4.19, 4.4.20). This whole calculation is quite straightforward,
and we only state the main results. To leading order in v/u, we can take A and g as
constant functions, and thus the calculation of γshs + γlhl reduces to the integral

− 1

π

∫ ∞

−∞
dp2

∫ ∞

−∞
dp3

(

γs +
v

u
γl
)

g(u, ϑ = 0) δ

(

v − αu −
p22 + p23
u

)

+(higher orders in v/u, αmax/EP ) .

An evaluation in cylindrical coordinates yields that both gs(u) and gl(u) are equal to
g(u, ϑ = 0), and we thus have the important relation

gs(u) = gl(u) =: g(u) . (4.4.27)

In the case without shear of the surface states, this relation was already found in
(4.4.13); we now see that it holds in a much more general setting. The calculation of
the angular components j = 2, 3 gives for g2/3 contributions proportional to u∂2/3A and
u ∂2/3g. Unfortunately, this is not very helpful because we have no information on the

derivatives of A and g. The computation of the regularization functions g
[n]
j involves

higher derivatives of the functions in (4.4.25) and becomes quite complicated. We
remark that the above analysis of the surface states can be carried out similarly for the
scalar component of the previous section and gives relations between the regularization
functions h and h[n], (4.3.25), but these relations all depend on unknown details of the
geometry of the hypersurface. We thus conclude that (4.4.27) is the only relation
between the regularization functions which can be derived with our present knowledge
on the surface states.

We finally mention two assumptions on the regularization which, although we
will not use them in the present work, might be worth considering later. The first
assumption is related to the fact that P should as a projector be idempotent, P 2 = P .
A formal calculation using (4.1.3) and (4.1.5) yields that

(P 2)(x, y) =

∫
d4p

(2π)4
P̂ (p)2 e−ip(x−y) with (4.4.28)

P̂ (p)2 =
(
2φ(p) vj(p) γ

j + (vj(p) v
j(p) + φ(p)2)

)
f(p)2 . (4.4.29)

In order to make sense out of (4.4.29), one must regularize in momentum space, e.g. by
considering the system in finite 3-volume and take a suitable limit. Since the results of
this analysis depend sensitively on how the regularization in momentum space is carried
out, (4.4.29) cannot give any detailed information on the functions φ, v, or f . The
only simple conclusion independent of the regularization is that the scalars multiplying
the factors vjγ

j in (4.1.5) and (4.4.29) should have the same sign, and thus φ(p) f(p)
should be positive. According to (4.3.4), this implies that the regularization function
h be positive,

h(u) ≥ 0 for all u.

This assumption is called the positivity of the scalar component. The second assump-
tion is obtained by considering the rank of P̂ (p). The 4 × 4 matrix (p/ + m) in the
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integrand of the unregularized fermionic projector (4.1.1) has the special property of
being singular of rank two. This means that the fermionic projector is composed of
only two occupied fermionic states, for every momentum p on the mass shell. The
natural extension of this property to the case with regularization is that for every p
on the hypersurface defined by the surface states, the matrix P̂ (p) corresponding to
the vector-scalar structure (4.1.5) should be of rank two. We refer to this property as
the assumption of half occupied surface states. In terms of the functions h(u, v) and
hj(u, v), it means that hs(u, α(u)) hl(u, αu) = h(u, αu)

2. Using (4.3.25, 4.4.15, 4.4.19,
4.4.27), the assumption of half occupied surface states yields the following relation
between the regularization functions of the scalar and vector components,

(α(u) u+ b(u)) g(u)2 = h(u)2 . (4.4.30)

4.5. The General Formalism

In this section we shall extend our previous analysis on the light cone in three
ways: to the case with interaction, to systems of Dirac seas as introduced in §2.3
and to composite expressions in the fermionic projector. Our first step is to develop a
method which allows us to introduce a regularization into the formulas of the light-cone
expansion (2.5.45). We here only motivate and describe this method, the rigorous jus-
tification is given in Appendix D. Since the formulas of the light-cone expansion involve
the factors T (n), (2.5.43, 2.5.42, 2.5.40), we begin by bringing these distributions into a
form similar to our expansion of the regularized scalar component (4.3.26). By partly
carrying out the Fourier integral (2.5.40) in the light-cone coordinates introduced in
§4.3 (see (4.3.5, 4.3.6)), we can write the distribution Ta as

Ta(s, l) =
1

32π3
1

il

∫ ∞

0
e−

ial
u
− ius du . (4.5.1)

This formula can be regarded as a special case of the expansion (4.3.20) (notice that the
function h(u, v) corresponding to Ta is computed similar to (4.3.8)), but (4.5.1) holds
also away from the light cone. The distribution Ta is not differentiable in a at a = 0,
as one sees either directly in position space (2.5.41) or equivalently in (4.5.1), where
formal differentiation leads to a singularity of the integrand at u = 0. We bypassed this
problem by working instead of Ta with the distribution T reg

a (2.5.42). Let us briefly
consider what this “regularization” means in the integral representation (4.5.1). The
formal a-derivative of (4.5.1),

d

da
Ta(s, l) = − 1

32π3

∫ ∞

0

1

u
e−

ial
u
− ius du ,

is well-defined and finite for a 6= 0 because of the oscillatory factor exp(−ial/u).
However, the limit a → 0 leads to a logarithmic divergence. Thus one must subtract
a logarithmic counter term before taking the limit; more precisely,

T (1)(s, l) = − 1

32π3
lim
a→0

∫ ∞

−∞

[
1

u
e−

ial
u Θ(u) − (1 + log a) δ(u)

]

e−ius du .

The higher a-derivatives T (n), n > 1, are defined similarly using suitable counterterms
which are localized at u = 0. Since we do not need the details in what follows, we
simply write

T (n)(s, l) = − 1

32π3
(−il)n−1

∫ ∞

0

(
1

un

)reg

e−ius du . (4.5.2)
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Consider a summand of the light-cone expansion (2.5.45),

(phase-inserted line integrals) T (n)(s, l) . (4.5.3)

According to our assumption of macroscopic potentials and wave functions described
in §4.1, we shall regularize only the distribution T (n), keeping the iterated line integral
unchanged. Let us briefly analyze what this assumption means quantitatively. Not
regularizing the iterated line integral in (4.5.3), denoted in what follows by F , will
be a good approximation if and only if F is nearly constant on the Planck scale. In
other words, not regularizing F is admissible if we keep in mind that this method can
describe the regularized fermionic projector only modulo contributions of the order
∂jF/EP . In the case that this last derivative acts on the bosonic potentials and fields
contained in F , we obtain the limitation already mentioned in §4.1 that energy and
momentum of the bosonic fields should be small compared to the Planck energy. More
precisely, we can describe the fermionic projector only to leading order in (lmacroEP )

−1,
where lmacro is a typical length scale of macroscopic physics. A point we did not pay
attention to earlier is that the iterated line integrals also involve factors (y− x) which
are contracted with the bosonic potentials and fields. Thus in light-cone coordinates,
F will in general contain factors of l. If the derivative in ∂jF acts on a factor l, this
factor is annihilated. Hence keeping the iterated line integrals in (4.5.3) unchanged
can describe only the leading order in (lEP )

−1 of the fermionic projector. We conclude
that the assumption of macroscopic potentials and wave functions is justified if and
only if we restrict our analysis to the leading order in (lEP )

−1 and (lmacroEP )
−1. We

remark that going beyond the leading order in (lEP )
−1 or (lmacroEP )

−1 would make
it impossible to describe the interaction by classical fields and is thus at present out
of reach.

The restriction to the leading order in (lEP )
−1 is a considerable simplification.

First of all, we can neglect all regularization expansions (which are just expansions in
powers of (lEP )

−1; see e.g. (4.3.27) and the discussion thereafter), and thus we do not

need to consider the regularization functions h[n] and g
[n]
j . Next we compare for given

k the summands in (4.4.6–4.4.8) (the analysis for fixed k is justified assuming that the
vector component is null on the light cone; see (4.4.21) and the discussion thereafter).
One sees that the tensor index j = s gives the leading contribution in (lEP )

−1 to the
vector component. This is a great simplification when tensor indices are contracted
in composite expressions. Namely, when the vector component is contracted with the
bosonic potentials or fields, it suffices to consider the contribution Ps, (4.4.6). If vector
components are contracted with each other, the products of type P2/3P2/3 are according

to (4.4.6–4.4.8) of higher order in (lEP )
−1 or εshear than corresponding products of type

Ps Pl. Hence in such contractions, we must take into account both Ps and Pl, but we
can again neglect the components P2 and P3. We conclude that the only regularization
functions which should be of relevance here are those appearing in (4.3.26) and in the
mass expansions of (4.4.6) and (4.4.7), i.e. the four functions

α(u) , g(u) , h(u) and b(u) (4.5.4)

with g given by (4.4.27).
Under the assumption of macroscopic potentials and wave functions, it suffices to

regularize the factor T (n) in (4.5.3). Our method for regularizing T (n) is to go over
to the integral representation (4.5.2) and to insert the regularization functions (4.5.4)
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into the integrand. The procedure depends on whether the contribution to the light-
cone expansion is of even or odd order in the mass parameter m. Furthermore, we
must treat the factors (y − x)jγj in the light-cone expansion separately. The precise
regularization method is the following.

Regularization of the light-cone expansion: A summand of the light-cone expan-
sion (2.5.45) which is proportional to mp,

mp (phase-inserted line integrals) T (n)(s, l) , (4.5.5)

has the regularization

(−1) (phase-inserted line integrals) (4.5.6)

×(−il)n−1
∫ ∞

−∞
du

(
1

un

)reg

e−ius ×
{

h(u) a(u)
p−1
2 for p odd

g(u) a(u)
p
2 for p even

+ (rapid decay in l) + (higher orders in (lEP )
−1, (lmacroEP )

−1, εshear) . (4.5.7)

A contribution to the light-cone expansion (2.5.45) which is proportional to mp and
contains a factor (y − x)jγj ,

mp (phase-inserted line integrals) (y − x)jγj T (n)(s, l) , (4.5.8)

is properly regularized according to

(−1) (phase-inserted line integrals)

×(−il)n−1
∫ ∞

−∞
du

[

2l γs
(

1

un

)reg

+ 2in γl
(

1

un+1

)reg

+ 2l b(u) γl
(

1

un+2

)reg]

× e−ius ×
{

h(u) a(u)
p−1
2 for p odd

g(u) a(u)
p
2 for p even

+ (contributions ∼ γ2, γ3)

+ (rapid decay in l) + (higher orders in (lEP )
−1, (lmacroEP )

−1, εshear) . (4.5.9)

In these formulas, the regularization function a is given by

a(u) = u α(u) , (4.5.10)

εshear is defined via (4.4.21), and lmacro is a macroscopic length scale.

Let us briefly explain and motivate this regularization method (see Appendix D
for the derivation). First of all, we note that, after writing the factor (y − x)jγ

j

together with the iterated line integrals, the expression (4.5.8) is of the form (4.5.5),
and the regularization rule (4.5.7) applies. Thus (4.5.9) is an extension of (4.5.7)
giving additional information on the l-component of the factor (y − x)jγ

j. As we
shall see later, this information is essential when the factor (y − x)j in (4.5.8) is to
be contracted with another factor (y − x)j in a composite expression. To explain
the formula (4.5.7), we first point out that the expansions of the scalar and vector
components (4.3.26–4.3.28, 4.4.6, 4.4.7) do not involve the mass parameter m. The
reason is that m was absorbed into the regularization functions g, h and α, as one
sees by considering the low-energy limit; see (4.3.29, 4.4.9, 4.4.10). Furthermore, we
note that each contribution to the mass expansions of the scalar or vector components
contains either a factor h or g (see (4.3.26, 4.4.6, 4.4.7)), and it is therefore reasonable
that we should also use exactly one of these factors here. As a consequence, the power
mp in (4.5.5) uniquely determines how many factors of each regularization function we
should take. Namely for even p, we must take one factor g and p/2 factors α, whereas
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the case of odd p gives rise to one factor h and (p − 1)/2 factors α. On the other
hand, we know that the insertion of the regularization functions into (4.5.2) should
modify the behavior of the integrand only for large u ∼ EP ; in particular, we should
for small u have a behavior ∼ u−n. In order to comply with all these conditions, one
must insert the regularization functions precisely as in (4.5.7). In order to motivate
(4.5.9), we consider the expansion of the vector component (4.4.6, 4.4.7). Recall that
the regularization function b vanishes in the low-energy region (4.4.10) and describes
the shear of the surface states (as explained after (4.4.13)). Since this effect is not
related to the mass of the Dirac particle, it is plausible that we should not associate
to b a power of m. For the mass expansion of the vector component, we should thus
collect all terms to a given power of α. The contribution ∼ αk to γsPs + γlPl takes
according to (4.4.6, 4.4.7) the form

1

il

(−il)k
k!

∫ ∞

−∞

(

−u γs +
k − 1

il
γl − b

u
γl
)

g αk e−ius du .

In order to obtain the correct behavior in the low-energy region, we must multiply this
formula by −2l and choose k = n+1. This explains the form of the square bracket in
(4.5.9). The combination of the regularization functions g, h and a in (4.5.9) can be
understood exactly as in (4.5.7) using power counting in m.

Our constructions so far were carried out for the case N = 1 of one Dirac sea. We
will now generalize our regularization method to systems of Dirac seas as introduced
in (2.3) and will also introduce a compact notation for the regularization. Exactly
as in §2.5 we only consider the auxiliary fermionic projector, because the fermionic
projector is then obtained simply by taking the partial trace (2.3.20). We first outline
how chiral particles (e.g. neutrinos) can be described. Without regularization, a chiral
Dirac sea is obtained by multiplying the Dirac sea of massless particles with the chiral
projectors χL/R = 1

2 (11∓ρ); for example in the vacuum and left/right handed particles,

P̂ (p) = χL/R p/ δ(p
2) Θ(−p0) . (4.5.11)

The most obvious regularization method is to deduce the regularized chiral Dirac sea
from a Dirac sea regularized with our above methods again by multiplying from the
left with a chiral projector. This simple method indeed works, under the following
assumptions. First, we must ensure that the regularized fermionic projector of the
vacuum is a Hermitian operator. To this end, we must assume that the scalar com-
ponent φ in (4.1.5) be identically equal to zero (this generalizes the requirement of
massless particles needed in the case without regularization). Hence we regularize
(4.5.11) by setting

P̂ (p) = χL/R vj(p)γ
j f(p) .

The expansions near the light cone are then obtained from (4.3.27, 4.3.28) and (4.4.6–

4.4.8) by setting the scalar regularization functions h and h[n] to zero and by mul-
tiplying with χL/R. Assuming furthermore that the bosonic potentials are causality
compatible (see Def. 2.3.2), the formulas of the light-cone expansion are regularized
likewise by taking the regularizations (4.5.7, 4.5.9) with h set identically equal to zero,
and by multiplying from the left by a chiral projector χL/R.

We next consider the generalization to systems of Dirac seas. In the vacuum,
we can describe a system of Dirac seas by taking a direct sum of regularized Dirac
seas and by using instead of the chiral projectors χL/R the chiral asymmetry matrix
X (see (2.3.7)). Since we may choose the regularization functions for each Dirac
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sea independently, this procedure clearly increases the total number of regularization
functions. However, it is natural to impose that the regularization should respect all
symmetries among the Dirac seas. More precisely, if the fermionic projector of the
vacuum contains identical Dirac seas (e.g. corresponding to an underlying color SU(3)
symmetry), then we will always use the same regularization functions for all of these
Dirac seas. Once the regularization has been specified for the vacuum, we can again
apply the rules (4.5.5–4.5.9) to regularize the light-cone expansion. In the special case
that the bosonic potentials are diagonal in the Dirac sea index, we can simply take the
direct sum of the contributions (4.5.7, 4.5.9), using in each summand the regularization
functions of the corresponding vacuum Dirac sea. In the general case of a non-diagonal
bosonic field, the regularization functions can be inserted uniquely if one uses that,
according to the assumption of macroscopic potentials and wave functions of §4.1, the
fermionic projector is modified by the bosonic fields only on the macroscopic scale,
so that its microscopic structure is the same as in the vacuum. For example, one
can in the case of a gravitational and Yang-Mills field make the bosonic potential
locally to zero by transforming to a suitable coordinate sytem and gauge, can in this
system insert the regularization functions as in the vacuum and can finally transform
back to the original system. We conclude that the generalization of our regularization
method to systems of Dirac seas is quite straightforward and canonical. Therefore we
can introduce a short notation for the regularizations of the factors T (n) in the light-
cone expansion by simply adding a label for the order in the mass parameter. More
precisely, we introduce in the case N = 1 of one Dirac sea the following abbreviations
for the Fourier integrals in (4.5.7) and (4.5.9),

T
(n)
[p] ≡ −(−il)n−1

∫ ∞

−∞
du

(
1

un

)reg

e−ius

×
{

h(u) a(u)
p−1
2 for p odd

g(u) a(u)
p
2 for p even

(4.5.12)

(ξ/ T
(n)
[p] ) ≡ −(−il)n−1

∫ ∞

−∞
du e−ius ×

{

h(u) a(u)
p−1
2 for p odd

g(u) a(u)
p
2 for p even

×
[

2l γs
(

1

un

)reg

+ 2in γl
(

1

un+1

)reg

+ 2l b(u) γl
(

1

un+2

)reg]

(4.5.13)

T
(n)
{p} ≡ −(−il)n−1

∫ ∞

−∞
du

(
1

un

)reg

e−ius b(u)

×
{

h(u) a(u)
p−1
2 for p odd

g(u) a(u)
p
2 for p even .

(4.5.14)

In the case of a system of Dirac seas (2.3.3), we use the same notation for the corre-
sponding direct sum. With this notation, the regularization of the light-cone expansion
is carried out (modulo all the contributions neglected in (4.5.7) and (4.5.9)) merely by

the replacement mp T (n)(x, y) → T
(n)
[p] and by marking with brackets that the factors

(y − x)jγj and T
(n)
[p] belong together (where we use the abbreviation ξ ≡ y − x) . We

call a factor ξ/ inside the brackets (ξ/T
(n)
[p] ) an inner factor ξ/. Notice that the functions
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T
(n)
{p} in (4.5.14) involve the regularization function b; they will be needed below to

handle contractions between the inner factors.
We finally come to the analysis of composite expressions in the fermionic projec-

tor. In §4.2 we already discussed the simplest composite expression, the closed chain
P (x, y) P (y, x) in the vacuum. In order to analyze the closed chain near the light
cone, we substitute for P (x, y) and P (y, x) the regularized formulas of the light-cone
expansion and multiply out. It is convenient to use that the fermionic projector is
Hermitian and thus P (y, x) = P (x, y)∗; hence the light-cone expansion of P (y, x) is
obtained from that for P (x, y) by taking the adjoint (with respect to the spin scalar
product). The iterated line integrals can be multiplied with each other giving smooth
functions; also we can simplify the resulting product of Dirac matrices using their

anti-commutation relations. Denoting the adjoints of (4.5.12) and (4.5.13) by T
(n)
[p]

and (ξ/T
(n)
[p]

), respectively, we thus obtain for the closed chain a sum of terms of the

following forms,

F T
(n1)
[r1]

T
(n2)
[r2]

, F (ξj1T
(n1)
[r1]

) T
(n2)
[r2]

F T
(n1)
[r1]

(ξj2T
(n2)
[r2]

) , F (ξj1T
(n1)
[r1]

) (ξj2T
(n2)
[r2]

) ,
(4.5.15)

where F is a smooth function in x and y and nj, rj are integer parameters. Here
the tensor indices of the inner factors ξ are contracted either with each other or with
tensor indices in the smooth prefactor F . In order to analyze Euler-Lagrange equa-
tions like for example (3.5.20, 3.5.21), we need to consider more general expressions.
More precisely, all Euler-Lagrange equations in this book can be written in terms of
expressions being a product of a smooth function with a quotient of two monomials

in T
(n)
[r] and T

(n)
[r] , possibly with inner factors ξ in the numerator. Thus our key problem

is to mathematically handle expressions of the form

(smooth function)×
[

T
(l1)
[s1]
· · ·T (lf )

[sf ]
T
(lf+1)

[sf+1]
· · · T (lg)

[sg]

]−1

×(ξj1T
(n1)
[r1]

) · · · (ξjaT (na)
[ra]

) T
(na+1)
[ra+1]

· · ·T (nb)
[rb]

× (ξjb+1
T
(nb+1)
[rb+1]

) · · · (ξjcT (nc)
[rc]

) T
(nc+1)
[rc+1]

· · ·T (nd)
[rd]

(4.5.16)

with 0 ≤ f ≤ g, 0 ≤ a ≤ b ≤ c ≤ d, parameters lj, si, ni, pi and tensor indices ji.
Here the tensor indices of the inner factors ξi are again contracted either with other
inner factors or with tensor indices in the smooth prefactor. We mention for clarity
that, since the factors in (4.5.16) are complex functions or, in the case N > 1 of
systems of Dirac seas, direct sums of complex functions, the product (4.5.16) clearly
is commutative.

The inner factors in (4.5.16) can be simplified using the particular form (4.5.12,

4.5.13) of T
(n)
[r] and (ξjT

(n)
[r] ). We begin with the case of an inner factor which is

contracted with a tensor index in the smooth prefactor, i.e. with products of the form

· · ·F j (ξjT
(n)
[r] ) · · · or · · ·F j (ξjT

(n)
[r] ) · · ·

and a smooth vector field F , where “· · · ” stands for any other factors of the form as
in (4.5.16). According to (4.5.13), to leading order in (lEP )

−1 it suffices to take into
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account the s-component, and thus (4.5.12) yields that (ξ/T
(n)
[r] ) ≈ 2l γs T

(n)
[r] . Since

2l γs coincides on the light cone with ξ/, we conclude that, to leading order in (lEP )
−1,

F j (ξjT
(n)
[r] ) = F jξj T

(n)
[r] and F j (ξj T

(n)
[r] ) = F jξjT

(n)
[r] . (4.5.17)

These relations coincide with what one would have expected naively. We next consider
the case of two inner factors which are contracted with each other, i.e. products of the
following form,

· · · (ξjT (n1)
[r1]

)(ξjT
(n2)
[r2]

) · · · , · · · (ξjT (n1)
[r1]

)(ξjT
(n2)
[r2]

) · · ·
or · · · (ξjT (n1)

[r1]
)(ξjT

(n2)
[r2]

) · · · .
(4.5.18)

In this case, the product cannot be calculated naively because the factor ξjξ
j = ξ2

vanishes on the light cone. But we can still compute the product using the Fourier
representation (4.5.13). Since the s- and l-directions are null, only the mixed products
of the s- and l-components in (4.5.13) contribute, and we obtain

(ξjT
(n1)
[r1]

)(ξjT
(n2)
[r2]

)

= (−il)n1−1 l

∫ ∞

−∞
du1

1

un1
1

e−iu1s ×
{

h(u1) a(u1)
r1−1

2 for r1 odd

g(u1) a(u1)
r1
2 for r1 even

×(−il)n2−1

∫ ∞

−∞
du2

[

2in2

un2+1
2

+
2l b(u2)

un2+2
2

]

e−iu2s

×
{

h(u2) a(u2)
r2−1

2 for r2 odd

g(u2) a(u2)
r2
2 for r2 even

+(−il)n1−1

∫ ∞

−∞
du1

[

2in1

un1+1
1

+
2l b(u1)

un1+2
1

]

e−iu1s

×
{

h(u1) a(u1)
r1−1

2 for r1 odd

g(u1) a(u1)
r1
2 for r1 even

×(−il)n2−1 l

∫ ∞

−∞
du2

1

un2
2

e−iu2s ×
{

h(u2) a(u2)
r2−1

2 for r2 odd

g(u2) a(u2)
r2
2 for r2 even ,

and similarly for the two other products in (4.5.18). In the case of systems of Dirac
seas, this calculation can be done for each summand of the direct sum separately.
Rewriting the Fourier integrals using the notation (4.5.12) and (4.5.14), we get the
following result.

Contraction rules: To leading order in (lEP )
−1,

(ξjT
(n1)
[r1]

)(ξjT
(n2)
[r2]

)

= −2 T (n1)
[r1]

(n2 T
(n2+1)
[r2]

+ T
(n2+2)
{r2}

) − 2 (n1 T
(n1+1)
[r1]

+ T
(n1+2)
{r1}

) T
(n2)
[r2]

(4.5.19)
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(ξjT
(n1)
[r1]

)(ξjT
(n2)
[r2]

)

= −2 T (n1)
[r1]

(n2 T
(n2+1)
[r2]

+ T
(n2+2)
{r2}

) − 2 (n1 T
(n1+1)
[r1]

+ T
(n1+2)
{r1}

) T
(n2)
[r2]

(4.5.20)

(ξjT
(n1)
[r1]

)(ξjT
(n2)
[r2]

)

= −2 T (n1)
[r1]

(n2 T
(n2+1)
[r2]

+ T
(n2+2)
{r2}

) − 2 (n1 T
(n1+1)
[r1]

+ T
(n1+2)
{r1}

) T
(n2)
[r2]

. (4.5.21)

By iteratively applying (4.5.17) and the contraction rules (4.5.19–4.5.21), we can in
(4.5.16) eliminate all inner factors ξ to end up with products of the form

(smooth function)
T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · · T (bβ)

◦

T
(c1)
◦ · · ·T (cγ)

◦ T
(d1)
◦ · · ·T (dδ)

◦

(4.5.22)

with parameters α, β ≥ 1, γ, δ ≥ 0 and ai, bi, ci, di (if γ = 0 = δ the denominator
clearly is equal to one). Here each subscript “◦” stands for an index [r] or {r}. The
quotient of the two monomials in (4.5.22) is called a simple fraction.

We point out that the above transformation rules for the inner factors (4.5.17) and
(4.5.19–4.5.21) are identities valid pointwise (i.e. for fixed x and y) close to the light
cone. We anticipate that Euler-Lagrange equations like (3.5.20, 3.5.21) do not lead us
to evaluate the products of the form (4.5.16) pointwise, but merely in the weak sense.
Therefore, we now go over to a weak analysis of the simple fraction. In the case of a
continuous regularization, we thus consider the integral

∫

d4x η(x)
T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · ·T (bβ)

◦

T
(c1)
◦ · · ·T (cγ)

◦ T
(d1)
◦ · · · T (dδ)

◦

(4.5.23)

with a test function η. Before coming to the derivation of calculation rules for the
integrand in (4.5.23), we must think about how the test function η is to be chosen. As
explained in §4.2 in the example of the closed chain (4.2.2), a weak integral in general
depends essentially on the unknown high-energy behavior of the fermionic projector
and is therefore undetermined. To avoid this problem, we must evaluate (4.5.23) in
such a way that our expansions near the light cone become applicable. To this end, we
assume that η has its support near the light cone, meaning that in light-cone coordinates
(s, l, x2, x3), the “large” variable l satisfies on the support of η the conditions (4.3.10).
For clarity, we remark that this definition does not state that the support of η should
be in a small neighborhood of the light cone, but merely in a strip away from the
origin. This is sufficient because we shall extract information on the behavior near the
light cone by considering the singularities of the integral for EP → ∞ (see (4.5.29)
below). Furthermore, we assume that η is macroscopic in the sense that its partial
derivatives scale in powers of l−1 or l−1macro. Under these assumptions, the integrand
in (4.5.23) is macroscopic in l, and carrying out the s- and l-integrals in (4.5.23) gives
a function which is macroscopic in the “transversal” variables x2 and x3. Therefore,
in the three variables (l, x2, x3), a weak analysis is equivalent to a pointwise analysis,
and thus it suffices to consider the s-integral in (4.5.23), i.e. the expression

∫ ∞

−∞
ds η

T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · ·T (bβ)

◦

T
(c1)
◦ · · ·T (cγ)

◦ T
(d1)
◦ · · ·T (dδ)

◦

(4.5.24)
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for fixed l, x2 and x3. In the case of a discrete regularization, the integral in (4.5.23)
must be replaced by a sum over all space-time points, i.e. we must consider instead of
(4.5.23) the weak sum

∑

x∈M

η(x)
T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · · T (bβ)

◦

T
(c1)
◦ · · ·T (cγ)

◦ T
(d1)
◦ · · ·T (dδ)

◦

, (4.5.25)

whereM ⊂ R4 are the discrete space-time points and η is a macroscopic function in R4

with support near the light cone. Up to a normalization factor, (4.5.25) can be regarded
as a Riemann sum which approximates the integral (4.5.23). Assuming that the space-
time points have a generic position in R4 and keeping in mind that the function inside
the sum (4.5.25) is macroscopic in the variables l, x2, and x3, the Riemann sum and
the integral indeed coincide to leading order in (lEP )

−1 and (lmacroEP )
−1. Hence it is

admissible to work also in the discrete case with the one-dimensional integral (4.5.24).
Let us analyze the integral (4.5.24) in more detail. We first consider how (4.5.24)

scales in the Planck energy. In the limit EP →∞, the factors T
(n)
◦ go over to distribu-

tions which are in general singular on the light cone. Hence their product in (4.5.24)
becomes ill-defined for EP → ∞ even in the distributional sense, and thus we expect
that the integral (4.5.24) should diverge for EP →∞. The order of this divergence can
be determined using the following power counting argument. Keeping in mind that
the regularization functions decay on the Planck scale u ∼ EP , the Fourier integrals
(4.5.12) and (4.5.14) behave on the light cone (i.e. for s = 0) like

T
(n)
◦ ∼ logg(EP ) E

−n+1
P

with g = 1 in the case n = 1 and g = 0 otherwise. Hence the product in the integrand
of (4.5.24) scales on the light cone as

T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · ·T (bβ)

◦

T
(c1)
◦ · · ·T (cγ)

◦ T
(d1)
◦ · · ·T (dδ)

◦

∼ logg(EP )E
L
P (4.5.26)

with g ∈ Z and

L = α+ β − γ − δ −
α∑

j=1

aj −
β
∑

j=1

bj +

γ
∑

j=1

cj +

δ∑

j=1

dj . (4.5.27)

We call L the degree of the simple fraction. We will here restrict attention to the
case L > 1. In this case, the simple fraction (4.5.26) diverges in the limit EP → ∞
at least quadratically. If s is not zero, the oscillations of the factor exp(−ius) in

(4.5.12, 4.5.14) lead to a decay of T
(n)
◦ on the scale s ∼ E−1P . This consideration shows

that the dominant contribution to the integral (4.5.24) when EP →∞ is obtained by
evaluating η on the light cone, and the scaling behavior of this contribution is computed
by multiplying (4.5.26) with a factor E−1P . We conclude that (4.5.24) diverges in the
limit EP →∞, and its leading divergence scales in Ep like

η(s = 0) logg(EP ) E
L−1
P . (4.5.28)

Collecting the logarithmic terms in the light-cone expansion, one can easily compute
the parameter g. We remark that due to possible zeros in the denominator, the
integral (4.5.24) might diverge even for finite EP . In this case we can still use (4.5.28)
if we set the proportionality factor equal to plus or minus infinity. We also note that, by
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substituting the Fourier representations (4.5.12, 4.5.14) into (4.5.24), one can rewrite
the products in (4.5.24) in terms of the regularization functions (this is explained in
detail in Appendix E for a particular choice of regularization functions). Collecting
the factors of l in (4.5.12) and (4.5.14), we end up with the following result.

Weak evaluation on the light cone: Consider the integral (4.5.24) for a simple
fraction of degree L > 1. Then there is an integer g ≥ 0 and a real coefficient creg
independent of s and l such that for every macroscopic test function η,

∫ ∞

−∞
ds η

T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · ·T (bβ)

◦

T
(c1)
◦ · · ·T (cγ)

◦ T
(d1)
◦ · · · T (dδ)

◦

=
creg
(il)L

η(s = 0) logg(EP )E
L−1
P

+ (higher orders in (lEP )
−1 and (lmacroEP )

−1) . (4.5.29)

The coefficient creg clearly depends on the indices of the simple fraction and on the
details of the regularization. We call creg a regularization parameter.

Integrals of type (4.5.24) can be transformed using integration by parts. For clarity
we begin with the special case of a monomial,

∫ ∞

−∞
ds

(
d

ds
η

)

T
(a1)
◦ · · ·T (bq)

◦ = −
∫ ∞

−∞
ds η

d

ds

(

T
(a1)
◦ · · ·T (bq)

◦

)

(4.5.30)

= −
∫ ∞

−∞
ds η

[(
d

ds
T
(a1)
◦

)

T
(a2)
◦ · · · T (bq)

◦

+ · · · + T
(a1)
◦ · · ·T (bq−1)

◦

(
d

ds
T
(bq)
◦

)]

, (4.5.31)

where in the last step we applied the Leibniz rule. Differentiating (4.5.12) and (4.5.14)
with respect to s yields that

d

ds
T
(n)
◦ = −l T (n−1)

◦ and
d

ds
T
(n)
◦ = −l T (n−1)

◦ . (4.5.32)

With these relations, we can carry out the derivatives in (4.5.31). Notice that the
differentiation rules (4.5.32) decrease the index n by one. According to (4.5.27) and

(4.5.29), decrementing the upper index of a factor T
(aj )
◦ or T

(bk)
◦ increments the degree

of the monomial and yields in the weak integral a factor of the order EP /l. Using
furthermore that η is macroscopic (as defined after (4.5.23)), we conclude that each
summand in (4.5.31) dominates the left side of (4.5.30) by one order in lEP or lmacroEP .
We have thus derived the following result.

Integration-by-parts rule for monomials: Consider a monomial of degree L >
1. In a weak analysis near the light cone, we have to leading order in (lEP )

−1 and
(lmacroEP )

−1,

0 = T
(a1−1)
◦ · · ·T (ap)

◦ T
(b1)
◦ · · · T (bq)

◦ + · · ·+ T
(a1)
◦ · · · T (ap−1)

◦ T
(b1)
◦ · · ·T (bq)

◦

+ T
(a1)
◦ · · · T (ap)

◦ T
(b1−1)
◦ · · ·T (bq)

◦ + · · ·+ T
(a1)
◦ · · ·T (ap)

◦ T
(b1)
◦ · · ·T (bq−1)

◦ . (4.5.33)

The integration-by-parts method works similarly for simple fractions. For ease in
notation we state it more symbolically.

Integration-by-parts rule for simple fractions: Consider a simple fraction of
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degree L > 1. In a weak analysis near the light cone and to leading order in (lEP )
−1

and (lmacroEP )
−1,

∇




T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · ·T (bβ)

◦

T
(c1)
◦ · · ·T (cγ)

◦ T
(d1)
◦ · · ·T (dδ)

◦



 = 0 . (4.5.34)

Here ∇ acts on all factors like a derivation (i.e. it is linear and satisfies the Leibniz
rule), commutes with complex conjugations and

∇T (n)
◦ = T

(n−1)
◦ , ∇ 1

T
(n)
◦

= − T
(n−1)
◦

(T
(n)
◦ )2

.

The integration-by-parts rule gives us relations between simple fractions. We say that
simple fractions are independent if the integration-by-parts rules gives no relations be-
tween them. More systematically, we consider the vector space of linear combinations
of simple fractions. We say that two such linear combinations are equivalent if they
can be transformed into each other with the integration-by-parts rules. We refer to
the equivalence classes as the basic fractions. Taking the linear combination of the
corresponding regularization parameters creg, we can associate to every basic fraction
a so-called basic regularization parameter. In Appendix E it is shown for all simple
fractions which will appear in this book that the corresponding basic fractions are
linearly independent in the sense that there are no further identities between them.
Therefore it seems a reasonable method to take the basic regularization parameters as
empirical parameters modeling the unknown microscopic structure of space-time.

We remark that the notion of the basic fraction can be made more concrete by
choosing from each equivalence class one representative. Then one can identify ev-
ery basic fraction with the distinguished simple fraction in its equivalence class. For
simplicity we give this construction in the special case that the simple fractions are
monomials of the form

T
(a1)
◦ · · · T (ap)

◦ T
(b1)
◦ · · ·T (bq)

◦

(the construction can immediately be extended to simple fractions, but it becomes a

bit complicated and we do not need it here). If only one factor T
(a)
◦ appears (p = 1),

one can by applying the integration-by-parts rule iteratively increment the parameter
a1; this clearly decreases the other parameters b1, . . . , bq. In order to avoid that any of
the parameters b1, . . . , bq becomes smaller than −1, we stop the integration-by-parts
procedure as soon as one of the bj equals −1. In this way, we can express every
monomial as a unique linear combination of monomials of the form

T
(a1)
◦ T

(b1)
◦ · · ·T (bq)

◦ with − 1 = b1 ≤ · · · ≤ bq. (4.5.35)

Similarly for p > 1, the integration-by-parts rule allows us to increment the smallest
of the parameters aj, unless either one of the parameters bj equals −1 or there are

two factors T (aj) with aj = min(a1, . . . , ap). By iteration, we can thus transform any
monomial into a linear combination of monomials of the following type,

T
(a1)
◦ · · · T (ap)

◦ T
(b1)
◦ · · ·T (bq)

◦ with a1 ≤ · · · ≤ ap, b1 ≤ · · · ≤ bq
and a1 = a2 or b1 = −1 . (4.5.36)

We can now consider (4.5.35) and (4.5.36) as the basic monomials.
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With the above constructions we have developed the mathematical framework for
analyzing composite expressions in the fermionic projector in the continuum. Our
procedure is outlined as follows. We first substitute for the fermionic projector the
regularized formulas of the light-cone expansion; this yields sums of products of the
form (4.5.16), where the smooth prefactor involves the bosonic potentials and fields
as well as the wave functions of the Dirac particles and anti-particles of the system.
Applying our contraction rules, we then eliminate all inner factors and obtain terms of
the form (4.5.22). When evaluated in the weak sense (4.5.29), the l-dependence deter-
mines the degree L of the simple fraction, and the dependence on the regularization is
described for each simple fraction by the corresponding regularization parameters creg.
Using our integration-by-parts rule, we can furthermore restrict attention to the ba-
sic fractions and the corresponding basic regularization parameters. Taking the basic
regularization parameters as free empirical parameters, the composite expressions in
the fermionic projector reduce to expressions in the bosonic fields and fermionic wave
functions, involving a small number of free parameters. This procedure for analyzing
composite expressions in the fermionic projector is called the continuum limit.



CHAPTER 5

The Euler-Lagrange Equations in the Vacuum

In this chapter we discuss a general class of equations of discrete space-time in the
vacuum, for a fermionic projector which is modeled according to the configuration of
the fermions in the standard model. Our goal is to motivate and explain the model
variational principle introduced in §3.5 in more detail and to give an overview of other
actions which might be of physical interest. The basic structure of the action will be
obtained by considering the continuum limit (§5.3–§5.5), whereas the detailed form of
our model variational principle will be motivated by a consideration which also uses
the behavior of the fermionic projector away from the light cone (§5.6).

5.1. The Fermion Configuration of the Standard Model

Guided by the configuration of the leptons and quarks in the standard model, we
want to introduce a continuum fermionic projector which seems appropriate for the
formulation of a realistic physical model. We proceed in several steps and begin for
simplicity with the first generation of elementary particles, i.e. with the quarks d, u and
the leptons e, νe. The simplest way to incorporate these particles into the fermionic
projector as defined in §2.3 is to take the direct sum of the corresponding Dirac seas,

P sea =
4⊕

a=1

Xa
1

2
(pma − kma) (5.1.1)

with m1 = md, m2 = mu, m3 = me, m4 = 0 and X1 = X2 = X3 = 11, X4 = χL. The
spin dimension in (5.1.1) is (8, 8). Interpreting isometries of the spin scalar product as
local gauge transformations (see §3.1), the gauge group is U(8, 8). Clearly, the ordering
of the Dirac seas in the direct sum in (5.1.1) is a pure convention. Nevertheless,
our choice entails no loss of generality because any other ordering can be obtained
from (5.1.1) by a suitable global gauge transformation.

In the standard model, the quarks come in three “colors,” with an underlying
SU(3) symmetry. We can build in this symmetry here by taking three identical copies
of each quark Dirac sea. This leads us to consider instead of (5.1.1) the fermionic
projector

P sea =

N⊕

a=1

Xa
1

2
(pma − kma) (5.1.2)

with N = 8 and m1 = m2 = m3 = md, m4 = m5 = m6 = mu, m7 = me, m8 = 0,
and X1 = · · · = X7 = 11, X8 = χL. Now the spin dimension is (16, 16), and the gauge
group is U(16, 16).

Let us now consider the realistic situation of three generations. Grouping the
elementary particles according to their lepton number and isospin, we get the four
families (d, s, b), (u, c, t), (νe, νµ, ντ ) and (e, µ, τ). In the standard model, the particles
within each family couple to the gauge fields in the same way. In order to also arrange

123



124 5. THE EULER-LAGRANGE EQUATIONS IN THE VACUUM

this here, we take the (ordinary) sum of these Dirac seas. Thus we define the fermionic
projector of the vacuum by

P (x, y) =

N⊕

a=1

3∑

α=1

Xa
1

2
(pmaα − kmaα) (5.1.3)

with N = 8, X1 = · · · = X7 = 11 and X8 = χL; furthermore m11 = m21 = m31 = md,
m12 = m22 = m32 = ms, m13 = m23 = m33 = mb, m41 = m51 = m61 = mu, . . . ,
m71 = me, m72 = mµ, m73 = mτ , and m81 = m82 = m83 = 0. We refer to the direct
summands in (5.1.3) as sectors. The spin dimension in (5.1.3) is again (16, 16).

The fermionic projector of the vacuum (5.1.3) fits into the general framework of §2.3
(it is a special case of (2.3.1) obtained by setting g(a) = 3). Thus the interaction can
be introduced exactly as in §2.3 by defining the auxiliary fermionic projector (2.3.3),
inserting bosonic potentials B into the auxiliary Dirac equation (2.3.10) and finally
taking the partial trace (2.3.20). We point out that our only free parameters are the
nine masses of the elementary leptons and quarks. The operator B which describes
the interaction must satisfy the causality compatibility condition (2.3.18). But apart
from this mathematical consistency condition, the operator B is arbitrary. Thus in
contrast to the standard model, we do not put in the structure of the fundamental
interactions here, i.e. we do not specify the gauge groups, the coupling of the gauge
fields to the fermions, the coupling constants, the CKM matrix, the Higgs mechanism,
the masses of the W - and Z-bosons, etc. The reason is that in our description, the
physical interaction is to be determined and described by our variational principle in
discrete space-time.

5.2. The General Two-Point Action

The model variational principle in §3.5 was formulated via a two-point action
(3.5.3, 3.5.9, 3.5.10). In the remainder of this chapter, we shall consider the general
two-point action

S =
∑

x,y∈M

L[P (x, y) P (y, x)] (5.2.1)

more systematically and study for which Lagrangians L the corresponding Euler-
Lagrange (EL) equations are satisfied in the vacuum (a problem arising for actions
other than two-point actions is discussed in Remark 6.2.5). Let us derive the EL
equations corresponding to (5.2.1). We set

Axy = P (x, y) P (y, x) (5.2.2)

and for simplicity often omit the subscript “xy” in what follows. In a gauge, A is
represented by a 4N × 4N matrix, with N = 8 for the fermion configuration of
the standard model (5.1.3). We write the matrix components with Greek indices,
A = (Aα

β)α,β=1,...,4N . The Lagrangian in (5.2.1) is a functional on 4N × 4N matrices.
Denoting its gradient byM,

M[A] = (M[A]αβ )α,β=1,...,4N with M[A]αβ =
∂L[A]
∂Aβ

α

,

the variation of L is given by

δL[A] =
4N∑

α,β=1

M[A]αβ δA
β
α = Tr (M[A] δA) , (5.2.3)
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where “Tr” denotes the trace of 4N × 4N matrices. Summing over x and y yields the
variation of the action,

δS =
∑

x,y∈M

δL[Axy] =
∑

x,y∈M

Tr (M[Axy] δAxy) .

We substitute the identity

δAxy = δP (x, y) P (y, x) + P (x, y) δP (y, x) (5.2.4)

and use the symmetry x↔ y as well as the fact that the trace is cyclic to obtain

δS = 4
∑

x,y∈M

Tr (Q(x, y) δP (y, x)) (5.2.5)

with

Q(x, y) =
1

4
(M[Axy] P (x, y) + P (x, y)M[Ayx]) . (5.2.6)

This equation can be simplified, in the same spirit as the transformation from (3.5.17)
to (3.5.19) for our model variational principle.

Lemma 5.2.1. In the above setting,

M[Axy] P (x, y) = P (x, y)M[Ayx] .

Proof. We consider for fixed x, y ∈M variations of the general form

δP (x, y) = C , δP (y, x) = C∗

with C any 4N × 4N -matrix. Then, using (5.2.3, 5.2.4) and cyclically commuting the
factors inside the trace, we obtain

δL[Axy] = Tr
(

M[Axy] P (x, y) C
∗ + P (y, x)M[Axy] C

)

.

Since the Lagrangian is symmetric (3.5.7), this is equal to

δL[Ayx] = Tr
(

M[Ayx] P (y, x) C + P (x, y)M[Ayx] C
∗
)

.

Subtracting these two equations, we get

Tr
(

(M[Axy] P (x, y)− P (x, y)M[Ayx])C
∗
)

= Tr
(

(M[Ayx] P (y, x)− P (y, x)M[Axy])C
)

.

Changing the phase of C according to C → eiϕC, ϕ ∈ [0, 2π), one sees that both sides
of the equation vanish separately, and thus

Tr
(

(M[Axy] P (x, y)− P (x, y)M[Ayx])C
∗
)

= 0 .

Since C is arbitrary, the claim follows.

Using this lemma, we can simplify (5.2.6) to

Q(x, y) =
1

2
M[Axy] P (x, y) . (5.2.7)

We can also write (5.2.5) in the compact form

δS = 4 tr(Q δP ) , (5.2.8)
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where Q is the operator on H with kernel (5.2.7). Exactly as in §3.5 we consider
unitary variations of P (3.5.14) with finite support, i.e.

δP = i [B,P ] ,

where B is a Hermitian operator of finite rank. Substituting into (5.2.8) and cyclically
commuting the operators in the trace yields that

δS = 4i tr(Q [B,P ]) = 4i tr([P,Q] B) .

Since B is arbitrary, we conclude that

[P,Q] = 0 (5.2.9)

with Q according to (5.2.7). These are the EL equations.

5.3. The Spectral Decomposition of P (x, y) P (y, x)

As outlined in §3.5 in a model example, the EL equations (5.2.9) can be analyzed
using the spectral decomposition of the matrix A, (3.5.11). On the other hand, we saw
in Chapter 4 that A should be looked at in an expansion about the light cone. We
shall now combine these methods and compute the eigenvalues and spectral projectors
of A using the general formalism of the continuum limit introduced in §4.5.

Since the fermionic projector of the vacuum (5.1.3) is a direct sum, we can study
the eight sectors separately. We first consider the neutrino sector n = 8, i.e.

P (x, y) =

3∑

α=1

χL
1

2
(pmα − kmα) with mα = 0.

Assuming that the regularized Dirac seas have a vector-scalar structure (4.1.5) and
regularizing as explained after (4.5.11), the regularized fermionic projector, which with
a slight abuse of notation we denote again by P (x, y), is of the form

P (x, y) = χL gj(x, y) γ
j (5.3.1)

with suitable functions gj . Since P is Hermitian, P (y, x) is given by

P (y, x) = P (x, y)∗ = χL gj(x, y) γ
j .

Omitting the arguments (x, y) of the functions gj , we obtain for the 4× 4 matrix A

A = χL g/ χL g/ = χL χR g/ g/ = 0 . (5.3.2)

Hence in the neutrino sector, Axy is identically equal to zero. We refer to cancellations
like in (5.3.2), which come about because the neutrino sector contains only left-handed
particles, as chiral cancellations.

Next we consider the massive sectors n = 1, . . . , 7 in (5.1.3), i.e.

P (x, y) =
3∑

α=1

1

2
(pmα − kmα) . (5.3.3)

Again assuming that the regularized Dirac seas have a vector-scalar structure, the
regularized fermionic projector is

P (x, y) = gj(x, y) γ
j + h(x, y) (5.3.4)

with suitable functions gj and h. Using that P is Hermitian, we obtain

P (y, x) = gj(x, y) γ
j + h(x, y) . (5.3.5)
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Again omitting the arguments (x, y), we obtain for the 4× 4 matrix Axy

A = g/ g/ + h g/ + g/ h + hh . (5.3.6)

It is useful to decompose A in the form

A = A1 + A2 + µ

with

A1 =
1

2
[g/, g/] , A2 = h g/ + g/ h , µ = gg + hh

and gg ≡ gj gj . Then the matrices A1 and A2 anti-commute, and thus

(A− µ)2 = A2
1 +A2

2 = (gg)2 − g2 g2 + (gh + hg)2 . (5.3.7)

The right side of (5.3.7) is a multiple of the identity matrix, and so (5.3.7) is a quadratic
equation for A. The roots λ± of this equation,

λ± = gg + hh ±
√

(gg)2 − g2 g2 + (gh+ hg)2 , (5.3.8)

are the zeros of the characteristic polynomial of A. However, we must be careful
about associating eigenspaces to λ± because A need not be diagonalizable. Let us first
consider the case that the two eigenvalues in (5.3.8) are distinct. If we assume that A
is diagonalizable, then λ± are the two eigenvalues of A, and the corresponding spectral
projectors F± are computed to be

F± =
11

2
± 1

λ+ − λ−

(

A − 1

2
(λ+ + λ−) 11

)

(5.3.9)

=
11

2
±

1
2 [g/, g/] + hg/ + g/h

2
√

(gg)2 − g2 g2 + (gh + hg)2
. (5.3.10)

The explicit formula (5.3.10) even implies that A is diagonalizable. Namely, a short
calculation yields that

A F± = λ± F± and F+ + F− = 11 ,

proving that the images of F+ and F− are indeed eigenspaces of A which span C4.
Moreover, a short computation using (5.3.4) and (5.3.10) yields that

F± P (x, y) =
g/+ h

2
± g/ (gg + hh) − g/ (g2 − h2) + (gg) h + g2 h

2
√

(gg)2 − g2 g2 + (gh+ hg)2
. (5.3.11)

Writing out for clarity the dependence on x and y, the spectral decomposition of A is

Axy =
∑

s=±

λxys F xy
s . (5.3.12)

The following lemma relates the spectral representation of Axy to that of Ayx; it can
be regarded as a special case of Lemma 3.5.1.

Lemma 5.3.1.

λxy± = λyx∓ (5.3.13)

F xy
± P (x, y) = P (x, y) F yx

∓ . (5.3.14)
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Proof. According to (5.3.4, 5.3.5), Ayx is obtained from Axy by the transforma-

tions gj ↔ gj , h ↔ h. The eigenvalues (5.3.8) are invariant under these transforma-
tions. Our convention for labeling the eigenvalues is (5.3.13). Using this convention,
we obtain from (5.3.9) that

F xy
± P (x, y) =

1

2
P (x, y)± 1

λxy+ − λxy−

(

Axy P (x, y) −
1

2
(λxy+ + λxy− ) P (x, y)

)

P (x, y) F yx
∓ =

1

2
P (x, y)± 1

λxy+ − λxy−

(

P (x, y) Ayx −
1

2
(λxy+ + λxy− ) P (x, y)

)

.

The identity P (x, y) Ayx = P (x, y) P (y, x) P (x, y) = Axy P (x, y) yields (5.3.14).

If the eigenvalues in (5.3.8) are equal, the matrix A need not be diagonalizable (namely,
the right side of (5.3.7) may be zero without (5.3.6) being a multiple of the identity
matrix). Since such degenerate cases can be treated by taking the limits λ+− λ− → 0
in the spectral representation (5.3.12), we do not worry about them here.

Before going on, we point out that according to (5.3.8), the 4 × 4 matrix A has
at most two distinct eigenvalues. In order to understand better how this degeneracy
comes about, it is useful to consider the space V of real vectors which are orthogonal
to gj and gj (with respect to the Minkowski metric),

V = {v | vj gj = 0 = vj gj} .

Since we must satisfy two conditions in four dimensions, dim V ≥ 2. Furthermore, a
short calculation using (5.3.6) shows that for every v ∈ V ,

[A, vjγ
jγ5] = 0 . (5.3.15)

Thus the eigenspaces of A are invariant subspaces of the operators vjγ
jγ5. In the

case when the two eigenvalues (5.3.8) are distinct, the family of operators (vjγ
jγ5)v∈V

acts transitively on the two-dimensional eigenspaces of A. Notice that the operators
vjγ

jγ5 map left-handed spinors into right-handed spinors and vice versa. Thus one
may regard (5.3.15) as describing a symmetry between the left- and right-handed
component of A. We refer to the fact that A has at most two distinct eigenvalues as
the chiral degeneracy of the massive sectors in the vacuum.

Our next step is to rewrite the spectral representation using the formalism of §4.5.
Expanding in powers of m and regularizing gives for a Dirac sea the series

∞∑

n=0

1

n!

(
iξ/

2
T
(n−1)
[2n] (x, y) + T

(n)
[2n+1](x, y)

)

. (5.3.16)

In composite expressions, one must carefully keep track that every factor ξ is associated

to a corresponding factor T
(n)
[p] . In §4.5 this was accomplished by putting a bracket

around both factors. In order to have a more flexible notation, we here allow the two
factors to be written separately, but in this case the pairing is made manifest by adding
an index (n), and if necessary also a subscript [r], to the factors ξ. With this notation,
the contraction rules (4.5.19–4.5.21) can be written as

(ξ
(n1)
[r1]

)j (ξ
(n2)
[r2]

)j =
1

2
(z

(n1)
[r1]

+ z
(n2)
[r2]

) , (ξ
(n1)
[r1]

)j (ξ
(n2)
[r2]

)j =
1

2
(z

(n1)
[r1]

+ z
(n2)
[r2]

) (5.3.17)
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(and similar for the complex conjugates), where we introduced factors z
(n)
[r] which by

definition combine with the corresponding factor T
(n)
[r] according to

z
(n)
[r] T

(n)
[r] = −4 (n T (n+1)

[r] + T
(n+2)
{r} ) + (smooth functions) . (5.3.18)

In our calculations, most separate factors ξ and z will be associated to T
(−1)
[0] . Therefore,

we shall in this case often omit the indices, i.e.

ξ ≡ ξ
(−1)
[0] , z ≡ z

(−1)
[0] .

We point out that the calculation rule (5.3.18) is valid only modulo smooth functions.
This is because in Chapter 4 we analyzed the effects of the ultraviolet regularization,
but disregarded the “regularization” for small momenta related to the logarithmic mass
problem. However, this is not a problem because the smooth contribution in (5.3.18)
is easily determined from the behavior away from the light cone, where the factors

T
(n)
◦ are known smooth functions and z

(n)
[r] = ξ2.

We remark that one must be a little bit careful when regularizing the sum in (5.3.3)
because the regularization functions will in general be different for each Dirac sea. This
problem is handled most conveniently by introducing new “effective” regularization
functions for the sums of the Dirac seas. More precisely, in the integrands (4.5.12–
4.5.14) we make the following replacements,

h a
p−1
2 →

3∑

α=1

hα a
p−1
2

α , h a
p−1
2 b →

3∑

α=1

hα a
p−1
2

α bα

g a
p
2 →

3∑

α=1

gα a
p
2
α , g a

p
2 b →

3∑

α=1

gα a
p
2
α bα .







(5.3.19)

As is easily verified, all calculation rules for simple fractions remain valid also when
different regularization functions are involved. This implies that the contraction
rules (5.3.17, 5.3.18) are valid for the sums of Dirac seas as well.

Using (5.3.16) and the contraction rules, we can expand the spectral decomposition
around the singularities on the light cone. Our expansion parameter is the degree on
the light cone, also denoted by “deg”. It is defined in accordance with (4.5.27) by

deg(T
(n)
◦ ) = 1− n , deg(z(n)) = −1 ,

and the degree of a function which is smooth and non-zero on the light cone is set to
zero. The degree of a product is obtained by adding the degrees of all factors, and of
a quotient by taking the difference of the degrees of the numerator and denominator.
The leading contribution to the eigenvalues is computed as follows,

gg + hh = (deg < 3)

+
1

4

(

(ξj T
(−1)
[0] )(ξj T

(−1)
[0] ) + (ξj T

(−1)
[0] )(ξj T

(0)
[2] ) + (ξj T

(0)
[2] )(ξ

j T
(−1)
[0] )

)

=
1

8
(z + z) T

(−1)
[0] T

(−1)
[0] + (deg < 3)

=
1

2

(

T
(0)
[0] T

(−1)
[0] + T

(−1)
[0] T

(0)
[0]

)

+ (deg < 3)
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(gg)2 − g2 g2 =
1

16

(

(ξj T
(−1)
[0] )(ξj T

(−1)
[0] )

)2

− 1

16
(ξ T

(−1)
[0] )2 (ξ T

(−1)
[0] )2 + (deg < 6)

=
1

4

(

T
(0)
[0] T

(−1)
[0] + T

(−1)
[0] T

(0)
[0]

)2

−T (−1)
[0] T

(0)
[0] T

(−1)
[0] T

(0)
[0] + (deg < 6)

=
1

4

(

T
(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

)2

+ (deg < 6)

(gh+ hg)2 =
1

4

(

(iξ T
(−1)
[0] ) T

(0)
[1] + T

(0)
[1] (iξ T

(−1)
[0] )

)2

+ (deg < 6)

= (deg < 6) ,

and thus

λ± =
1

2

(

T
(0)
[0] T

(−1)
[0] + T

(−1)
[0] T

(0)
[0]

)

+ (deg < 3)

±1

2

√
(

T
(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

)2

+ (deg < 6)

=
1

2

(

T
(0)
[0] T

(−1)
[0] + T

(−1)
[0] T

(0)
[0]

)

+ (deg < 3)

±1

2

(

T
(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

)

± (deg < 6)

4

(

T
(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

) + · · ·

=







T
(0)
[0] T

(−1)
[0] for “+”

T
(−1)
[0] T

(0)
[0] for “−”

+ (deg < 3). (5.3.20)

The spectral projectors are calculated similarly,

F± =
11

2
±

1
8 [ξ/ T

(−1)
[0] , ξ/ T

(−1)
[0] ] − i

2

(

T
(0)
[1] (ξ/T

(−1)
[0] ) − (ξ/T

(−1)
[0] ) T

(0)
[1]

)

T
(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

+(deg < 0) (5.3.21)

F± P (x, y) =
i

4
(ξ/ T

(−1)
[0]

) + (deg < 2)

± i
4

(ξ/ T
(−1)
[0] )(T

(0)
[0] T

(−1)
[0] + T

(−1)
[0] T

(0)
[0] ) − 2 (ξ/ T

(−1)
[0] ) T

(−1)
[0] T

(0)
[0]

T
(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

. (5.3.22)

The last expression contains inner factors ξ. In situations when these factors are not
contracted to other inner factors in a composite expression, we can treat them as outer
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factors. Then (5.3.22) simplifies to

F± P (x, y) =

{

0 for “+”
i
2 ξ/ T

(−1)
[0] for “−” + (deg < 2) . (5.3.23)

By expanding, one can compute the eigenvalues and spectral projectors also to lower
degree on the light cone. We do not want to enter the details of this calculation here
because in this chapter we only need that the lower degrees involve the masses of the
Dirac seas. This is illustrated by the following expansion of the eigenvalues,

λ± =
1

4
×







(z T
(−1)
[0] ) T

(−1)
[0] + (z T

(0)
[2] ) T

(−1)
[0] + (z T

(−1)
[0] ) T

(0)
[2] for “+”

T
(−1)
[0] (z T

(−1)
[0] ) + T

(−1)
[0] (z T

(0)
[2] ) + T

(0)
[2] (z T

(−1)
[0] ) for “−”

+ T
(0)
[1] T

(0)
[1] ∓

T
(0)
[1] T

(−1)
[0] − T (−1)

[0] T
(0)
[1]

T
(0)
[0] T

(−1)
[0] − T (−1)

[0] T
(0)
[0]

(T
(0)
[1] T

(0)
[0] − T

(0)
[0] T

(0)
[1] )

+ (deg < 2) . (5.3.24)

Similarly, the contributions to degree < 2 involve even higher powers of the masses.
Let us specify how we can give the above spectral decomposition of Axy a math-

ematical meaning. A priori, our formulas for λ± and F± are only formal expressions
because the formalism of the continuum limit applies to simple fractions, but dividing

by (T
(0)
[0] T

(−1)
[0] −T

(−1)
[0] T

(0)
[0] ) is not a well-defined operation. In order to make mathemati-

cal sense of the spectral decomposition and in order to ensure at the same time that the
EL equations have a well-defined continuum limit, we shall only consider Lagrangians
for which all expressions obtained by substituting the spectral representation of A into
the EL equations are linear combinations of simple fractions. Under this assumption,
working with the spectral representation of Axy can be regarded merely as a conve-
nient formalism for handling the EL equations, the latter being well-defined according
to §4.5. Having Lagrangians of this type in mind, we can treat A in the massive sectors
as a diagonalizable matrix with two distinct eigenvalues λ± and corresponding spectral
projectors F±.

The explicit formulas (5.3.20, 5.3.21) show that the eigenvalues of A are to leading
degree not real, but appear in complex conjugate pairs, i.e.

λ+ = λ− and F ∗+ = F− . (5.3.25)

If one considers perturbations of these eigenvalues by taking into account the con-
tributions of lower degree, λ+ and λ− will clearly still be complex. This implies
that the relations (5.3.25) remain valid (see the argument after (3.5.5) and the exam-
ple (5.3.24)). We conclude that in our expansion about the singularities on the light
cone, the eigenvalues appear to every degree in complex conjugate pairs (5.3.25).

We finally summarize the results obtained in the neutrino and massive sectors and
introduce a convenient notation for the eigenvalues and spectral projectors of Axy. We
found that in the continuum limit, A can be treated as a diagonalizable matrix. We
denote the distinct eigenvalues of A by (λk)k=1,...,K and the corresponding spectral
projectors by Fk. Since A vanishes in the neutrino sector, zero is an eigenvalue of A
of multiplicity four; we choose the numbering such that λ1 = 0. Due to the chiral
degeneracy, all eigenspaces are at least two-dimensional. Furthermore, all non-zero
eigenvalues of A are complex and appear in complex conjugate pairs (5.3.25). It is
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useful to also consider the eigenvalues counting their multiplicities. We denote them
by (λα)α=1,...,4N or also by (λncs)n=1,...,8, c=L/R, s=±, where n refers to the sectors and
c, s count the eigenvalues within each sector. More precisely,

λ8a = 0 and λnc± = λ
(n)
± , n = 1, . . . , 7 (5.3.26)

with λ
(n)
± as given by (5.3.8) or (5.3.24), where the index “(n)” emphasizes that the

eigenvalues λ± depend on the regularization functions in the corresponding sector.

5.4. Strong Spectral Analysis of the Euler-Lagrange Equations

In this section we shall derive conditions which ensure that the EL equations (5.2.9,
5.2.7) are satisfied in the vacuum and argue why we want to choose our Lagrangian in
such a way that these sufficient conditions are fulfilled. Since the Lagrangian L[A] must
be independent of the matrix representation of A, it depends only on the eigenvalues
λα,

L[Axy] = L(λxy1 , . . . , λ
xy
4N ) ,

and furthermore L(λxy1 , . . . , λxy4N ) is symmetric in its arguments. In preparation, we
consider the case when the eigenvalues of A are non-degenerate. Then the variation
of the eigenvalues is given in first order perturbation theory by δλα = Tr(Fα δA). Let
us assume that L depends smoothly on the λα, but is not necessarily holomorphic (in
particular, L is allowed to be a polynomial in |λα|). Then

δL =

4N∑

α=1

(
∂L(λ)
∂ Reλα

Re Tr(Fα δA) +
∂L(λ)
∂ Imλα

Im Tr(Fα δA)

)

(5.4.1)

= Re
4N∑

α=1

∂L(λ)
∂λα

Tr(Fα δA) , (5.4.2)

where we set

∂L(λ)
∂ Reλα

= lim
IR∋ε→0

1

ε
(L(λ1, . . . , λα−1, λα + ε, λα+1, . . . , λ4N )− L(λ1, . . . , λ4N ))

∂L(λ)
∂ Imλα

= lim
IR∋ε→0

1

ε
(L(λ1, . . . , λα−1, λα + iε, λα+1, . . . , λ4N )− L(λ1, . . . , λ4N ))

and
∂L(λ)
∂λα

≡ ∂L(λ)
∂ Reλα

− i
∂L(λ)
∂ Imλα

. (5.4.3)

If some of the λαs coincide, we must apply perturbation theory with degeneracies.
One obtains in generalization of (5.4.2) that

δL = Re

K∑

k=1

∂L(λ)
∂λα

Tr(Fk δA)

∣
∣
∣
∣
λα=λk

. (5.4.4)

Here our notation means that we choose the index α such that λα = λk. Clearly, α
is not unique if λk is a degenerate eigenvalue; in this case α can be chosen arbitrarily
due to the symmetry of L. We also write (5.4.4) in the shorter form

δL = Re
K∑

k=1

∂L(λ)
∂λk

Tr(Fk δA) . (5.4.5)
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In this formula it is not necessary to take the real part. Namely, as the Lagrangian is
real and symmetric in its arguments, we know that L(λ1, . . . , λ4N ) = L(λ1, . . . , λ4N ),
and thus, according to (5.4.3),

∂L(λ1, . . . , λ4N )

∂λk
=

∂L(λ1, . . . , λ4N )

∂λk
.

Using furthermore that the eigenvalues ofA appear in complex conjugate pairs, (5.3.25),
one sees that the operator

K∑

k=1

∂L
∂λk

Fk

is Hermitian. Hence we can write the sum in (5.4.5) as the trace of products of two
Hermitian operators on H, being automatically real. We conclude that

δL =

K∑

k=1

∂L(λ)
∂λk

Tr(Fk δA) . (5.4.6)

Comparing (5.4.6) with (5.2.3) gives

M[Axy] =

Kxy∑

k=1

∂L(λ)
∂λxyk

F xy
k . (5.4.7)

We substitute this identity into (5.2.7) and apply Lemma 5.3.1 in each sector to obtain

Q(x, y) =
1

2

Kxy∑

k=1

∂L(λxy)
∂λxyk

F xy
k P (x, y) =

1

2

Kxy∑

k=1

∂L(λxy)
∂λxyk

P (x, y) F yx
k . (5.4.8)

Using these relations, we can write the EL equations (5.2.9) as

∫

d4z



P (x, z) P (z, y)

Kzy∑

k=1

∂L(λzy)
∂λzyk

F yz
k (5.4.9)

−
Kxz∑

k=1

∂L(λxz)
∂λxzk

F xz
k P (x, z) P (z, y)

)

= 0 . (5.4.10)

This equation splits into separate equations on the eight sectors. In the neutrino sector,
we have according to (5.3.1),

P (x, z) P (z, y) = χL g/(x, z) χL g/(z, y) = χL χR g/(x, z) g/(z, y) = 0 . (5.4.11)

Since both summands in (5.4.10) contain a factor P (x, z) P (z, y), the EL equations
are trivially satisfied in the neutrino sector due to chiral cancellations. In the massive
sectors, there are no chiral cancellations. As shown in Appendix F, there are no further
cancellations in the commutator if generic perturbations of the physical system are
taken into account. This means that (5.4.10) will be satisfied if and only if Q vanishes
in the massive sectors, i.e.

Kxy∑

k=1

∂L(λxy)
∂λxyk

F xy
k P (x, y) XX∗ = 0 . (5.4.12)

As explained on page 131, we shall only consider Lagrangians for which (5.4.12) is
a linear combination of simple fractions. Thus we can evaluate (5.4.12) weakly on
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the light cone and apply the integration-by-parts rules. We will now explain why it
is reasonable to demand that (5.4.12) should be valid even in the strong sense, i.e.
without weak evaluation and the integration-by-parts rule. First, one should keep in
mind that the integration-by-parts rules are valid only to leading order in (lEP )

−1.
As is worked out in Appendix D, the restriction to the leading order in (lEP )

−1 is
crucial when perturbations by the bosonic fields are considered (basically because the
microscopic form of the bosonic potentials is unknown). But in the vacuum, one
can consider the higher orders in (lEP )

−1 as well (see the so-called regularization
expansion in §4.3 and §4.4). Therefore, it is natural to impose that in the vacuum the
EL equations should be satisfied to all orders in (lEP )

−1. Then the integration-by-
parts rules do not apply, and weak evaluation becomes equivalent to strong evaluation.
A second argument in favor of a strong analysis is that even if we restricted attention
to the leading order in (lEP )

−1 and allowed for integrating by parts, this would hardly
simplify the equations (5.4.12), because the integration-by-parts rules depend on the

indices n of the involved factors T
(n)
◦ and T

(n)
◦ . But the relations between the simple

fractions given by the integration-by-parts rules are different to every degree, and thus
the conditions (5.4.12) could be satisfied only by imposing to every degree conditions
on the regularization parameters. It seems difficult to satisfy all these extra conditions
with our small number of regularization functions. Clearly, this last argument does
not rule out the possibility that there might be a Lagrangian together with a special
regularization such that (5.4.12) is satisfied to leading order in (lEP )

−1 only after
applying the integration-by-parts rules. But such Lagrangians are certainly difficult
to handle, and we shall not consider them here.

For these reasons, we here restrict attention to Lagrangians for which (5.4.12) is
satisfied strongly. Then (5.4.12) simplifies to the conditions

∂L(λxy)
∂λxyncs

= 0 for n = 1, . . . , 7. (5.4.13)

5.5. Motivation of the Lagrangian, the Mass Degeneracy Assumption

Let us discuss the conditions (5.4.13) in concrete examples. We begin with the
class of Lagrangians which are polynomial in the eigenvalues λα of A. Since different
powers of λα have a different degree on the light cone, there cannot be cancellations
between them. Thus it suffices to consider polynomials which are homogeneous of
degree h, h ≥ 1. Furthermore, as the Lagrangian should be independent of the matrix
representation of A, it can be expressed in terms of traces of powers of A. Thus we
consider Lagrangians of the form

L[A] = Ph[A] , (5.5.1)

where Pl denotes a polynomial in Tr(Ap) homogeneous in A of degree l, i.e.

Pl =
∑

n

cn Rp1 · · · Rpmax(n)
with

max(n)
∑

j=1

pj = l, (5.5.2)

Rp = Tr(Ap) =

4N∑

α=1

λpα (5.5.3)
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and coefficients cn, which for simplicity we assume to be rational. For example, the
general Lagrangian of degree h = 3 reads

L[A] = c1 R3 + c2 R1 R2 + c3 R1 R1 R1 (5.5.4)

with three coefficients cn ∈ Q (only two of which are of relevance because the normal-
ization of L clearly has no effect on the EL equations). We assume that L is non-trivial
in the sense that at least one of the coefficients cn in the definition (5.5.1, 5.5.2) of L
should be non-zero. The EL equations corresponding to (5.5.4) can easily be computed
using that δRp = p Tr(Ap−1 δA) together with (5.2.4) and the fact that the trace is
cyclic. The resulting operator Q in (5.2.9) is of the form

Q(x, y) =
[

P0 Ah−1 + P1 Ah−2 + · · · + Ph−1
]

P (x, y) (5.5.5)

where Pl are homogeneous polynomials of the form (5.5.2) (P0 is a rational number).
In the example (5.5.4),

Q(x, y) =

[
3

2
c1 A

2 + c2 R1 A +
1

2
(c2 R2 + 3c3 R

2
1)

]

P (x, y) .

By substituting the regularized formulas of the light-cone expansion into (5.5.5), one

sees that Q(x, y) is to every degree on the light cone a polynomial in T
(n)
◦ and T

(n)
◦ ,

well-defined according to §4.5. Thus for polynomial actions, our spectral decomposition
is not needed. But it is nevertheless a convenient method for handling the otherwise
rather complicated combinatorics of the Dirac matrices.

For the polynomial Lagrangian (5.5.1), the conditions (5.4.13) become

P0 λh−1 + P1 λh−2 + · · · + Ph−1 = 0 for λ = λncs, n = 1, . . . , 7 (5.5.6)

and the Pl as in (5.5.2). It is useful to analyze these conditions algebraically as
polynomial equations with rational coefficients for the eigenvalues of A. To this end, we
need to introduce an abstract mathematical notion which makes precise that, according
to (5.3.26), the eigenvalues λncs have certain degeneracies, but that there are no further
relations between them. We say that the matrix A has n independent eigenvalues if A
has n distinct eigenvalues, one of them being zero and the others being algebraically
independent. The following lemma shows that the conditions (5.5.6) can be fulfilled
only if the degree of the Lagrangian is sufficiently large.

Lemma 5.5.1. For a non-trivial Lagrangian of the form (5.5.1) which satisfies the
conditions (5.5.6),

h ≥ n , (5.5.7)

where n denotes the number of independent eigenvalues of A.

Proof. First suppose that the Pl in (5.5.6) are not all zero. Then we can regard the
left side of (5.5.6) as a polynomial in λ of degree at most h− 1. According to (5.3.26),
the eigenvalues λ8a in the lepton sector all vanish. Thus the polynomial in (5.5.6)
has at least n − 1 distinct zeros, and thus its degree must be at least n − 1. This
proves (5.5.7).

It remains to consider the case when the coefficients Pl in (5.5.6) all vanish. Since
the Lagrangian is non-trivial, at least one of the Pl is non-trivial, we write Pl 6≡ 0. On
the other hand, Pl[A] = 0 and furthermore l ≤ h− 1 from (5.5.6). Hence to conclude
the proof it suffices to show that

Pl 6≡ 0 and Pl[A] = 0 =⇒ l ≥ n− 1. (5.5.8)
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To prove (5.5.8), we proceed inductively in n. For n = 1 there is nothing to show.
Assume that (5.5.8) holds for given n and any matrixA with n independent eigenvalues.
Consider a matrixA with n+1 independent eigenvalues. A given non-trivial polynomial
Pl+1 can be uniquely decomposed in the form

Pl+1 = R1 Pl + R2 Pl−1 + · · · + Rl+1 P0 , (5.5.9)

where the polynomials Pl−k contain only factors Rj with j > k. Since Pl+1 6≡ 0,
at least one of the factors Pl−k is non-trivial. Let k ≥ 0 be the smallest natural
number such that Pl−k 6≡ 0. The functional Pl+1[A] is a homogeneous polynomial
of degree l + 1 in the eigenvalues λ1, . . . , λn+1 of A. We pick those contributions to
this polynomial which are homogeneous in 0 6= λn+1 of degree n+ 1. These contribu-
tions all come from the summand Rk+1Pl−k in (5.5.9) because the summands to its
left are trivial and the summands to its right are composed only of factors Rl with
l > k + 1. Hence, apart from the prefactor λk+1

n+1 and up to irrelevant combinatorial
factors for each of the monomials, these contributions coincide with the polynomial
Pl−k(λ1, . . . , λn) evaluated for a matrix with n independent eigenvalues. We conclude
that if Pl+1(λ1, . . . , λn+1) vanishes, then Pl−k(λ1, . . . , λn) must also be zero. The in-
duction hypothesis yields that l − k ≥ n− 1 and thus l + 1 ≥ n.

We seek a Lagrangian which is as simple as possible. One strategy is to consider
the general polynomial Lagrangian (5.5.1) and to choose the degree h as small as
possible. According to Lemma 5.5.1, the degree cannot be smaller than the number of
independent eigenvalues of A. Thus if we treat the eigenvalues as being algebraically
independent in the sectors containing the Dirac seas (d, s, b), (u, c, t), and (e, µ, τ),
then h is bounded from below by h ≥ 3 × 2 + 1 = 7. Unfortunately, polynomials of
degree ≥ 7 involve many coefficients cn and are complicated. Therefore, it is desirable
to reduce the number of independent eigenvalues. Since the eigenvalues depend on
the masses and regularization functions of the particles involved (see (5.3.24)), we can
reduce the number of distinct eigenvalues only by assuming that the massive sectors
are identical. The best we can do is to assume that

mu = md = me , mc = ms = mµ , mt = mb = mτ , (5.5.10)

and that the regularization functions in the massive sectors coincide. Then the addi-
tional degeneracies in the massive sectors reduce the number of distinct eigenvalues to
three. If (5.5.10) holds, the bound of Lemma 5.5.1 is even optimal. Namely, a simple
calculation shows that the polynomial Lagrangian of degree three (5.5.4) with

c1 = 14 , c2 = −3

2
, c3 =

1

28
(5.5.11)

satisfies the conditions (5.4.13). According to Lemma 5.5.1, a degree h < 2 would
make it necessary to impose relations between λ+ and λ−, which is impossible in our
formalism (5.3.20). We conclude that (5.5.4, 5.5.11) is the polynomial Lagrangian of
minimal degree which satisfies the conditions (5.4.13). We refer to (5.5.10) as the mass
degeneracy assumption. In order to understand what this condition means physically,
one should keep in mind that (5.5.10) gives conditions for the bare masses, which due
to the self-interaction are different from the effective masses (this is a bit similar to
the situation in the grand unified theories, where simple algebraic relations between
the bare quark and lepton masses are used with some success [Ro]).
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Another strategy for finding promising Lagrangians is to consider homogeneous
polynomials of higher degree, but which are of a particularly simple form. A good
example for such a Lagrangian is the determinant,

L[A] = detA . (5.5.12)

By writing detA = det(11 − (11 − A)), expanding in powers of (11 − A) and multiply-
ing out, this Lagrangian can be brought into the form (5.5.1, 5.5.2) with h = 4N .
The Lagrangian (5.5.12) is appealing because of its simple form. Furthermore, it has
the nice property that whenever the eigenvalues of A appear in complex conjugate
pairs (5.3.25), the product of these eigenvalues is positive, and thus L ≥ 0. Unfortu-
nately, this Lagrangian has the following drawback. The matrix A vanishes identically
in the neutrino sector (5.3.2), and so A has a zero eigenvalue of multiplicity four. As
a consequence, L and its variations vanish until perturbations of at least fourth or-
der are taken into account, making the analysis rather complicated. For this reason,
(5.5.12) does not seem the best Lagrangian for developing our methods, and we shall
not consider it here.

In the polynomial Lagrangian (5.5.4, 5.5.11) we did not use that the eigenvalues
of A appear in complex conjugate pairs. This fact can be exploited to construct an
even simpler Lagrangian. Assume again that the masses are degenerate (5.5.10). Then
the absolute values |λα| of the eigenvalues of A take only the two values 0 and |λ+| =
|λ−|, with multiplicities 4 and 28, respectively. Thus if we consider homogeneous
polynomials in |λα|, there is already a Lagrangian of degree two which satisfies the
conditions (5.4.13), namely

L =
4N∑

α=1

|λα|2 −
1

28

(
4N∑

α=1

|λα|
)2

. (5.5.13)

Using the notion of the spectral weight (3.5.8), this Lagrangian can be written as

L[A] = |A2| − 1

28
|A|2 . (5.5.14)

The factor 1/28 may be replaced by a Lagrange multiplier µ,

L[A] = |A2| − µ |A|2 , (5.5.15)

because the value of µ = 1/28 is uniquely determined from the condition that the
EL equations should be satisfied in the vacuum. The functional (5.5.15) can be re-
garded as the effective Lagrangian corresponding to the variational principle with
constraint (3.5.9, 3.5.10). We conclude that (5.5.14) is precisely our model variational
principle introduced in §3.5.

The above considerations give a motivation for our model Lagrangian (5.5.14)
as well as for the mass degeneracy assumption (5.5.10). Also, it is nice that many
special properties of the fermionic projector of the vacuum were used. Namely, the EL
equations corresponding to (5.5.14) are fulfilled only because of chiral cancellations in
the neutrino sector and the fact that the eigenvalues of A appear in complex conjugate
pairs. But unfortunately, our arguments so far do not determine the action uniquely. In
particular, variational principles formulated with the spectral weight of higher powers
of A, like for example

L[A] = |A4| − 1

28
|A2|2
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or, more generally,

L[A] = |A2n| − 1

28
|An|2 (n ≥ 1), (5.5.16)

are all satisfied in the vacuum for exactly the same reasons as (5.5.14). The next
section gives an argument which distinguishes (5.5.14) from the other Lagrangians.

5.6. Stability of the Vacuum

In §4.2 we argued that the pointwise product P (x, y)P (y, x) depends essentially on
the unknown high-energy behavior of the fermionic projector and is therefore undeter-
mined. This argument, which led us to a weak analysis near the light cone and was the
starting point for the formalism of the continuum limit in §4.5, must clearly be taken
seriously if one wants to get information for general regularizations. On the other
hand, the equations of discrete space-time (if analyzed without taking the continuum
limit) should yield constraints for the regularization, and one might expect that for
the special regularizations which satisfy these constraints, one can make statements on
the fermionic projector even pointwise. In particular, it is tempting to conjecture that
away from the light cone, where the fermionic projector of the continuum is smooth
(see §2.5), the fermionic projector of discrete space-time should be well-approximated
pointwise by the fermionic projector of the continuum. Since going rigorously beyond
the continuum limit is difficult and requires considerable work, we cannot prove this
conjecture here. But we can take it as an ad-hoc assumption that away from the light
cone (i.e. for |s|, |l| ≫ E−1P ), the physical fermionic projector should coincide to leading

orders in sE−1P and lE−1P with the continuum fermionic projector. We refer to this
assumption that the fermionic projector is macroscopic away from the light cone.

In this section we will analyze the EL equations in the vacuum under the assump-
tion that the fermionic projector is macroscopic away from the light cone. This will
give us some insight into how causality enters the EL equations. More importantly, a
stability analysis of the vacuum will make it possible to uniquely fix our variational
principle. Our analysis here can be considered as being complementary to the contin-
uum limit: whereas in the continuum limit we restrict attention to the singularities on
the light cone, we here consider only the behavior away from the light cone, where the
fermionic projector is smooth. This gives us smooth functions defined for y ∈M \Lx,
which however have poles when y approaches the light cone around x. In this way, we
will again encounter singularities on the light cone, but of different nature than those
considered in the continuum limit. Unfortunately, our method gives no information on
the behavior of these singularities, and therefore we must treat them with an ad-hoc
“regularity assumption” (see Def. 5.6.3). For this reason, the arguments given here
should be considered only as a first step towards an analysis beyond the continuum
limit. The methods and results of this section will not be needed later in this book.

We begin by deriving the spectral decomposition of the closed chain away from the
light cone. Due to the direct sum structure of the fermionic projector, we can again
consider the sectors separately. In the neutrino sector, the product P (x, y) P (y, x)
vanishes identically due to chiral cancellations (5.3.2). Again assuming that the masses
are degenerate (see §5.5), it remains to consider one massive sector (5.3.3) with three
mass parameters mα, α = 1, 2, 3. Since we assume that the fermionic projector is
macroscopic away from the light cone, we do not need a regularization.
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Lemma 5.6.1. In a massive sector, the closed chain A = P (x, y) P (y, x) has away
from the light cone the following spectral decompositions. If y − x is spacelike,

A = λ 11 with λ ∈ R . (5.6.1)

If on the other hand y − x is timelike, A has either the spectral decomposition (5.6.1)
with λ ≥ 0 or

A =
∑

s=±

λs Fs (5.6.2)

with spectral projectors F± on two-dimensional eigenspaces and corresponding eigen-
values λ± which are real and positive,

λ± ≥ 0 . (5.6.3)

Proof. We write the fermionic projector (5.3.3) in the form (5.3.4) with

gj(x, y) = i∂j
1

2

3∑

α=1

(Pm2
α
−Km2

α
)(x, y)

h(x, y) =
1

2

3∑

α=1

mα(Pm2
α
−Km2

α
)(x, y) ,

where Pa and Ka denote the fundamental solutions of the Klein-Gordon equation,

Pa(x, y) =

∫
d4p

(2π)4
δ(p2 − a) e−ip(x−y) (5.6.4)

Ka(x, y) =

∫
d4p

(2π)4
ǫ(p0) δ(p2 − a) e−ip(x−y) . (5.6.5)

Due to Lorentz symmetry, the vector field g is parallel to y − x. Thus we can write it
as

gj(x, y) = i(y − x)j f(x, y) (5.6.6)

with a complex scalar distribution f . Furthermore, the distribution Ka is causal in the
sense that suppKa(x, .) ⊂ Jx. This can be seen by decomposing it similar to (2.2.7)
as

Ka =
1

2πi

(
S∨a − S∧a

)
,

where S∨ and S∧ are the causal Green’s functions of the Klein-Gordon equation
(see (2.5.5)). Alternatively, one can for any spacelike vector y − x choose a refer-
ence frame where y − x points in spatial direction, y − x = (0, ~v). Then the Fourier
integral (5.6.5) can be written as

Ka =
1

(2π)4

∫ ∞

−∞
dω ǫ(ω)

∫

IR3
d~p δ(ω2 − |~p|2 − a) e−i~p~v ,

and a symmetry argument shows that the integrals over the upper and lower mass
shells cancel each other.

If y − x is spacelike, Ka drops out of our formulas due to causality,

gj(x, y) = i∂j
1

2

3∑

α=1

Pm2
α
(x, y) , h(x, y) =

1

2

3∑

α=1

mαPm2
α
(x, y) .
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Performing in (5.6.4) the transformation p → −p, we find that Pa has even parity,
Pa(y, x) = Pa(x, y). As a consequence,

g(x, y) = g(y, x) = −g(x, y) , h(x, y) = h(y, x) = h(x, y) .

Plugging these relations into (5.3.6), we obtain

A = g/ g/+ h h =
(
〈g, g〉+ |h|2

)
11 ,

where in the last step we used (5.6.6). This proves (5.6.1).
If y − x is timelike, the situation is more complicated because both Pa and Ka

contribute. Using the representation (5.3.4, 5.6.6), we obtain

A = iξ/
(
fh+ fh

)
+ ξ2 |f |2 11 + |h|2 11 .

Away from the light cone, the matrix ξ/ has the two real eigenvalues ±
√

ξ2, each with
multiplicity two. Hence the eigenvalues of A are given by

λ± = ±
√

ξ2
(
fh+ fh

)
+ ξ2 |f |2 + |h|2 =

∣
∣
∣

√

ξ2f ± h
∣
∣
∣

2
≥ 0 .

This lemma has important consequences. We first recall that the conditions
(5.4.13) obtained from a strong analysis near the light cone led us to only consider
Lagrangians for whichM vanishes if A has in the massive sector two eigenvalues ap-
pearing as complex conjugate pairs. According to (5.6.1), this last condition is satisfied
if y − x is space-like. This means that for all variational principles discussed in §5.5,
the matrix Mxy vanishes for space-like y − x. According to (5.2.7), the same is true
for Q(x, y). In other words, Q is supported inside the (closed) light cone. This re-
markable property can be understood as a manifestation of some kind of “causality”
in the EL equations. However, we point out that this property is no longer true in an
interacting system (see Chapter 6).

Using that Q is supported inside the light cone, we can in what follows restrict
attention to timelike y − x. For convenience, we will also use (5.6.2) in the case that
A is a multiple of the identity matrix (5.6.1); we then simply set λ+ = λ− = λ. The
main statement of Lemma 5.6.1 for timelike y − x is that, according to (5.6.3), A
is a positive matrix. This means that the concept of the spectral weight, which was
important in §5.5 (and which will also be crucial in Chapter 6), becomes trivial in
the vacuum. The spectral weight (3.5.8) reduces to the ordinary trace, and so our
Lagrangians (5.5.16) simplify away from the light cone to polynomial Lagrangians.

Suppose that P is a stable minimum of the action, in the sense that it is impossible
to decrease the action by a variation of P ,

S[P + δP ] ≥ S[P ] for all variations δP . (5.6.7)

In order to derive necessary conditions for stability, we shall consider this inequality
for special variations. Our idea is to vary P by changing the momentum and spin
orientation of individual fermionic states. In order to have discrete states, we consider
the system as in §2.6 in finite 3-volume. According to the replacement rule (2.6.3), the



5.6. STABILITY OF THE VACUUM 141

fermionic projector of the vacuum then becomes

P (x, y) =

∫ ∞

−∞

dk0

2π

1

V

∑

k∈L3

P̂ (k)e−ik(x−y) (5.6.8)

P̂ (k) =

3∑

α=1

(k/ +mα) δ(k
2 −m2

α) θ(−k0) . (5.6.9)

Since we want to preserve the vector-scalar structure, we take both fermionic states
for any k on one of the mass shells and bring them into states of momentum q which
are not on the mass shells,

δP = −c (k/ +m) e−ik(x−y) + c̃ (l/+ m̃) e−iq(x−y) (5.6.10)

with m ∈ {m1,m2,m3} 6∋
√

q2 and k2 = m2, k0 < 0, l2 = m̃2. Here c and c̃ are
normalization constants; carrying out the k0-integral in (5.6.8) one sees that

c =
1

4πk0
1

V
. (5.6.11)

We must make sure that we do not change the normalization of the fermionic states.
First of all, this means that we must preserve the sign of the inner product of the
states, and this implies that l must be on the lower mass shell, l0 < 0. Furthermore,
the phase factors e−ik(x−y) and e−iq(x−y) in (5.6.10) drop out of normalization integrals
and thus have no influence on the normalization, but the normalization constants must
be kept fixed. This means that cm = c̃m̃, and by rescaling c̃ and m̃ we can arrange
that c̃ = c and m̃ = m. We conclude that the variation of P must be of the form

δP = −c (k/ +m) e−ik(x−y) + c (l/ +m) e−iq(x−y) (5.6.12)

with
m ∈ {m1, . . . ,mg} 6∋

√

q2 , k2 = l2 = m2 , k0, l0 < 0 . (5.6.13)

This variation preserves the normalization of the fermionic states, as one sees easily
from the fact that it can be realized by a unitary transformation U (3.5.14) (U picks

the states of momentum k, multiplies them by the phase factor e−i(q−k)x and finally
“Lorentz boosts” the spinors with a constant unitary transformation as considered in
Lemma 1.2.1). We point out that the variation (5.6.12, 5.6.13) is discrete (and not a
continuous family of variations δP (τ)). But due to the factor V −1 in (5.6.11), we can
make δP arbitrarily small by making the 3-volume sufficiently large. Therefore, it is
admissible to treat δP perturbatively. The variation of the action (5.2.8) is (up to an
irrelevant normalization constant) computed to be

δS = −Tr(Q̂(k)(k/ +m)) + Tr(Q̂(q)(l/ +m)) , (5.6.14)

where Q̂ is the Fourier transform of Q,

Q̂(p) =

∫

Q(ξ) e−ipξ d4ξ .

Evaluating the stability inequality (5.6.7) gives rise to the notion of state stability. We
first give the definition and explain it afterwards. We denote the mass cone by

C = {p | p2 > 0}
and label the upper and lower mass cone by superscripts ∨ and ∧, respectively,
C∨ = {p | p2 > 0 and p0 > 0} , C∧ = {p | p2 > 0 and p0 < 0} . (5.6.15)
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Def. 5.6.2. The fermionic projector of the vacuum is called state stable if the
corresponding operator Q̂(p) is well-defined in the lower mass cone C∧ and can be
written as

Q̂(p) = a
p/

|p| + b (5.6.16)

with continuous real functions a and b on C∧ having the following properties:

(i) a and b are Lorentz invariant,

a = a(p2) , b = b(p2) .

(ii) a is non-negative.
(iii) The function a+ b is minimal on the mass shells,

(a+ b)(m2
α) = inf

q∈C∧
(a+ b)(q2) for α = 1, 2, 3.

It is natural to assume that Q is Lorentz invariant because P has this property too.
Thus the main point of (5.6.16) is that Q̂ is finite and continuous inside the lower mass

cone. This is needed because otherwise the term Tr(Q̂(k)(k/+m)) in (5.6.14) would be

ill-defined (strictly speaking, we only need that Q̂ is finite on the lower mass shells, but

this seems impossible to arrange without Q̂ being well-defined and continuous inside
the whole lower mass cone). Using (5.6.16), we obtain for any q ∈ C∧,

1

4
Tr(Q̂(q)(l/ +m)) = a

〈q, l〉
|q| + b m . (5.6.17)

Since the vectors q and l are both in the lower mass cone, their inner product 〈q, l〉 is
positive, and it can be made arbitrarily large by choosing |l0| ≫ 1. Hence if a were
negative, (5.6.17) would not be bounded from below, leading to an instability. This
explains (ii). If a is non-negative,

1

4
inf
l

Tr(Q̂(q)(l/ +m)) = a(q)m+ b(q)m.

Comparing this with the first term in (5.6.14) gives (iii).
The question arises whether the conditions of Def. 5.6.2, which are clearly necessary

for stability, are also sufficient. The fact that we vary pairs of fermions keeping the
vector-scalar structure is indeed no restriction because if one varies one fermionic
state, the additional pseudoscalar, axial and bilinear contributions (see (C.1.9) for

details) drop out when taking similar to (5.6.17) the trace with Q̂. Also, at least if
a is strictly positive and if the function a + b has no minima away from the mass
shells, we find that the variation (5.6.14) really increases the action, and we obtain
stability. Hence the main restriction of state stability is that we consider stability only
within the class of homogenous fermionic projectors. The second restriction is that
Def. 5.6.2 involves no condition for Q̂(p) if p is outside the lower mass cone. This is

because we want to allow for the possibility that Q̂(q) is infinite for q /∈ C∧, in such
a way that the expression (5.6.17) equals +∞. Treating such infinities would make
it necessary to introduce an ultraviolet regularization and to analyze the divergences
as the regularization is removed. Since this would go far beyond the treatment in
this section, we here simply disregard those q for which ultraviolet divergences might
appear.
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p0

~p

q
M̂(p) P̂ (q − p)

Figure 5.1. The convolution M̂ ∗ P̂ .

We come to the analysis of state stability. First, we rewrite Q using the spectral
representation of A. Our starting point is (5.5.4),

Q(x, y) =
1

2
M(x, y)P (x, y) . (5.6.18)

Away from the light cone, we can apply Lemma 5.6.1 and writeM(x, y) as

M(x, y) =







∑

s=±

∂L
∂λs

Fs if y − x is timelike

0 if y − x is spacelike .

(5.6.19)

The important point for us is that the integral kernel of Q has a product structure
(5.6.18). This product in position space can also be expressed as a convolution in
momentum space,

Q̂(q) =
1

2

∫
d4p

(2π)4
M̂(p) P̂ (q − p) . (5.6.20)

As is illustrated in Figure 5.1, the integration range is unbounded. Therefore, the
existence of the integral as well as its value might depend sensitively on an ultraviolet
regularization. Since in this section we work with the unregularized fermionic projec-
tor, we simply impose that (5.6.20) should hold even after the ultraviolet regularization
has been removed.

Def. 5.6.3. The fermionic projector satisfies the assumption of a distributional
MP -product if for every q for which Q̂(q) exists, the convolution integral (5.6.20) is

well-defined without regularization and coincides with Q̂(q).

We point out that the above assumption is not merely a technical simplification,
but it makes a highly non-trivial statement on the high-energy behavior of the physical
fermionic projector. Ultimately, it needs to be justified by an analysis of the variational
principle with ultraviolet regularization. At this stage, it can at least be understood
from the fact that the assumption of a distributionalMP -product makes our stability
analysis robust to regularization details. This means physically that the system should
also be stable under “microscopic” perturbations of the fermionic projector on the
Planck scale.

In what follows we will assume that the conditions in Def. 5.6.2 and Def. 5.6.3 are
satisfied. Then the convolution integral (5.6.20) is well-defined for all q ∈ C∧. This

implies that M̂(p) must be a well-defined distribution on the set C∧ ∪ {p | p2 < 0}.
Furthermore, since both P̂ and Q̂ are Lorentz invariant, we may assume that M̂ is



144 5. THE EULER-LAGRANGE EQUATIONS IN THE VACUUM

also Lorentz invariant (otherwise we could replace M̂ by its Lorentz invariant part,
and (5.6.20) would remain true). But if M(x, y) is Lorentz invariant, it involves no
bilinear contribution, and its vector component is a multiple of y − x. According
to (5.6.19), the matrix M(x, y) commutes with A. This implies that, for all x, y for
whichM(x, y) 6= 0, the matrix A involves no bilinear contribution. Since the bilinear
part of A is given by the commutator of P (x, y) and P (y, x), we find that P (x, y)
and P (y, x) commute. It follows that Axy = Ayx for all x, y for which M(x, y) 6= 0.
As a consequence,M(x, y) =M(y, x), and thus

M̂(−p) = M̂(p) . (5.6.21)

This identity yields that M̂ is a well-defined distribution even on C∨. We thus come
to the following conclusion.

Proposition 5.6.4. If the fermionic projector is state stable and theMP -product
is distributional, then M̂(p) is a Lorentz invariant distribution of even parity (5.6.21).

This proposition poses a strong constraint for the ultraviolet regularization of the
fermionic projector. It is a difficult question whether there are regularizations which
satisfy this constraint. But at least we can say that the result of Proposition 5.6.4
does not immediately lead to inconsistencies, as the following lemma shows.

Lemma 5.6.5. For all actions considered in §5.5, there is a distribution M̃ on
Minkowski space which coincides withM away from the light cone,

M̃(y − x) = M(x, y) for all x, y ∈M with (y − x)2 6= 0 .

Proof. An explicit calculation using (5.6.19) and the representation of P (x, y) with
Bessel functions shows that for all actions considered in §5.5,M(x, y) is for ξ ≡ y − x
inside the upper light cone a smooth function with the following properties. It can be
written as

M(ξ) = i∂/ξf(ξ
2) + g(ξ2) (ξ ∈ I∧)

with complex-valued functions f, g ∈ C∞(R+), which have at most polynomial growth
as ξ2 →∞ and at most a polynomial singularity on the light cone, i.e.

|f(ξ2)|+ |g(ξ2| ≤ c

(

ξ2n +
1

ξ2n

)

for suitable constants c > 0, n ∈ N.
Setting z = ξ2, the Laplacian of a Lorentz invariant function h(ξ2) is computed to

be

✷h(z) = 4zh′′(z) + 8h′(z) =
4

z
(z2h′(z))′ . (5.6.22)

This allows us to invert the Laplacian explicitly,

✷
−1h(z) =

1

4

∫ z

z0

dτ

τ2

∫ τ

τ0

σ h(σ) dσ (5.6.23)

with two free constants τ0 and z0. We choose z0 = 1 and set τ0 = 0 if
∫ 1
0 σ|h(σ)|dσ <∞

and τ0 = 1 otherwise. Then applying ✷
−1 decreases the order of the pole on the light

cone by one. Hence the functions

F∨(ξ) = ✷
−n−1f(ξ2) , G∨(ξ) = ✷

−n−1g(ξ2)

are smooth functions on I∨ which are locally bounded near the light cone and have
at most polynomial growth as ξ2 → ∞. Repeating the above construction inside the
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lower light cone gives rise to functions F∧ and G∧ on I∧. Extending these functions
by zero outside their respective domains of definition, the functions

F = F∨ + F∧ , G = G∨ +G∧

are regular distributions on M . By construction, the distribution

M̃ = i∂/✷n+1F +✷
n+1G

coincides inside the light cone withM and vanishes outside the light cone.

The next lemma states a few important properties of the distribution M̂.

Lemma 5.6.6. Under the assumptions of Proposition 5.6.4, the vector component
of M̂ is supported inside the mass cone {p | p2 ≥ 0}. If the scalar component of M
has a nonvanishing contribution with the following asymptotics as I ∋ ξ → 0,

M(ξ) ∼ ξ2r logs ξ2 with r, s ∈ Z, s ≥ 1 , (5.6.24)

then its Fourier transform satisfies outside the mass cone for some c > 0 the bound

|M̂(p)| ≥ 1

c
(−p2)−2−r if p2 < −c . (5.6.25)

Proof. The statement for the vector component immediately follows from a
symmetry argument: Due to Lorentz invariance, the vector component of M̂(p) can

be written as p/f(p) with a scalar distribution f . Since M̂ has even parity (5.6.21), it
follows that f(−p) = −f(p). Again using Lorentz invariance, we conclude that f(p)
vanishes if p is outside the mass cone.

For the scalar component of M̂, the above symmetry argument does not apply,
and (as can easily be verified by an explicit calculation) there is indeed a contribution
outside the mass cone. More specifically, in the case r ≥ 0 we can rescale the Fourier
transform by ξ → τ−1ξ,

∫

ξ2r logs(ξ2) eiτpξ d4ξ = τ−4−2r
∫

ξ2r(log ξ2 − log τ2)s eipξ d4ξ ,

and obtain that (5.6.24) gives rise to a contribution to M̂ with the following asymp-
totics as p2 → −∞,

M̂(p) ∼ (−p2)−2−r (logs(−p2) + l.o.t.) (r ≥ 0) , (5.6.26)

where ‘l.o.t.’ denotes lower order terms in log(−p2). If r < 0, the singularity on
the light cone cannot be treated with this scaling argument. But we can nevertheless
compute the Fourier transform by iteratively applying the operator ✷−1p ,

(−✷p)
2r

∫

logs(ξ2) eipξd4ξ =

∫

ξ2r logs(ξ2) eipξd4ξ .

Using (5.6.23) and (5.6.26), we obtain a contribution to M̂(p) with the following
asymptotics as p2 → −∞,

M̂(p) ∼ (−p2)−2−r (logs+1(ξ2) + l.o.t.) (r < 0) (5.6.27)

(here we do not need to worry about the integration constants in (5.6.23) because
these correspond to contributions localized on the light cone, which will be considered
separately below, see (5.6.28)). The asymptotic formulas (5.6.26, 5.6.27) explain the
estimate (5.6.25). However, the proof is not yet finished because the singular part
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of M which is localized on light cone might give rise to a contribution to M̂ which
cancels (5.6.26) or (5.6.27). Thus it remains to show that all contributions toM which
are localized on the light cone have an asymptotics different from (5.6.26, 5.6.27) and
thus cannot compensate these contributions.

A scalar Lorentz invariant distribution h which is localized on the light cone satisfies
for some n > 0 the relation ξ2nh(ξ) = 0. Hence its Fourier transform is a distributional
solution of the equation

✷
nĥ(p) = 0 .

In the case n = 1, we see from (5.6.22) that away from the mass cone, ĥ(p) must be
a linear combination of the functions 1 and p−2. By iteratively applying (5.6.23) one

finds that for general n, ĥ is of the form

1

p2
(polynomial in p2) + log(−p2) (polynomial in p2) (5.6.28)

The asymptotics of these terms as p2 → −∞ is clearly different from that in (5.6.26,
5.6.27).

We are now ready to prove the main result of this section.

Theorem 5.6.7. Consider the action corresponding to a Lagrangian of type (5.5.16).
Assume that the fermionic projector of the vacuum is state stable and that the MP -
product is distributional (see Def. 5.6.2 and Def. 5.6.3). Then n = 1.

Proof. Since here we consider only one sector, we need to change the normalization
of the spectral weight in (5.5.16),

L[A] = |A2n| − 1

4
|An|2 .

According to Lemma 5.6.1, L vanishes identically for spacelike y − x, whereas for
timelike y − x we may replace the spectral weight by an ordinary trace. Hence away
from the light cone and up to an irrelevant constant factor 2n,

M =

[

An − 1

4
Tr(An)

]

An−1 . (5.6.29)

According to Proposition 5.6.4, M̂ is a Lorentz invariant distribution of even parity.
Following Def. 5.6.2 and Def. 5.6.3, the convolution integral (5.6.20) should be well-
defined for any q inside the lower mass cone. According to Lemma 5.6.6, the vector
component of M̂ is supported inside the closed mass cone. Thus for the corresponding
contribution to (5.6.20), the integration range is indeed compact (see Figure 5.1), and
so (5.6.20) is well-defined in the distributional sense.

It remains to consider the scalar component of M̂. This requires a more detailed
analysis. We again write the fermionic projector in the form (5.3.4, 5.6.6),

P (x, y) = iξ/f + h .
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Using the representation (2.5.41) of the distribution Tm2 = 1
2(Pm2 −Km2) in position

space, we can write f and g in the upper light cone as

f =
c1
ξ4

+
c2
ξ2

+ α (log ξ2 + iπ) + β

g =
c3
ξ2

+ γ (log ξ2 + iπ) + δ

with constants cj 6= 0 and smooth real function α, β, γ, δ with γ0 := γ(0) 6= 0. A short
calculation yields

A = ξ2|f |2 + |h|2 − ξ/Im(fh)

= γ20 log
2 ξ2 + (lower orders in log ξ2) + ξ/

(
1

ξ4
+ (higher orders in ξ2)

)

.

The important point is that the vector component of A involves no logarithms, whereas
the scalar component involves terms ∼ log2 ξ2. Substituting this expansion of A into
(5.6.29), we obtain for the scalar component ofM sums of expressions of the general
form ξ2r logs ξ2. We select those terms for which s is maximal, and out of these terms
for which r is minimal. We get a contribution only when both the square bracket
and the factor An−1 in (5.6.29) contain an odd number of Dirac matrices, and a short
computation yields the asymptotics

M ∼ (n− 1) ξ−6 log4n−6 ξ2 . (5.6.30)

If n = 1, the scalar component of M̂ vanishes, and we get no further conditions.
However if n > 1, Lemma 5.6.6 yields that M̂(p) is outside the mass cone for large p
bounded away from zero by

|M̂(p)| ≥ −p
2

c
.

As a consequence, the convolution integral (5.6.20) diverges.

We close this section with a few remarks. First, we can now discuss the stability of
the vacuum for the polynomial actions (5.5.1). The strong analysis on the light cone
in §5.5 forced us to only consider polynomial Lagrangians which vanish identically
if A has two independent eigenvalues. According to Lemma 5.6.1, this implies that
Q vanishes identically away from the light cone, and so the above stability analysis
becomes trivial. Indeed, the following general consideration shows that for polynomial
actions, the vacuum is not stable in the strict sense: Under the only assumption that
A has vector-scalar structure, the matrix A has at most two independent eigenvalues
(see (5.3.12) and Lemma 5.3.1), and so the Lagrangian vanishes identically. Thus the
variational principle is trivial; it gives no conditions on the structure of the fermionic
projector of the vacuum.

It might seem confusing that in the above analysis, the operator Q(ξ) had poles on
the light cone (see (5.6.30, 5.6.18)), although it vanishes identically in the formalism
of the continuum limit. This can be understood from the fact that on the light cone,
the matrix A has a pair of complex conjugated eigenvalues (see (5.3.25)), whereas
away from the light cone its eigenvalues are in general distinct real eigenvalues (see
Lemma 5.6.1). If a matrix has non-real eigenvalues, this property remains valid if the
matrix is slightly perturbed. Therefore, treating the eigenvalues of A perturbatively,
it is impossible to get from the region on the light cone to the region away from the
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light cone. This is the reason why the result of Lemma 5.6.1 cannot be obtained in
the formalism of the continuum limit. The transition between the asymptotic regions
near and away from the light cone can be studied only by analyzing the EL equations
with regularization in detail, and this goes beyond the scope of this book. However, we
point out that the order of the pole in (5.6.30) is lower than the order of all singularities
which we will study in the continuum limit. This justifies that we can neglect (5.6.30)
in what follows; taking into account (5.6.30) would have no effect on any of the results
in this book.

The above argument shows that from all Lagrangians mentioned in §5.5, only
for (5.5.14) the vacuum can be stable (in the sense made precise in Theorem 5.6.7).
The important question arises whether the above necessary conditions are also suffi-
cient, i.e. if for the Lagrangian (5.5.14) the vacuum is indeed state stable. This question
cannot be answered here; in any case a more detailed analysis would yield additional
constraints for the mass parameters mα and the regularization. But at least we can
say that for the Lagrangian (5.5.14), the vacuum has very nice properties which point
towards stability: First of all, Q vanishes in the continuum limit. But it does not van-
ish identically away from the light cone, and thus the EL equations are non-trivial in
the vacuum. Furthermore, Q(ξ) is supported in the light cone, giving an interesting (al-
though not yet fully understood) link to causality. The crucial point for Theorem 5.6.7
is that the scalar component ofM vanishes (as is obvious from (5.6.29)), and therefore

M̂ is supported inside the mass cone (see Lemma 5.6.6). The last property implies
via a simple support argument that, for q inside the lower mass cone, the convolution
integral (5.6.20) is finite (see Figure 5.1). This means that the stability conditions (ii)
and (iii) of Def. 5.6.2 (which we did not consider here) could be analyzed without any
assumption on the regularization. However, for q outside the lower mass cone, the
convolution integral (5.6.20) will in general diverge (see again Figure 5.1), indicating
that the vacuum could be stable even under perturbations where fermionic states with
momenta outside the lower mass cone are occupied.



CHAPTER 6

The Dynamical Gauge Group

We now begin the analysis of the continuum limit of the EL equations with inter-
action. In order to work in a concrete example, we shall analyze our model variational
principle of §3.5. But the methods as well as many of the results carry over to other
variational principles, as will be discussed in the Remarks at the end of Chapter 6 and
at the end of Chapter 7. We again consider the fermionic projector of the standard
model §5.1. For the bosonic potentials in the corresponding auxiliary Dirac equa-
tion (2.3.10) we make the ansatz

B = C/+ γ5 E/+Φ+ iγ5 Ξ (6.0.1)

with a vector potential C, an axial potential E and scalar/pseudoscalar potentials Φ

and Ξ, which again in component notation B = B(aα)(bβ) we assume to be of the form

C = Ca
b δ

α
β , E = Ea

b δ
α
β , Φ = Φ

(aα)
(bβ) , Ξ = Ξ

(aα)
(bβ) . (6.0.2)

Exactly as in §2.5 it is convenient to introduce the chiral potentials

AL/R = C ± E , (6.0.3)

and to define the dynamical mass matrices by

mYL/R = mY − Φ∓ iΞ . (6.0.4)

Then the auxiliary Dirac equation takes the form

(i∂/+ χL(A/R −mYR) + χR(A/L −mYL))P (x, y) = 0 . (6.0.5)

Clearly, the potentials in (6.0.1) must be causality compatible (2.3.18). We assume in
what follows that this condition is satisfied, and we will specify what it means in the
course of our analysis.

Let us briefly discuss the ansatz (6.0.1). The vector and axial potentials in (6.0.1)
have a similar form as the gauge potentials in the standard model. Indeed, when com-
bined with the chiral potentials (6.0.3), they can be regarded as the gauge potentials
corresponding to the gauge group U(8)L × U(8)R. This so-called chiral gauge group
includes the gauge group of the standard model. At every space-time point, it has
a natural representation as a pair of 8 × 8 matrices acting on the sectors; we will
work in this representation throughout. Compared to the most general ansatz for the
chiral potentials, the only restriction in (6.0.3, 6.0.2) is that the chiral potentials are
the same for the three generations. This can be justified from the behavior of the
fermionic projector under generalized gauge transformations, as will be explained in
Remark 6.2.3 below. The scalar potentials in (6.0.1) do not appear in the standard
model, but as we shall see, they will play an important role in our description of the
interaction (here and in what follows, we omit the word “pseudo” and by a “scalar
potential” mean a scalar or a pseudoscalar potential). We point out that we do not
consider a gravitational field. The reason is that here we want to restrict attention

149
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to the interactions of the standard model. But since the principle of the fermionic
projector respects the equivalence principle, one could clearly include a gravitational
field; we plan to do so in the future. Compared to a general multiplication operator,
(6.0.1) does not contain bilinear potentials (i.e. potentials of the form Hjkσ

jk with

σjk = i
2 [γ

j , γk]). Clearly, bilinear potentials do not appear in the standard model, but
it is not obvious why they should be irrelevant in our description. Nevertheless, we
omit bilinear potentials in order to keep the analysis as simple as possible. To sum-
marize, (6.0.1) is certainly not the most general ansatz which is worth studying. But
since the potentials in (6.0.1) are considerably more general than the gauge potentials
in the standard model, it seems reasonable to take (6.0.1) as the starting point for our
analysis.

6.1. The Euler-Lagrange Equations to Highest Degree on the Light Cone

We come to the detailed calculations. We again work with the spectral decom-
position of Axy and proceed degree by degree on the light cone. In this section we
consider the highest degree. Then the fermionic projector is influenced only by the
chiral potentials (and not by the scalar potentials or the particle states), and the chi-
ral potentials merely describe local phase transformations of the fermionic projector.
More precisely, truncating all contributions of degree < 2 and denoting this “truncated
fermionic projector” by P0(x, y), we have (see §2.5 and Appendix B)1

P0(x, y) =

(

χL XL L

∫ y

x
+χR XR R

∫ y

x

)
i

2
ξ/ T

(−1)
[0] (x, y) , (6.1.1)

where we used for the ordered exponentials the short notation

c

∫ y

x
= Pexp

(

−i
∫ 1

0
Aj

c(τy + (1− τ)x) (y − x)j dτ
)

(6.1.2)

with c = L or R. We also truncate the matrix Axy by setting

A0(x, y) = P0(x, y) P0(y, x) .

It follows from (6.1.1) that

A0 =

{

χL XL L

∫ y

x
R

∫ x

y
XR + χR XR R

∫ y

x
L

∫ x

y
XL

}
1

4
(ξ/ T

(−1)
[0] )(ξ/ T

(−1)
[0] ) . (6.1.3)

We can assume that the matrix inside the curly brackets is diagonalizable; indeed,
this is the generic situation, and the general case immediately follows from it by ap-
proximation. The matrix A0 is invariant on the left- and right-handed spinors. If
considered on one of these invariant subspaces, the curly brackets depend only on the
sector indices a, b = 1, . . . , 8, whereas the factors to their right involve only Dirac ma-
trices. This allows us to factor the spectral decomposition of A0 as follows. We first
diagonalize the phase factor, i.e.

Wc ≡ Xc c

∫ y

x
c

∫ x

y
Xc =

8∑

n=1

νnc Inc (6.1.4)

1
Online version: Here the factor g2 obtained by summing over the generations when forming the

partial trace (see (2.3.4)) is absorbed into the definition of the factors T
(−1)
[0] . This differs from the

convention used in the book [5] (listed in the references in the preface to the second online edition),
where for clarity the factors g which count the number of generations are always written out.
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with eigenvalues νnc (counting multiplicities) and corresponding spectral projectors
Inc, where c is defined by L = R and R = L. The matrices WL and WR are obtained
from each other by taking their adjoint. Thus we can arrange that the same holds for
their spectral decompositions,

νnc = νnc , I∗nc = Inc . (6.1.5)

The spectral representation of the second term in (6.1.3) is computed exactly as de-
scribed in §5.3. More precisely, it is obtained from (5.3.8, 5.3.10) by setting h to zero,
i.e. similar to (5.3.20, 5.3.21),

1

4
(ξ/ T

(−1)
[0] )(ξ/ T

(−1)
[0] ) =

∑

s=±

λs Fs (6.1.6)

with

λs =
1

4
T
(−1)
[0] T

(−1)
[0] ×

{
z if s = +
z if s = − (6.1.7)

Fs =
1

z − z ×
{

ξ/ξ/− z if s = +

−ξ/ξ/+ z if s = − .
(6.1.8)

Combining (6.1.4) and (6.1.6) gives

A0 =
8∑

n=1

∑

c=L,R

∑

s=±

λncs Fncs (6.1.9)

with

λncs = νnc λs , Fncs = χc Inc Fs . (6.1.10)

It might be surprising at first sight that, although A0 clearly is a gauge-invariant
expression, the phase shifts described by the ordered exponentials in (6.1.1) do not
drop out in (6.1.3). Let us explain in detail how this comes about. We first recall that
under gauge transformations, the truncated fermionic projector transforms like

P0(x, y) −→ U(x) P0(x, y) U(y)−1 , (6.1.11)

where U is unitary with respect to the spin scalar product, U(x)∗ = U(x)−1. These
U(2N, 2N) gauge transformations correspond to a local symmetry of the system, which
is related to the freedom in choosing a local basis for the spinors (see §3.1). When
forming the closed chain, the gauge transformations at y drop out,

P0(x, y) P0(y, x) −→ U(x) P0(x, y) P0(y, x) U(x)−1 .

In order to see the relation between the phase transformations in (6.1.1) and the above
gauge transformations, it is useful to consider the situation when the chiral potentials
have the form of pure gauge potentials, i.e.

Aj
c = iVc (∂

jV −1c ) (6.1.12)

with unitary operators VL, VR ∈ U(8). Then the ordered exponential (6.1.2) reduces
to a product of unitary transformations at the two end points,

c

∫ y

x
= Vc(x) Vc(y)

−1 .
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Using that the potentials are causality compatible, (6.1.1) becomes

P0(x, y) =
∑

c=L,R

χc Vc(x)Xc

(
i

2
ξ/ T

(−1)
[0] (x, y)

)

Vc(y)
−1 . (6.1.13)

Hence the left- and right-handed components of P0 are transformed independently by
VL and VR, respectively. In order to write these transformations in a form similar
to (6.1.11), we combine VL and VR into one operator V ,

V = χL VL + χR VR .

The effect of the chiral potentials in (6.1.13) is then described by the transformation

P0(x, y) −→ V (x) P0(x, y) V (y)∗ ,

and thus the closed chain transforms according to

P0(x, y) P0(y, x) −→ V (x) P0(x, y) V (y)∗ V (y) P0(y, x) V (x)∗ . (6.1.14)

The point is that the transformation V is in general not unitary, because

V ∗ = χR V
−1
L + χLV

−1
R

in general

6= χL V
−1
L + χRV

−1
R = V −1 .

More precisely, V is unitary if and only if VL = VR at every space-time point. According
to (6.1.12), this implies the condition AL ≡ AR. From (6.0.3) we conclude that V is
unitary if and only if the axial potentials E in (6.0.1) are identically equal to zero. This
means that only the subgroup U(8) ⊂ U(8)L×U(R)R of the chiral gauge group, which
gives rise to the vector potential C in (6.0.1), describes local unitary transformations
of the fermionic projector and thus corresponds to a local gauge symmetry in the sense
of §3.1. We refer to this subgroup of the chiral gauge group as the free gauge group
F ; it can be identified with a subgroup of the gauge group, F ⊂ U(2N, 2N) (we
remark for clarity that the other degrees of freedom of the gauge group U(2N, 2N)
are related to the gravitational field §1.5 and are thus not considered here). The axial
potentials, however, describe local transformations which are not unitary and thus
cannot be identified with gauge transformations in the sense of §3.1. These non-unitary
transformations do not correspond to an underlying local symmetry of the system. The
interpretation of these results is that the chiral gauge group is spontaneously broken,
and only its subgroup F corresponds to an unbroken local symmetry of the system.

A simple way to understand why the chiral gauge group is spontaneously broken is
that axial potentials describe relative phase shifts between the left- and right-handed
components of the fermionic projector. Such relative phases do not drop out when
we form composite expressions, as one sees in (6.1.14) or, more generally, in (6.1.3).
By imposing that the relative phases be zero in all composite expressions, we can
distinguish those systems in which the axial potentials vanish identically. In this way,
one can fix the gauge up to global chiral gauge transformations (i.e. transformations of
the form (6.1.13) with constant matrices Vc) and up to local free gauge transformations.
Since this gauge fixing argument makes use of the phases which appear in P0(x, y), one
may regard the chiral gauge symmetry as being spontaneously broken by the fermionic
projector.

The spontaneous breaking of the chiral gauge symmetry by the fermionic projector
has, at least on the qualitative level, some similarity to the Higgs mechanism in the
standard model. We recall that in the Higgs mechanism one arranges by a suitable
quartic potential in the classical Lagrangian that the Higgs field Φ has a non-trivial
ground state, i.e. Φ 6= 0 in the vacuum. The Higgs field is acted upon by a local gauge
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group. Since Φ 6= 0, one can, by prescribing the phase of Φ, fix the gauge globally.
This shows that the local gauge symmetry is spontaneously broken by the Higgs field,
a fact which can then be used to give the gauge bosons mass. In our setting, we
also have in the vacuum a non-trivial object, namely the fermionic projector, which
is composed of the Dirac seas corresponding to the leptons and quarks. Thus our
situation is indeed quite similar to the Higgs mechanism, if one only keeps in mind
that the role of the Higgs field in our description is played by the fermionic projector
of the vacuum. Clearly, this analogy does not carry over to the mathematical details.
But also in our description, the spontaneous symmetry breaking makes it possible
that undifferentiated gauge potentials enter the EL-equations, giving the hope that
the corresponding gauge bosons might be massive.

Since the chiral gauge symmetry is spontaneously broken, we cannot expect that
the EL equations admit chiral potentials corresponding to the whole group U(8)L ×
U(8)R. In order to quantify which restrictions for the chiral potentials we get, we
must work in a more general setting and introduce a suitable mathematical notation.
Contributions to the fermionic projector which involve the phases of the chiral poten-
tials, but not the gauge fields, currents, or scalar potentials, are called gauge terms.
Likewise, we refer to the contributions of the gauge terms to a composite expression in
the fermionic projector as the gauge terms in the respective expression. The simplest
examples for gauge terms are (6.1.1) or (6.1.3), but we shall encounter gauge terms to
lower degree on the light cone as well.

Def. 6.1.1. A subgroup G of the chiral gauge group is called a dynamical gauge
group if the gauge terms of the potentials corresponding to G vanish in the EL equa-
tions. The subgroup G ∩ F is the free dynamical gauge group.

Clearly, this definition does not give a unique dynamical gauge group. In particular,
every subgroup of a dynamical gauge group is again a dynamical gauge group. Since
we want to choose the dynamical gauge group as large as possible, we will always
restrict attention to dynamical gauge groups which are maximal in the sense that they
are not contained in a larger dynamical gauge group.

We first analyze the gauge term (6.1.1) in the EL equations corresponding to our
variational principle (5.5.14). We only consider the highest degree on the light cone,
which is degree 5. This gives the following result.

Theorem 6.1.2. The eigenvalues νnc of Wc must satisfy the conditions

ν8c = 0 and |νnc| = |νn′c′ | for n, n′ = 1, . . . , 7 and c, c′ = L,R. (6.1.15)

The dynamical gauge group G is restricted by

G ⊂ (U(7) × U(1))L × (U(7) × U(1))R , (6.1.16)

where the U(7) are unitary matrices acting on the seven massive sectors, and the U(1)
act on the neutrino sector.

If conversely the conditions (6.1.15) or (6.1.16) are satisfied, then the EL equations
are satisfied to degree 5 on the light cone.

It is easy to see that the conditions in the above theorem are sufficient for the
EL equations to be satisfied, and this consideration also gives an idea of how these
conditions come about. Namely, suppose that (6.1.16) holds. Then the dynamical
gauge potentials are invariant on the massive sectors as well as on the neutrino sector.
Using a block matrix notation where the first component refers to the massive sectors
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and the second component to the neutrino sector, we see from (6.1.4) that the matrices
WL and WR have the form

WL =

(
U 0
0 0

)

, WR =

(
U∗ 0
0 0

)

(6.1.17)

with U a unitary 7×7 matrix. Hence their eigenvalues νnc satisfy the conditions (6.1.15).
Using (5.4.7), the gradient of the Lagrangian is computed to be

M[A] = 2
K∑

k=1

{(

|λk| −
1

28
|A|
)
λk
|λk|

}

Fk . (6.1.18)

We saw in §5.5 that the curly brackets vanish in the vacuum. If (6.1.15) is satisfied, the
gauge terms change the eigenvalues λncs only by a phase (6.1.10). Since these phases
drop out when absolute values are taken, the curly brackets in (6.1.18) are zero even
with interaction (to the highest degree on the light cone). According to (5.2.7), this
implies that Q vanishes, and so the EL equations are satisfied.

It is more difficult to show that the conditions (6.1.15) and (6.1.16) are also nec-
essary. We give the proof in detail.

Proof of Theorem 6.1.2. Using the argument given after the statement of the theorem,
it remains to show that the conditions (6.1.15) and (6.1.16) are necessary. Substitut-
ing the spectral decomposition of A0 into (5.5.4), we obtain, in analogy to (5.4.8), the
following representation for Q,

Q(x, y) =
1

2

∑

n,c,s

∂L(λxy)
∂λxyncs

F xy
ncs P0(x, y) + (deg < 5).

Computing the Euler-Lagrange equations similar to (5.4.10) and keeping track of the
chiral cancellations, we obtain in analogy to (5.4.12) the equation

∑

n,c,s

∂L(λxy)
∂λxyncs

F xy
ncs P0(x, y) c

∫ z

y
Xc + (deg < 5) = 0 ,

and by multiplying from the right by the macroscopic unitary matrix c

∫ y

z
, we can arrange

that z = y. We substitute (6.1.1) as well as the right of (6.1.10) and apply (5.3.23) to
obtain

∑

nc

∂L(λ)
∂λnc−

χc Inc

{

Xc c

∫ y

x
c

∫ x

y
Xc

}(
i

2
ξ/ T

(−1)
[0]

)

+ (deg < 5) = 0 .

The curly brackets coincide with the matrix Wc, and since Inc is a spectral projector
of this matrix, we simply get a scalar factor νnc. Furthermore, we use the particular
form of our Lagrangian (5.5.14) as well as the first equation in (6.1.10). This gives

i
∑

n,c



|νnc| −
1

14

∑

n′,c′

|νn′c′ |



 χc ξ/ Inc λ− T
(−1)
[0]

= 0 . (6.1.19)

Using (5.3.20), the non-smooth factors are a monomial of degree five,

λ− T
(−1)
[0] = T

(0)
[0] T

(−1)
[0] T

(−1)
[0] . (6.1.20)

We cannot assume that this monomial is equal to zero. Namely, the fermionic projector
differs to highest degree on the light cone from the fermionic projector of the vacuum
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only by macroscopic phase factors (this is guaranteed by the gauge invariance of the
regularized causal perturbation expansion, see Appendix D). Therefore, exactly as
explained for the vacuum in §5.4, we can evaluate (6.1.19) even strongly. In particular,
we can consider the regularization expansion of (6.1.19) (see §4.3, §4.4). This means
that, in order to set the monomial (6.1.20) in (6.1.19) equal to zero, we would have to
impose an infinite number of regularization conditions. We conclude that in order to
satisfy (6.1.19), we must assume that the macroscopic prefactor vanishes. Using that
the spectral projectors Inc are linearly independent, we get the conditions



|νnc| −
1

14

∑

n′,c′

|νn′c′ |



 |νnc|2 = 0 for all n, c.

This implies that the absolute values of 14 of the eigenvalues νnc must coincide, and
that the remaining two eigenvalues must be zero. The matrix WL contains a factor
XR and is thus singular of rank one. Choosing the numbering such that νL8 = 0, it
follows from (6.1.5) that also νR8 = 0. Hence the two zero eigenvalues are those for
n = 8. This shows that (6.1.15) is a necessary condition.

Next we will show that (6.1.15) implies the constraint for the dynamical gauge
group (6.1.16). We introduce for fixed x and y the abbreviations

U = L

∫ y

x
R

∫ x

y
and T = XR . (6.1.21)

We consider U = (Ua
b ) and T = (T a

b ) as matrices on C8 endowed with the standard
Euclidean scalar product 〈., .〉. Then U is unitary, and T is a projector of rank 7.
According to (6.1.5), the conditions (6.1.15) tell us that the matrix UT must have 7
eigenvalues on the unit circle and one zero eigenvalue. For a vector u in the kernel of
UT ,

0 = 〈UTu, UTu〉 = 〈Tu, Tu〉 ,
where we used in the last step that U is unitary. Thus u is also in the kernel of T .
On the other hand, if u is an eigenvector of UT corresponding to an eigenvalue on the
unit circle,

|u|2 = 〈UTu, UTu〉 = 〈Tu, Tu〉 .
Since for a projector, |Tu| < |u| unless u is in the image of T , it follows that u is also
an eigenvector of T , of eigenvalue one. We conclude that every eigenvalue of UT is
also an eigenvalue of T , or equivalently that

[UT, T ] = 0 . (6.1.22)

Let us analyze what this commutator condition means for the chiral potentials.
We already know from the causality compatibility condition that

[AR, T ] = 0 . (6.1.23)

Hence substituting the definition of U , (6.1.21), into (6.1.22) and using that the re-
sulting condition must hold for all x and y, we obtain that [ALT, T ] = 0. Subtracting
the adjoint and using that T is idempotent gives the stronger statement

[AL, T ] = 0 . (6.1.24)

From (6.1.23) and (6.1.24) we conclude that the chiral potentials must be block diago-
nal in the sense that (Ac)

a
b = 0 if a = 8 and b 6= 8 or vice versa. Such chiral potentials

correspond precisely to the gauge group in (6.1.16).
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Remark 6.1.3. We point out that the subgroup U(1)L×U(1)R of the gauge group
in (6.1.16), which acts on the neutrino sector, is not uniquely determined and could be
replaced by any other subgroup which contains U(1)L. This can immediately be un-
derstood from the fact that the neutrino sector contains only left-handed particles, and
thus the form of the potential AR, which acts on the right-handed component, has no
significance. To make this argument rigorous, we consider the Dirac equation (6.0.5).
Since P = XP , we may replace the chiral potentials Ac in (6.0.5) by AcXc, and this
indeed makes the component of AR in the neutrino sector equal to zero, showing that
this component is of no relevance. We conclude that we may arbitrarily change the
subgroup U(1)R in (6.1.16); e.g. we could replace (6.1.16) by

(U(7)× U(1))L × U(7)R or (U(7)L × U(7)R)× U(1) . (6.1.25)

We do not write out this obvious arbitrariness in what follows; instead we will simply
give the gauge groups in the most convenient form.

6.2. The Gauge Terms in the Euler-Lagrange Equations

We come to the analysis of the EL equations to the next lower degree 4 on the
light cone. According to the formulas of the light-cone expansion in Appendix B, the
structure of the fermionic projector to the next lower degree is considerably more com-
plicated than (6.1.1), because in addition to gauge terms, there are also contributions
involving the chiral fields and currents as well as the scalar potentials. Fortunately,
the following general argument allows us to distinguish these different types of con-
tributions in the EL equations. In the formulas for P (x, y), the gauge terms always
involve ordered exponentials of the chiral potentials, integrated along the line segment
xy = {αx+(1−α)y, 0 ≤ α ≤ 1}. We refer to such contributions as line contributions.
The fields, currents and scalar potentials, however, are in the light-cone expansion
evaluated at individual points, namely either at the end points x, y or at an intermedi-
ate point z ∈ xy; we call the corresponding contributions to the light-cone expansion
point contributions. In the case of an evaluation at an intermediate point z, the point
contribution clearly involves an integral over z along xy. But in contrast to the line
contribution, where the chiral potentials at different points enter the ordered exponen-
tial in a nonlinear way, the line integrals in a point contribution simply takes averages
of the potentials, fields, or currents along the line segment. For example by expanding
the ordered exponential in a Dyson series (see Def. 2.5.4) and considering the higher or-
der terms, one sees immediately that the line and point contributions are independent
in the EL equations in the sense that the EL equations must be satisfied separately by
the line and point contributions. Moreover, we can distinguish point contributions in
the EL equations, provided that their configuration of the tensor indices is different.
Therefore, the point contributions involving the scalar potentials, the chiral fields and
the currents are independent in the EL equations as well.

Using the above arguments, we can study the gauge terms and the contributions
involving the scalar potentials, the gauge fields and the currents separately. In the
remainder of this section, we consider only the gauge terms. Thus we restrict attention
to chiral potentials, i.e. instead of (6.0.5) we consider the Dirac equation

(i∂/−mY + χL A/R + χR A/L) P (x, y) = 0
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with Y a fixed matrix. We will return to the general Dirac equation (6.0.5) in Chap-
ter 7.

Def. 6.2.1. We introduce for p ∈ {4, . . . , 7} the groups Bp, Fp ⊂ U(8) by

Bp = { g ⊕ · · · ⊕ g
︸ ︷︷ ︸

p summands

⊕ g−1 ⊕ · · · ⊕ g−1
︸ ︷︷ ︸

7−p summands

with g ∈ U(1)} (6.2.1)

Fp = U(p)× U(7− p)× U(1) (6.2.2)

and define corresponding subgroups Bp and Fp of the dynamical gauge group by

Bp = Bp × 11 ⊂ U(8)L × U(8)R , Fp = {(g, g) with g ∈ Fp} ⊂ F . (6.2.3)

Their product

Gp = Bp · Fp ≡ {bf with b ∈ Bp, f ∈ Fp} ⊂ U(8)L × U(8)R (6.2.4)

is called the p
th dynamical gauge group.

In block matrix notation, the elements of Bp and Fp can be written as




z 11p 0 0
0 z−1 11q 0
0 0 0



 and





g 0 0
0 h 0
0 0 l



 , (6.2.5)

respectively, where the first component refers to the first p sectors, the second compo-
nent to the next q ≡ 7−p sectors and the last component to the neutrino sector. Here
z, l ∈ U(1), g ∈ U(p) and h ∈ U(q). Clearly, Bp and Bp are group isomorphic to U(1).
Notice that Bp acts only on the left-handed component. The group Fp transforms the
left- and right-handed components in the same way, and so its corresponding gauge
potentials are vector potentials. The groups Bp and Fp commute, and this ensures
that their product (6.2.4) is again a group. It is easy to verify that Fp is indeed the
largest subgroup of F which commutes with Bp,

Fp =
{
f ∈ F | bfb−1 = f for all b ∈ Bp

}
.

We introduce an abbreviation for the linear combination of monomials,

M ≡ T
(0)
[1] T

(0)
[1] T

(−1)
[0] T

(0)
[0] − T

(−1)
[0] T

(1)
[2] T

(−1)
[0] T

(0)
[0] . (6.2.6)

Theorem 6.2.2. There are precisely the following possibilities for the choice of the
dynamical gauge group.

(1) Without assuming any relations between the basic fractions, the dynamical
gauge group must be contained in the free gauge group,

G ⊂ F0 = U(7) × U(1) . (6.2.7)

(2) If we allow for one relation between the basic fractions, the dynamical gauge
group is (possibly after a global gauge transformation) restricted by

G ⊂ Gp for some p ∈ {4, . . . , 7}. (6.2.8)

In this case, the relation between the basic fractions is2

(M −M) T
(0)
[0]

−1

= 0 (6.2.9)

with M according to (6.2.6).

2
Online version: As shown in Lemma I in the preface to the second online edition, there is no

regularization which realizes this relation.
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(3) If we allow for two relations between the basic fractions, we get no constraints
for the dynamical gauge group besides those of Theorem 6.1.2. The two rela-
tions between the basic fractions are (6.2.9) and

M T
(0)
[0]

−1

= 0 . (6.2.10)

In each of these cases, the gauge terms vanish in the EL equations to degree 4 on the
light cone.

Proof. We first bring the EL equations to degree 4 into a more explicit form.
Theorem 6.1.2 implies that the variation of our Lagrangian vanishes to highest degree
on the light cone,

∂L(λ)
∂λncs

+ (deg < 3) = 0 . (6.2.11)

According to (5.4.7, 5.2.7), all contributions to the EL equations vanish for which
the variation of the Lagrangian is considered to highest degree (even if the spectral
projectors or the factors P (x, y) are expanded to lower degree). This means that we
only need to compute the Lagrangian to the next lower degree, whereas it suffices
to take into account both the spectral projectors and the factors P (x, y) to highest
degree.

Since the Lagrangian is a function of the eigenvalues only, our task is to calculate
the contribution to the eigenvalues to the next lower degree two, denoted by ∆λncs.
This calculation is carried out in a more general context in Appendix G (see Theo-
rems G.4.1 and G.5.1). Specializing the obtained results gives

∆λ8cs = 0 ,

whereas for n = 1, . . . , 7,

∆λxync− = T
(0)
[1] T

(0)
[1] − T

(−1)
[0] T

(1)
[2] + νnc

(

T
(0)
[2] T

(0)
[0] + T

(−1)
[0] T

(1)
[2]

)

(6.2.12)

+
T
(0)
[1] T

(−1)
[0] − T (−1)

[0] T
(0)
[1]

λxync− − λxync−

(

νnc T
(0)
[1] T

(0)
[0] − νnc T

(0)
[0] T

(0)
[1]

)

(6.2.13)

∆λyxnc+ = ∆λxync− (6.2.14)

(here λxync− denotes the eigenvalues of A0, (6.1.10)). The EL equations take again
the form (5.4.12). Substituting the asymptotic formula to highest degree (5.3.23) and
expanding our Lagrangian (5.5.14) shows that the EL equations become to degree 4,

∑

nc

∆



|λnc−| −
1

28

∑

n′,c′,s′

|λn′c′s′ |




λ−
|λ−|

|νnc|2χc Inc (iξ/ T
(−1)
[0] ) = 0 .

Since the eigenvalues appear in complex conjugate pairs, we may replace the sum over
s′ by a factor two and set s′ = −. Also, the non-vanishing macroscopic factor ξ/ can
be omitted. Furthermore, we use that the spectral projectors Inc are macroscopic and
linearly independent, and that |νnc|2 vanishes for n = 8 and is equal to one otherwise,
(6.1.15). We thus obtain that the EL equations to degree 4 are equivalent to the
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conditions that for all n = 1, . . . , 7,


Re
(
λnc− ∆λnc−

)
− 1

14

∑

n′,c′

Re
(
λn′c′− ∆λn′c′−

)




1

T
(0)
[0]

= 0 .

It is more convenient to write this condition in the form that the expression

Hnc ≡ 2 Re
(
λnc− ∆λnc−

)
T
(0)
[0]

−1

should be independent of n and c,

Hnc = Hn′c′ for all n, n′ = 1, . . . , 7 and c, c′ = L,R. (6.2.15)

Next we compute Hnc by substituting the formulas for λnc− and ∆λnc−, (5.3.20) and
(6.2.12, 6.2.13). Since the last summand of ∆λnc−, (6.2.13) is imaginary, we can use
that for α ∈ iR,

2 Re
(
λnc− α

)
= α (λnc− − λnc−) ,

and the denominator in (6.2.13) drops out. We thus obtain

Hnc =
(
νnc M + νnc M + L+ L

)
T
(0)
[0]

−1

, (6.2.16)

where M is the linear combination of monomials (6.2.6), and L is given by

L ≡ T
(0)
[0] T

(−1)
[0]

(

T
(0)
[2] T

(0)
[0] + T

(−1)
[0] T

(1)
[2]

)

. (6.2.17)

We conclude that the EL equations to degree 4 are equivalent to the conditions (6.2.15)
with Hnc given by (6.2.16, 6.2.6, 6.2.17).

Let us analyze what the conditions (6.2.15) mean. First of all, the contributions
to (6.2.16) which involve L or L are clearly independent of n, c and thus drop out
in (6.2.15). In the case n′ = n and c′ = c, we can in (6.2.15) apply the first part
of (6.1.5) to obtain the necessary conditions

(νnc − νnc) (M −M ) T
(0)
[0]

−1

= 0 . (6.2.18)

If we assume no relations between the basic fractions, this implies that νnc = νnc, and
thus

νnc = ±1 for all n = 1, . . . , 7 and c = L,R. (6.2.19)

For x = y, the matrix Wc becomes Wc = XcXc, and thus the eigenvalues in (6.2.19)
are equal to one. Since these eigenvalues depend smoothly on x and y, we conclude
that νnc = 1 for all x and y. This means in the block matrix representation for Wc,
(6.1.17), that the unitary matrix U is equal to the identity. Thus, according to (6.1.4),

Xc c

∫ y

x
c

∫ x

y
Xc = Wc = XcXc . (6.2.20)

Differentiating with respect to y and setting y = x gives

Xc (Ac −Ac)Xc = 0 .

Hence the left- and right-handed potentials must coincide on the massive sectors. Using
the argument in Remark 6.1.3, we can arrange the same in the neutrino sector. This
gives the dynamical gauge group in (6.2.7). Conversely, if (6.2.7) is satisfied, then the
matrices Wc are of the form (6.2.20). It follows that νnc = 1 for all n = 1, . . . , 7 and
c = L,R, and thus (6.2.15) holds.
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We next consider the case when we allow for relations between the basic fractions.
The only way to avoid the conditions (6.2.19) (which lead to the dynamical gauge
group (6.2.7)) is to assume that the factor M −M in (6.2.18) vanishes. This gives
precisely the relation (6.2.9). If (6.2.9) holds, Hnc simplifies to

Hnc = 2 Re (νnc) M + L+ L . (6.2.21)

If we assume no further relations between the basic fractions, the conditions (6.2.15)
are equivalent to

Re (νnc) = Re (νn′c′) for all n = 1, . . . , 7 and c = L,R. (6.2.22)

The only way to avoid these conditions is to impose in addition that (6.2.10) holds. If
this is done, all terms involving νnc or νnc drop out in (6.2.16), and (6.2.15) is satisfied.

It remains to show that the conditions (6.2.22) are equivalent to (6.2.8). Again
using the argument in Remark 6.1.3, it is obvious that the dynamical gauge group
has the required form on the neutrino sector, and thus we can in what follows restrict
attention to the seven massive sectors. Then G is a subgroup of U(7)L × U(7)R, and
the matrices Wc are unitary and have the spectral representation

Wc(x, y) = c

∫ y

x
c

∫ x

y
=

7∑

n=1

νnc Inc . (6.2.23)

Suppose that (6.2.8) is satisfied. Then

G ∋
(

L

∫ y

x
, R

∫ x

y

)

= (bf, f)

with b ∈ Bp and f ∈ Fp, and thus

Wc = bf f−1 = b .

As one sees immediately from (6.2.5), the eigenvalues νnc of b are equal to z and z
with z ∈ U(1) ⊂ C. Thus the conditions (6.2.22) are satisfied.

Suppose conversely that the conditions (6.2.22) hold. We denote the Lie algebra
of the dynamical gauge group by g; it is a subalgebra of su(7) ⊕ su(7). Let π be the
projection onto the axial part,

π : g → su(7) : (AL, AR) 7→ AL −AR . (6.2.24)

Its image π(g) is a subspace of su(7) (but it is in general no subalgebra). For the first
part of our argument, we consider the situation “locally” for x near y. Expanding the
ordered exponentials in (6.2.23) in a power series around x yields according to (6.1.2)
that

WL/R(x+ εu, x) = 11 ± iε(AL
j (x)−AR

j (x)) u
j + O(ε2) . (6.2.25)

Since the gauge potentials at x can be chosen freely with values in the dynamical gauge
algebra, the term A ≡ (AL

j (x)−AR
j (x))u

j can take any value in π(g). The eigenvalues

of (6.1.4) have the expansion νnc = 1± iελn + o(ε), where λn are the eigenvalues of A.
We conclude from (6.2.22) that

σ(A) = {±λ with λ = λ(A) ∈ R} for all A ∈ π(g). (6.2.26)

We can assume in what follows that π(g) is non-trivial, π(g) 6= 0, because otherwise
according to (6.2.24) the dynamical gauge potentials are pure vector potentials, giving
rise to (6.2.7).
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Next we consider the eigenvalues of W xy
c “globally” for y far from x. Expanding

the ordered exponentials in (6.2.23) along the line x+ εξ, ξ ≡ y − x gives

WL(x+ εξ, y) = WL(x, y)

+ iε
(
AL

j (x)WL(x, y)−WL(x, y) A
R
j (y)

)
ξj + O(ε2) . (6.2.27)

It would be nicer to have the potentials AL and AR on the same side of the factor WL.
Therefore, we perform a unitary transformation with Uε = 11− iεAL

j +O(ε2) to obtain

Uε WL(x+ εξ, y) U−1ε = WL(x, y) + iε WL(x, y) A + O(ε2) , (6.2.28)

where we set A ≡ (AL
j −AR

j ) ξ
j . Let us analyze what (6.2.22) and our information on

A, (6.2.26), tell us about the form of WL; for simplicity, we work rather elementary
with matrices. As explained before (6.2.26), we are free to choose A ∈ π(g); we fix
any A 6= 0. We diagonalize the matrix WL for given x and y. This gives according
to (6.2.22),

WL(x, y) =

(
z 11p 0
0 z 11q

)

(6.2.29)

with z ∈ U(1), where we used a block matrix notation similar to that in (6.2.5) and
again set q = 7 − p. We can without loss of generality assume that p ∈ {4, 5, 6}.
We fist consider the case z 6= z. Computing the eigenvalues of (6.2.28) in first order
perturbation theory, the conditions (6.2.22) yield that A must be of the form

A =

(
λ 11p C∗

C −λ 11q

)

with a q×pmatrix C and λ ∈ R. By changing the basis on the eigenspaces ofWL(x, y),
we can even arrange that

A =





λ 11p C∗ 0
C −λ 11p 0
0 0 −λ 117−2p



 (6.2.30)

with a p × p matrix C. Thus −λ is an eigenvalue of A. According to (6.2.26), the
eigenvalues of A are precisely ±λ. Since A 6= 0, we know too that λ 6= 0. It is a general
result on self-adjoint matrices that if the expectation value of a unit vector coincides
with the largest eigenvalue of the matrix, then this vector must be an eigenvector.
Applied to (6.2.30), this result shows that the submatrix C is zero. Thus

A =

(
λ 11p 0
0 −λ 11q

)

with p ∈ {4, 5, 6}, λ 6= 0.

This means that WL and A have the same eigenspaces. Repeating the above construc-
tion for general x and y while keeping A fixed, one sees that the matrices WL(x, y) all
have the same eigenspaces as A (and this is trivially true even when WL degenerates
to a multiple of the identity matrix). This shows that in our basis, (6.2.29) holds even
for all x and y. In the case z = z for our original matrix WL (chosen before (6.2.29)),
WL is a multiple of the identity matrix. If this is true for all x and y, then (6.2.29)
holds for p = 0. Otherwise, we choose x and y such that WL(x, y) is not a multiple
of the identity matrix and repeat the above argument. We conclude that for some
p ∈ {4, . . . , 7} and possibly after a global gauge transformation, the matrix WL has
the form (6.2.29) for all x and y.

Let us show that the representation (6.2.29) is surjective in the sense that for every
z ∈ U(1) we can choose the dynamical gauge potentials on the line segment xy such
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that WL is of the form (6.2.29) for this given z. To this end, we take the determinant
of (6.2.29, 6.2.23),

z7−2p = detWL = det

(

L

∫ y

x
R

∫ x

y

)

.

Using that the determinant is multiplicative, we obtain from (6.1.2) that

z7−p = exp

(

−i
∫ 1

0
Tr (A(τy + (1− τ)x) dτ)

)

,

where we again set A = (AL
j − AR

j ) ξ
j . This shows that the phase of z is simply

additive along the line segment xy. It follows immediately that this phase can take
arbitrary values, provided that there is an A ∈ π(g) with non-zero trace. Indeed, it
follows from (6.2.26) and the fact that A is an odd-dimensional matrix that Tr(A) 6= 0
for all A 6= 0.

We finally return to the expansion (6.2.27). Writing the chiral potentials as block
matrices,

Ac
j ξ

j =

(
ac11 ac12
ac21 ac22,

)

,

and using that both WL(x+ εξ, y) and WL(x, y) are of the form (6.2.29) with phases
denoted by z = zε and z = z0, respectively, we obtain

(
zε 11p 0
0 zε 11q

)

=

(
z0 11p 0
0 z0 11q

)

+ iε

(
z0 (a

L
11 − aR11) z0 a

L
12 − z0 aR12

z0 a
L
21 − z0 aR21 z0 (a

L
22 − aR22)

)

+ O(ε2) .

Since z0 ∈ U(1) can take arbitrary values, it follows that

aL11 − aR11 = λ 11p , aL22 − aR22 = −λ 11q , ac12 = 0 = ac21 .

Chiral potentials of this form correspond precisely to the dynamical gauge group Gp
in (6.1.13).

We finally make three remarks which give a better justification of the ansatz for
the vector/axial potentials in (6.0.1), of the formalism used and of the variational
principles to which this formalism applies.

Remark 6.2.3. (The chiral potentials on the generations) Compared to the most
general ansatz for the vector and axial potentials,

C = C
(aα)
(bβ) , E = E

(aα)
(bβ) , (6.2.31)

the potentials in (6.0.2) are restricted in that they must be the same for the three
generations. We shall now justify the ansatz in (6.0.2) from the form of the gauge
terms.

Recall that in §5.3 we combined the regularization functions of the three genera-
tions to new “effective” regularization functions in each sector (5.3.19). Here we write
this procedure symbolically as

T
(n)
◦ =

3∑

α=1

T
(n)
α ◦ ,
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where T
(n)
α ◦ involves the regularization functions for a single Dirac sea in generation α.

Let us consider how the analog of the gauge term (6.1.1) looks like. In the case when
the potentials are diagonal on the generations, i.e.

C = (Cα)ab δ
α
β , E = (Eα)ab δ

α
β , (6.2.32)

the generalization of (6.1.1) is straightforward, namely

P0(x, y) =

3∑

α=1

(

χL XL L

∫ y

x
+χR XR R

∫ y

x

)

α

i

2
ξ/ T

(−1)
α [0] (x, y) , (6.2.33)

where the index α of the brackets means that we take the ordered exponentials of the
chiral potentials in the corresponding generation. This gauge term involves relative
phase shifts of the individual Dirac seas. If we substitute it into the EL equations, we
get many contributions involving these relative phases, and if we want these contribu-
tions to drop out, we must introduce additional regularization conditions for certain

polynomials in T
(n)
α ◦ , α = 1, 2, 3. Thus unless we impose very strong additional con-

ditions on the regularization, the only way to fulfill the EL equations is to set all the
relative phases to zero. This gives precisely our ansatz (6.0.2).

If the potentials C and E are not diagonal on the generations, the form of the
gauge terms is not obvious because there is no longer a canonical way to put in the

factors T
(−1)
α ◦ . This point could be clarified by generalizing the regularized causal

perturbation expansion of Appendix D to the case of systems of Dirac seas involving
different regularizations, but we do not want to get into these technical details here.
Qualitatively speaking, it is clear that if already the potentials (6.2.32) lead to strong
additional conditions in the EL equations, this will be even more the case for the
general ansatz (6.2.31).

Remark 6.2.4. (The vector component is null on the light cone) In §4.4 we intro-
duced the regularization condition that the vector component should be null on the
light cone. We remarked that this condition need not be imposed ad hoc, but that it
actually follows from the equations of discrete space-time. We are now in a position
to justify this regularization condition from the EL equations.

In our formula for the perturbation of the eigenvalues (6.2.12, 6.2.13) we omitted

all contributions involving factors T
(n)
{.} , assuming that they are of lower degree on the

light cone. This is the only point where we used that the vector component is null on
the light cone. Without imposing these regularization conditions, we get for ∆λxync−
the additional contributions

−νnc
(

T
(0)
[2] T

(1)
{0} + T

(−1)
[0] T

(2)
{2}

)

+
T
(0)
[1] T

(−1)
[0] − T (−1)

[0] T
(0)
[1]

λxync− − λxync−

(

νnc T
(0)
[1] T

(1)
{0} − νnc T

(1)
{0} T

(0)
[1]

)

.

This leads to an additional contribution to Hnc, (6.2.16), of the form

(
νnc K + νnc K + L+ L

)
T
(0)
[0]

−1

with polynomials K and L, where K is given explicitly by

K = T
(0)
[1] T

(0)
[1] T

(−1)
[0] T

(1)
{0} − T

(−1)
[0] T

(1)
{0} T

(0)
[0] T

(0)
[1] .
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The monomials appearing here have a different homogeneity in the “large” light-cone
coordinate l than those in (6.2.6) (more precisely, they involve an additional factor of

l; note that the scaling in l is given by the upper index of T
(n)
◦ , see (4.5.12–4.5.14)).

Using the different scaling behavior in l, we can distinguish between the contributions
involving K and L in the EL equations in the sense that both of these contributions
must vanish separately. But this means that we can just as well omit K in the EL
equations, exactly as it was done in (6.2.12, 6.2.13) under the assumption that the
vector component is null on the light cone. This argument applies similarly to other
contributions to the EL equations, to every degree on the light cone.

Remark 6.2.5. (n-point actions) We now discuss some difficulties which arise in
the study of actions other than two-point actions. These difficulties are the reason
why we do not consider such actions here. Let S be a general n-point action

S =
∑

x1,...,xn∈M

L[P (x1, x2) · · ·P (xn−1, xn) P (xn, x1)]] , n ≥ 1.

If n = 1, the corresponding EL equations are of the form (5.2.9) with

Q(x, y) = δxy f [P (x, x)] , (6.2.34)

where f is a functional depending only on P (x, x). Expressions like (6.2.34) do not have
a well-defined continuum limit because the methods of Chapter 4 apply to composite
expressions only away from the origin (i.e. for x 6= y). Even if one succeeded in
giving (6.2.34) a mathematical meaning, this expression is local and does not involve
any ordered exponentials of the chiral potentials. As a consequence, we would have no
gauge terms, and the only constraint for the chiral potentials would be the causality
compatibility condition. The resulting dynamical gauge group G = U(8)L × U(7)R
would be too large for physical applications. For these reasons, one-point actions do
not seem worth considering.

If on the other hand n > 2, the operator Q in the EL equations takes the form

Q(x1, x2) =
∑

x2,...,xn−1∈M

f [P (x1, x2) · · ·P (xn−1, xn) P (xn, x1)]
× P (x2, x2) · · ·P (xn−1, xn) .

where f is a functional on the closed chain. Again, it is not clear how to make math-
ematical sense of this expression in the continuum limit, but in contrast to (6.2.34)
it now seems possible in principle to adapt the methods of Chapter 4. We disregard
these technical difficulties here and merely discuss the form of the gauge terms in the
simplest example of a single Dirac sea and a U(1) vector potential A. It might be
that the only relevant contributions to the EL equations comes about when the points
x1, . . . , xn all lie on a straight line. Generally speaking, the situation in this case would
be quite similar to that for a two-point action, and does not seem to give anything
essentially new (although the quantitative details would clearly be different). In par-
ticular, the gauge terms of type (6.1.1) drop out in the closed chain, in agreement with
the fact that the U(1) corresponds to an unbroken local gauge symmetry. However, the
situation is much different if we assume that the points x1, . . . , xn do not necessarily
lie on a straight line. Namely, in this case the phase shifts in the closed chain add up
to an integral along the polygon C with vertices x1, . . . , xn,

e
−i

∫ x2
x1

Aj (x2−x1)j · · · e−i
∫ x1
xn

Ak (x1−xn)k = exp

(

−i
∮

C
Ai ds

i

)

.
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Stokes’ theorem allows us to write this line integral as a surface integral. More precisely,
choosing a two-dimensional surface S with ∂S = C,

exp

(

−i
∮

C
Ai ds

i

)

= exp

(

−i
∫

S
Fij dσ

ij

)

,

where F = dA is the field tensor and dσ is the area form on S. This simple considera-
tion shows that the phase shift in the closed chain is in general not zero; indeed, it is
zero for any position of the points xk if and only if the field tensor vanishes identically.
Thus in the EL equations we now expect additional contributions which involve surface
integrals of the gauge field tensor; we refer to such contributions as surface terms. The
appearance of surface terms seems a problem because they give constraints even for
those gauge potentials which correspond to a local symmetry of the system.





CHAPTER 7

Spontaneous Block Formation

The dynamical gauge group introduced in the previous chapter cannot be identified
with the physical gauge group, because the results of Theorem 6.2.2 are not compatible
with the gauge groups in the standard model. Namely, if we allow for two relations
between the basic fractions (case (3)), the resulting dynamical gauge group (U(7) ×
U(1))L × (U(7)×U(1))R is too large. The cases (1) and (2), on the other hand, seem
too restrictive because either no chiral gauge fields are allowed (6.2.7), or else the
chiral gauge fields must be Abelian and are diagonal on the sectors (6.2.8), in contrast
to the weak SU(2) gauge fields in the standard model. Fortunately, these seeming
inconsistencies disappear when scalar potentials are taken into account, and it is indeed
possible in case (2) to model an interaction involving non-Abelian chiral gauge fields.
The point is that if scalar potentials are included, the dynamical mass matrices YL/R,
(6.0.4), are in general not diagonal on the sectors. Using a local transformation of
the fermionic projector, one can reformulate the interaction such that the dynamical
mass matrices become diagonal, but then the resulting chiral fields have off-diagonal
contributions and can be identified with so-called “effective” non-Abelian gauge fields.
In this chapter we study the EL equations for an interaction involving both chiral and
scalar potentials. After the preparations of §7.1, we show in §7.2 that the EL equations
imply that the fermionic projector splits globally into four so-called blocks, which
interact with each other only via free gauge fields. We can distinguish between three
quark blocks and one lepton block; these will be analyzed in more detail in §7.3. In
Chapter 8 we finally give the transformation to the corresponding effective interaction.

Since including the scalar potentials may give further constraints for the dynamical
gauge potentials, we cannot expect that the dynamical gauge potentials of the previous
chapter will all be admissible here. Therefore, we merely assume that the dynamical
gauge potentials present in the system correspond to a subgroup of the dynamical
gauge group of Theorem 6.2.2. In order not to get lost in analytical details which are
of no physical relevance, we make the following additional assumptions.

(I) The system should contain chiral dynamical gauge fields.
(II) The chiral Dirac particles should enter the EL equations.

From the physical point of view, the last assumption is trivial because otherwise the
chiral Dirac particles (=neutrinos) would be unobservable. Furthermore, we need to
assume that our system involves several gauge fields which are sufficiently “indepen-
dent” from each other. This assumption could be made precise in many different ways;
our formulation seems particularly convenient.

(III) The free gauge fields should distinguish the chiral and massive Dirac particles
in the sense that for every pair of a chiral and a massive Dirac particle there
is a free dynamical gauge field which couples to the two particles differently.
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For the interactions in the standard model, the last assumption is clearly satisfied
because the electromagnetic field couples to all massive Dirac particles, but not to the
neutrinos. Assumption (III) could be weakened, but this would make it necessary to
rule out a number of exceptional cases in the analysis, and we do not want to consider
this here. We finally give our guideline for dealing with the regularization.

(IV) Impose as few relations between the basic fractions as possible such that
(I)–(III) can be fulfilled.

This method will uniquely determine all relations between the basic fractions.

7.1. The Partial Trace and the Dynamical Mass Matrices

We want to analyze the EL equations in the presence of chiral and scalar poten-
tials (6.0.5) to the degree 4 on the light cone. Thus the only difference to the setting
of Theorem 6.2.2 is that, instead of a constant matrix Y , we now allow more generally
for dynamical mass matrices YL(x) and YR(x). One difficulty is that the scalar po-
tentials may depend in a complicated way on the generation index (in contrast to the
chiral potentials which we assumed to be constant on the generations; see (6.0.2)). In
particular, the partial trace (2.3.20) becomes a non-trivial operation when dynamical
mass matrices are present. In this section, we give a few general considerations on the
partial trace of the dynamical mass matrices.

We first introduce a convenient notation. In our calculations so far, we omitted
the mass matrix Y in all contributions to the fermionic projector. Now that we are
working with the dynamical mass matrices YL/R, these clearly have to be written out.
In composite expressions, we need to make clear how the partial traces are to be taken.
To this end, we denote the sums over the upper and lower generation index by the
tildes ´ and `, respectively. Thus we introduce the matrices

ÝL/R : C8×3 → C8 , (ÝL/R)
a
(bβ) =

3∑

α=1

(YL/R)
(aα)
(bβ)

ỲL/R : C8 → C8×3 , (ỲL/R)
(aα)
b =

3∑

β=1

(YL/R)
(aα)
(bβ) .

Similarly, we denote the sum over both generation indices by the accent ˆ,

ŶL/R : C8 → C8 , (ŶL/R)
a
b =

3∑

α,β=1

(YL/R)
(aα)
(bβ) .

Clearly, (ÝL/R)
∗ = ỲR/L and (ŶL/R)

∗ = ŶR/L. In a contribution to the fermionic projector
which involves a product of dynamical mass matrices, the partial trace leads us to label
the first and last factor YL/R by ´ and ,̀ respectively. For example, in the presence of
a homogeneous scalar potential, we write the light-cone expansion of the left-handed
component of the fermionic projector in analogy to (5.3.16) as

χL P (x, y) = χL

(

X
iξ/

2
T
(−1)
[0] + ŶL T

(0)
[1] +

iξ/

2
ÝL ỲR T

(0)
[2] + · · ·

)

. (7.1.1)

Furthermore, we denote the contraction in the sector index by TrS ,

TrSB ≡
8∑

n=1

Bn
n .
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One should keep in mind that the partial trace is not cyclic, because we sum over the
upper and lower index independently. For example,

TrS ÝLỲR
in general

6= TrS ÝRỲL . (7.1.2)

But both terms are clearly real and non-negative.
The EL equations are formulated in terms of the fermionic projector, which is

obtained from the auxiliary fermionic projector by taking the partial trace (2.3.20).
Therefore we regard the fermionic projector as a physical object only after the partial
trace has been taken. Thus it is a reasonable point of view that we do not need to worry
about noncausal line integrals in the light-cone expansion as long as the corresponding
contributions to the auxiliary fermionic projector drop out when the partial trace
is taken. This leads us to weaken the causality compatibility condition (2.3.18) by
imposing a condition only on the partial trace of the spectral projectors.

Def. 7.1.1. The Dirac operator is weakly causality compatible if

3∑

α,β=1

(X (p̃− k̃))(aα)(bβ) =
3∑

α,β=1

((p̃− k̃)X∗)(aα)(bβ) .

Under this assumption, the fermionic projector is defined canonically by

P a
b (x, y) =

3∑

α,β=1

X
1

2
(p̃− k̃))(aα)(bβ) (x, y) . (7.1.3)

In what follows, we shall assume that the weak causality compatibility condition is
satisfied for all contributions to the fermionic projector which are of relevance to the
degree on the light cone under consideration.

Our point of view that the fermionic projector has a physical meaning only af-
ter taking the partial trace also implies that we should consider different choices of
dynamical mass matrices as being equivalent if taking the partial trace (2.3.20) gives
the same fermionic projector. Furthermore, for this equivalence it is not necessary
that the fermionic projectors be identical, but it suffices that all contributions to the
fermionic projector which enter the EL equations are the same. More specifically, to
the degree 4 on the light cone the EL equations will involve at most quadratic terms
in m, and so every factor YL/R carries an accent. Thus two dynamical mass matrices
can be considered as being equivalent if their partial traces coincide. In other words,
the dynamical mass matrices are determined only modulo the equivalence relation

B1 ≃ B2 if B́1 = B́2 and B̀1 = B̀2.

This arbitrariness in choosing the dynamical mass matrices can be used to simplify
these matrices. For example, we will set the matrix entries to zero whenever possible
by applying for every a, b ∈ {1, . . . , 8} and c ∈ {L,R} the rule

(Ýc)
a
(b.) = 0 = (Ỳc)

(a.)
b =⇒ (Yc)

(a.)
(b.) = 0 .

Here the dot means that we are using a matrix notation in the generation index, i.e.

(Ýc)
a
(b.) is (for fixed a, b) a 3-vector and (Yc)

(a.)
(b.) a 3×3 matrix. We refer to this method

of simplifying the dynamical mass matrices that we choose a convenient representation
of Yc.
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In order to rule out pathological cases, we need to impose a condition on the
dynamical mass matrices. Note that in the vacuum the mass matrices are block di-

agonal in the sense that (YL/R)
(a.)
(b.) = δab Y

a
L/R for suitable 3 × 3 matrices Y a

L/R. Thus

the off-diagonal elements (YL/R)
(a.)
(b.) , a 6= b, contain scalar potentials. It would be too

restrictive to assume that there are no cancellations when the partial trace is taken;

i.e. we do want to allow for the possibility that (Ýc)
a
(b.) = 0 or (Ỳc)

(a.)
b = 0 although

(Yc)
(a.)
(b.) 6= 0 (for some a 6= b). But such cancellations should occur only with a special

purpose, for example in order to ensure that the Dirac operator be weakly causality
compatible or in order to arrange that certain terms drop out of the EL equations. For
such a purpose, it is not sufficient that one off-diagonal element of Ýc vanishes, but all
the off-diagonal elements in the same row should be zero. This is the motivation for
the following definition.

Def. 7.1.2. The dynamical mass matrices are non-degenerate if for all a, b ∈
{1, . . . , 8}, a 6= b and c ∈ {L,R},

(Ỳc)
(a.)
b 6= 0 and (Ýc)

a
(b.) = 0 =⇒ (Ýc)

a
(d.) = 0 for all d 6= a.

The freedom to choose a convenient representation of the dynamical mass matri-
ces reduces our problem to revealing the structure of the matrices Ýc and Ỳc. One
difficulty is that the EL equations involve these matrices only in products of the form
ÝL/R(y)ỲL/R(x). The following elementary lemma will allow us to use information on
the matrix product to derive properties of the individual factors.

Lemma 7.1.3. (Uniform Splitting Lemma) Let B ⊂ Mat(Cp1 ,Cp2) be a set of
(p2 × p1) matrices with the property that for all B1, B2 ∈ B there is λ ∈ C such that

B∗1 B2 = λ 11Cp1 . (7.1.4)

Then there is a unitary (p2 × p2) matrix U and an integer r ≥ 0 with rp1 ≤ p2 such
that every B ∈ B can be written in the form

B = U





p1 summands

︷ ︸︸ ︷

b⊕ · · · ⊕ b
0




}rp1 rows

}p2 − rp1 rows
(7.1.5)

for a suitable (r × 1) matrix b.

We mention for clarity that b⊕· · ·⊕b is a (rp1×p1) matrix; it could also be written
as a block matrix with diagonal entries b. The word “uniform” in the name of the
lemma refers to the fact that the unitary transformation U is independent of B ∈ B.
In our applications, this will mean that U is constant in space-time. Such constant
unitary transformations are irrelevant (e.g. they could be absorbed into a more general
definition of the partial trace), and we can often simply ignore them.

Proof of Lemma 7.1.3. Let (e1, . . . , ep1) be an orthonormal basis of Cp1 . We introduce
the subspaces

Ei = <{Bei with B ∈ B}> ⊂ Cp2

and the mappings
πi : B → Ei : B 7→ Bei .

The property (7.1.4) implies that for all B1, B2 ∈ B,
〈B2 ei, B1 ej〉 = 〈B∗1 B2 ei, ej〉 = λ(B1, B2) δij . (7.1.6)
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If i 6= j, this relation shows that the subspaces (Ei)i=1,...,p1 are orthogonal. In the
case i = j, (7.1.6) yields that the inner product 〈πi(B1), πi(B2)〉 is independent of i.
Thus the mappings πi are unitarily equivalent, and so we can arrange by a unitary
transformation that the πi all have the same matrix representation π(B) = b.

7.2. Analysis of Degeneracies

The operator Q corresponding to the Dirac operator (6.0.5) is again given by (5.2.7,
5.4.7),

Q(x, y) =
1

2

Kxy∑

k=1

∂L(λxy)
∂λxyk

F xy
k P (x, y) . (7.2.1)

Following (I) and (IV), we can restrict attention to case (2) of Theorem 6.2.2. In
this case, the eigenvalues of A are highly degenerate. We must take into account that
these degeneracies will in general be removed by the scalar perturbation. This subtle
problem is treated in a more general context in Appendix G. We now specialize the
obtained results using a notation which is adapted to the dynamical gauge group Gp,
(6.2.8). We let ↑ and ↓ be the sets

↑ = {1, . . . , p} , ↓ = {p + 1, . . . , 7}
and introduce the corresponding projectors I↑/↓ by

I↑ =
∑

n∈↑

In , I↓ =
∑

n∈↓

In ,

where (In)
a
b = δab δ

a
n are the projectors on the sectors (in the case p = 7, we set ↓= ∅

and P↓ = 0). To the highest degree on the light cone (i.e. if the eigenvalues are treated
as in Theorem 6.1.2), the chiral gauge fields corresponding to Gp lead to five distinct
eigenvalues of Axy, one of which is zero. The spectral projectors corresponding to the
kernel and the non-zero eigenvalues are given by I8 and

(χc I↑ + χc̄ I↓) Fs with c = L/R, s = ±, (7.2.2)

respectively. To the next lower degree on the light cone, we need to take into account
the perturbation of A by gauge terms and the scalar potentials. Theorem G.5.1 shows
that the dimension of the kernel of A is not affected by the perturbation, and thus
it suffices to consider the non-zero eigenvalues. According to Theorem G.4.1, the de-
generacy of the non-zero eigenvalues is in general removed. In order to describe the
splitting of the eigenvalues in the massive sectors, we first associate to each spectral
projector (7.2.2) a projector on an invariant subspace of A (which is no longer necessar-
ily an eigenspace), and the perturbed eigenvalues are then obtained by diagonalizing
A on these invariant subspaces (see §G.1 and §G.4 for details). It is the main result of
Theorem G.4.1 that the perturbation is block diagonal on the left- and right-handed
components of the invariant subspaces. This means more precisely that the left- and
right-handed components of (Fk)k=2,...,K , i.e. the image of the eight projectors

χc I↑ Fs and χc I↓ Fs with c = L/R, s = ±, (7.2.3)

can be perturbed to obtain invariant subspaces of A, and thus it suffices to analyze
A on these smaller subspaces. Since each of these subspaces carries fixed indices
(c, s), a basis on each subspace may be labeled by the sector index n. We choose a



172 7. SPONTANEOUS BLOCK FORMATION

basis such that A is diagonal on the invariant spaces. We denote the corresponding
eigenvalues (counting multiplicities) by (λncs +∆λncs) and the spectral projectors by
(Fncs + ∆Fncs). For clarity, we point out that the unperturbed spectral projectors
Fncs appearing here may differ from those in (6.1.10) in that we are using a different
basis on the sectors, which need not be orthogonal and may depend on c, s and x, y.
This slight abuse of notation cannot lead to confusion because in (6.1.10) we are free
to choose any basis on the degenerate subspaces.

For our choice of the Lagrangian (5.5.13) and the dynamical gauge group accord-
ing to (6.2.8), the factors ∂L/∂λk in (7.2.1) vanish identically to the highest degree,
see (6.2.11). Thus it suffices to take into account the perturbation of these factors.
Using the above notation, we obtain

Q(x, y) =
1

2

∑

n,c,s

(

∆
∂L(λxy)
∂λxyncs

)

F xy
ncs P (x, y) + (deg < 4) . (7.2.4)

Note that the perturbation of the spectral projectors ∆Fncs does not appear here; this
is a major simplification. Computing the perturbation of the Lagrangian, one sees
that our task is to compute terms of the form

∑

n,c,s

P(λxyncs, λxyncs) ∆λxyncs F xy
ncs P (x, y) (7.2.5)

∑

n,c,s

P(λxyncs, λxyncs) ∆λxyncs F xy
ncs P (x, y) , (7.2.6)

where P stands for a function in both arguments. The subtle point in computing
expressions of the form (7.2.5, 7.2.6) is to carry out the sums over n ∈ ↑ and n ∈ ↓
(for fixed c, s), because the corresponding indices {(ncs), n ∈ ↑ / ↓} label our basis
vectors on the invariant subspaces associated to the projectors χcI↑/↓Fs. We shall now
give a procedure for explicitly computing these sums. First of all, it is helpful that
the unperturbed eigenvalues do not depend on n ∈ ↑ or ↓. Thus the polynomials P
in (7.2.5, 7.2.6) may be taken out of the sums. It is a complication that ∆λncs and
P (x, y) involve the gauge potentials corresponding to the free gauge group Fp. To
bypass this difficulty, we choose x and y on a fixed null line L in Minkowski space,

x, y ∈ L = u+ R v with v2 = 0 (7.2.7)

and arrange by a gauge transformation that the free gauge potentials vanish identically
on L (this is possible because free gauge transformations are local unitary transforma-
tions; see page 151). After this transformation, the chiral potentials are Abelian on
xy and diagonal in the sector index.

We first state the formulas for the perturbation of the eigenvalues in full generality;
we shall discuss and analyze these formulas afterwards beginning with simple special
cases. In order to keep the notation as simple as possible, we restrict attention to the
case c = L and n ∈ ↑, and we shall give symbolic replacement rules with which the
analogous formulas are obtained in all other cases.

Def. 7.2.1. Let ν, µ and ν8, µ8 be the phase factors

ν = TrS

(

I7 R

∫ y

x
L

∫ x

y

)

, µ = TrS

(

I1 L

∫ y

x

)

TrS

(

I7 R

∫ x

y

)

(7.2.8)

ν8 = TrS

(

I8 R

∫ y

x
L

∫ x

y

)

, µ8 = TrS

(

I1 L

∫ y

x

)

TrS

(

I8 R

∫ x

y

)

. (7.2.9)
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We introduce the p× p matrix Λ by

Λ = ν

∫ y

x
dz I↑ ÝL ỲR I↑ T

(0)
[2] T

(0)
[0] (7.2.10)

+ν

∫ x

y
dz I↑ ÝR ỲL I↑ T

(−1)
[0]

T
(1)
[2]

(7.2.11)

+I↑ ŶL(y) I↑ ŶL(x) I↑ T
(0)
[1] T

(0)
[1]

−I↑ ÝR(y) I↑ ỲL(x) I↑ T (−1)
[0] T

(1)
[2]

− 1

νλ− − νλ+
I↑

(

ŶL(y) T
(0)
[1] T

(−1)
[0] − ŶR(y) T

(−1)
[0] T

(0)
[1]

)

× I↑
(

ν ŶR(x) T
(0)
[1] T

(0)
[0] − ν ŶL(x) T

(0)
[0] T

(0)
[1]

)

I↑







(7.2.12)

+µν I↑ ŶL(y) I↓ ŶL(x) I↑ T
(0)
[1] T

(0)
[1]

−µν I↑ ÝR(y) I↓ ỲL(x) I↑ T (−1)
[0]

T
(1)
[2]

− µν

λ− − λ+
I↑

(

ŶL(y) T
(0)
[1] T

(−1)
[0] − ŶR(y) T

(−1)
[0] T

(0)
[1]

)

× I↓
(

ŶR(x) T
(0)
[1] T

(0)
[0] − ŶL(x) T

(0)
[0] T

(0)
[1]

)

I↑







(7.2.13)

−µ8ν8 I↑ ÝR(y) I8 ỲL(x) I↑ T (−1)
[0] T

(1)
[2] . (7.2.14)

We denote the spectral adjoint of Λ (as defined in (3.5.13)) by Λ.

Lemma 7.2.2. Up to contributions of degree < 4,
∑

n∈↑

∆λxynL+ F
xy
nL+ P (x, y) = 0 =

∑

n∈↑

∆λxynL+ F
xy
nL+ P (x, y) (7.2.15)

∑

n∈↑

∆λxynL− F
xy
nL− P (x, y) = Λ P (x, y) (7.2.16)

∑

n∈↑

∆λxynL− F
xy
nL− P (x, y) = Λ P (x, y) . (7.2.17)

The corresponding formulas for the opposite chirality are obtained by the symbolic
replacements

L ←→ R , ν ←→ ν , ν8 ←→ ν8 , µ8 ←→ νν8 µ8 . (7.2.18)

In the case p < 7, we may furthermore perform the replacements

↑ ←→ ↓ , ν ←→ ν , µ ←→ µ and µ8 ←→ µν µ8 . (7.2.19)

Proof. According to (5.3.23), to the highest degree on the light cone we have
the identity Fnc+P (x, y) = 0. This gives (7.2.15), and (7.2.16) follows directly from
Theorem G.4.1 and the results of §G.3. In a basis where Λ is diagonal, (7.2.17) is an
immediate consequence of (7.2.16).

To derive the replacement rule (7.2.18), we first note that in the case p = 7, the
projector I↓ vanishes, and thus all contributions to Λ involving µ are equal to zero. In
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the case p < 7,

µ −→ TrS

(

I1 R

∫ y

x

)

TrS

(

I7 L

∫ x

y

)

= ν TrS

(

I1 L

∫ y

x

)

ν TrS

(

I7 R

∫ x

y

)

= µ

µ8 −→ TrS

(

I1 R

∫ y

x

)

TrS

(

I8 L

∫ x

y

)

= ν TrS

(

I1 L

∫ y

x

)

ν8 TrS

(

I8 R

∫ x

y

)

= νν8 µ .

Using the relations

TrS

(

I7 L

∫ y

x

)

TrS

(

I1 R

∫ x

y

)

= µ and TrS

(

I7 L

∫ y

x

)

TrS

(

I8 R

∫ x

y

)

= µν µ8 ,

the replacement rule (7.2.19) is straightforward.

A straightforward calculation using (7.2.4) and Lemma 7.2.2 shows that for our
Lagrangian (5.5.13), the EL equations yield the conditions

[

λxy↑L− Λ + λxy↑L− Λ
] P (x, y)

λxy↑L−
= f(x, y) I↑ P (x, y) + (deg < 4) , (7.2.20)

where we set λ↑cs = λncs, n ∈ ↑. Here f(x, y) can be any scalar function; it takes into
account that the average of all eigenvalues drops out in the EL equations when we take
the difference of the contributions resulting from the two terms in (5.5.13). Similar
conditions for the opposite chirality and for ↑ replaced by ↓ are obtained from (7.2.20)
by applying the rules (7.2.19, 7.2.18). We point out that the resulting four equations
must clearly be satisfied for the same function f(x, y). These four equations together
are even equivalent to the EL equations to degree 4.

The remaining problem is to analyze the obtained equations of types (7.2.20). At
first sight, this seems a difficult problem because the matrix Λ has a complicated ex-
plicit form (see Def. 7.2.1) and because taking the spectral adjoints makes it necessary
to diagonalize these matrices. Fortunately, the requirement that the EL equations be
mathematically consistent will give us strong restrictions on the form of Λ, and this
will indeed make it possible to reveal a relatively simple global structure of the admis-
sible interactions. In order to explain how the mathematical consistency conditions
come about, we first recall that for polynomial Lagrangians (5.5.1) we saw after (5.5.4)
that the resulting operator Q is a polynomial in the fermionic projector and is thus
well-defined within the formalism of the continuum limit. However, the situation is
different for our Lagrangian (5.5.14) because the spectral weight is an operation which
does not necessarily make sense in the continuum limit. More specifically, the math-
ematical problem in (7.2.20) is to make sense of the spectral adjoint. For clarity, we
explain the difficulty and our basic argument in the simple example

B1 M1 + B2 M2 , (7.2.21)

where B1 and B2 are matrices depending on the macroscopic potentials, and M1/2

are two monomials. The monomials can be considered as scalar functions which are
highly singular on the light cone, and which we can control in the continuum limit
only in the weak sense. To form the spectral adjoint in (7.2.21), we need to know
the eigenvalues and spectral projectors of the matrix B1M1 + B2M2. In general, the
spectral decomposition of this matrix will depend nonlinearly on M1 and M2, because
the zeros of the characteristic polynomials involve roots of the monomials. In this
generic situation, the spectral adjoint is ill-defined in the formalism of the continuum
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limit. The only case in which the eigenvalues are linear in M1 and M2 is when the
eigenvectors can be chosen independent of the monomials. This is possible iff the
matrices B1 and B2 have a common eigenvector basis, or equivalently, if they commute,

[B1, B2] = 0 .

This simple argument shows that the requirement that the spectral adjoint be well-
defined leads to commutator relations for the macroscopic potentials. In the next
lemma we apply this argument to the matrix Λ. By the contributions to Λ we mean
the individual summands obtained by multiplying out all the terms in (7.2.10–7.2.14).

Lemma 7.2.3. For any x, y ∈ L there is a basis on the sectors such that the con-
tributions to Λ are all diagonal matrices.

Proof. Clearly, our argument after (7.2.21) applies in the same way to the spec-
tral adjoint of a finite sum. Thus in order to make mathematical sense of the spectral
adjoint Λ, we need to assume that the contributions to Λ all commute with each other.
Hence we can choose a basis such that these contributions are all diagonal. In partic-
ular, one sees that in this basis the matrix products Ŷc1(x) and Ŷc2(y) are diagonal for
all c1, c2 ∈ {L,R}.

We proceed by analyzing the EL equations (7.2.20) for special choices of x and
y, for which the matrix Λ becomes particularly simple. We begin with the situation
where we choose x such that the scalar potentials vanish at x, i.e.

YL(x) = Y = YR(x) (7.2.22)

with Y the mass matrix of the vacuum (for example, we can choose x close to infinity).
Then the matrices YL/R(x) are diagonal in the sector index and on the massive sectors
are a multiple of the identity. Thus the “off-diagonal” contributions (7.2.13, 7.2.14) to
Λ vanish. In the “diagonal” contributions (7.2.10–7.2.12), on the other hand, we can

simplify our notation by omitting the factors ŶL/R(x). Then the matrix Λ takes the
form

Λ = ν

∫ y

x
dz I↑ ÝL ỲR I↑ T

(0)
[2] T

(0)
[0]

+ν

∫ x

y
dz I↑ ÝR ỲL I↑ T

(−1)
[0] T

(1)
[2]

+I↑ ŶL(y) I↑ T
(0)
[1] T

(0)
[1]

−I↑ ÝR(y) Ỳ I↑ T
(−1)
[0] T

(1)
[2]

−
ν T

(0)
[1] T

(0)
[0] − ν T

(0)
[0] T

(0)
[1]

νλ− − νλ+
I↑

(

ŶL(y) T
(0)
[1] T

(−1)
[0] − ŶR(y) T

(−1)
[0] T

(0)
[1]

)

I↑ .

Evaluating the EL equations (7.2.20) for this choice of Λ yields the following result.

Lemma 7.2.4. Suppose that (I) holds. Without introducing any relations between
the basic fractions (besides those of Theorem 6.2.2), we can choose for any y ∈ L
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suitable parameters a, b ∈ R and c ∈ C such that at y,

I↑ ÝLỲR I↑ = a I↑ , I↑ ÝRỲL I↑ = b I↑ (7.2.23)

I↑ ŶL(y) I↑ = c I↑ , I↑ ŶR(y) I↑ = c I↑ . (7.2.24)

The analogous formulas for I↑ interchanged by I↓ are obtained by the replacements

↑ ←→ ↓ and L ←→ R (7.2.25)

with the parameters a, b and c unchanged.

Proof. The above Λ contains contributions which are scalar multiples of the
matrices I↑ŶL(y)I↑ and I↑ŶR(y)I↑. Thus in the basis of Lemma 7.2.3, these matrices
are both diagonal. Since one is the adjoint of the other, we conclude that these matrices
are normal, and thus their spectral adjoints coincide with the usual adjoints,

I↑ ŶL I↑ = I↑ ŶR I↑ , I↑ ŶR I↑ = I↑ ŶL I↑ . (7.2.26)

The matrices ÝLỲR and ÝRỲL, on the other hand, are Hermitian and thus spectrally
selfadjoint,

ÝL ỲR = ÝL ỲR , ÝR ỲL = ÝR ỲL . (7.2.27)

Applying the relations (7.2.26) and (7.2.27), a straightforward calculation gives

λ↑L− Λ + λ↑L− Λ

=

∫ y

x
dz I↑ ÝL ỲR I↑

(

T
(0)
[0] T

(0)
[2] T

(−1)
[0] T

(0)
[0] + T

(−1)
[0] T

(0)
[0] T

(0)
[0] T

(0)
[2]

)

+

∫ x

y
dz I↑ ÝR ỲL I↑

(

T
(−1)
[0] T

(0)
[0] T

(−1)
[0] T

(1)
[2] + T

(−1)
[0] T

(1)
[2] T

(−1)
[0] T

(0)
[0]

)

+ν I↑ ŶL I↑ T
(0)
[0] T

(0)
[1] T

(−1)
[0] T

(0)
[1] + ν I↑ ŶR I↑ T

(−1)
[0] T

(0)
[1] T

(0)
[0] T

(0)
[1]

−ν I↑ ÝR Ỳ I↑ T
(−1)
[0] T

(0)
[0] T

(−1)
[0] T

(1)
[2] − ν I↑ ÝR Ỳ I↑ T

(−1)
[0] T

(1)
[2] T

(−1)
[0] T

(0)
[0]

+

(

ν T
(0)
[1] T

(0)
[0] − ν T

(0)
[0] T

(0)
[1]

)

I↑

(

ŶL T
(0)
[1] T

(−1)
[0] − ŶR T

(−1)
[0] T

(0)
[1]

)

I↑

=

∫ y

x
dz I↑ ÝL ỲR I↑

(

T
(0)
[0] T

(0)
[2] T

(−1)
[0] T

(0)
[0] + T

(−1)
[0] T

(0)
[0] T

(0)
[0] T

(0)
[2]

)

+

∫ x

y
dz I↑ ÝR ỲL I↑

(

T
(−1)
[0] T

(0)
[0] T

(−1)
[0] T

(1)
[2] + T

(−1)
[0] T

(1)
[2] T

(−1)
[0] T

(0)
[0]

)

+ν

(

I↑ ŶL I↑ T
(0)
[1] T

(0)
[1] T

(−1)
[0] T

(0)
[0] − I↑ ÝR Ỳ I↑ T

(−1)
[0] T

(1)
[2] T

(−1)
[0] T

(0)
[0]

)

+ν

(

I↑ ŶR I↑ T
(−1)
[0] T

(0)
[0] T

(0)
[1] T

(0)
[1] − I↑ ÝR Ỳ I↑ T

(−1)
[0] T

(0)
[0] T

(−1)
[0] T

(1)
[2]

)

,

where for simplicity the arguments y were omitted. We substitute this formula into
(7.2.20). Since we do not allow for additional relations between the basic fractions,
we can simplify the resulting simple fractions only by applying (6.2.9). This implies
that (7.2.20) is satisfied for suitable f(x, y) if and only if the following five matrices
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are multiples of I↑,

∫ y

x
I↑ ÝL ỲR I↑ ,

∫ x

y
I↑ ÝR ỲL I↑ (7.2.28)

ν
(

I↑ ŶR I↑ − I↑ ÝR Ỳ I↑

)

, ν I↑ ŶL I↑ − ν I↑ ÝR Ỳ I↑ ,

ν I↑ ÝL I↑ − ν I↑ ÝR I↑ .






(7.2.29)

We can assume that y 6= x, because otherwise (7.2.23) and (7.2.24) follow im-
mediately from (7.2.22). Differentiating (7.2.28) with respect to y along the line L
gives (7.2.23) (a and b are real because the matrices on the left of (7.2.23) are Her-
mitian). According to (I), the phase factor ν can take any value on the unit circle.
Thus in (7.2.29) the contributions involving ν and ν must separately be multiples of
I↑. This gives the left relation in (7.2.24), and the relation on the right is obtained by
taking the adjoint.

The analogous relations for I↑ replaced by I↓ are derived in the same way. The re-
placements (7.2.25) leave the phase factor ν unchanged (see (7.2.8) and (7.2.9)). Thus
the EL equation (7.2.20) remains valid under (7.2.25) for the same function f only if
the parameters a, b, and c are unchanged.

Next we consider the the degeneracies in the limit y → x. In this case, the formulas
of Definition 7.2.1 simplify in that all phase factors drop out. We obtain the following
result.

Lemma 7.2.5. Without introducing any relations between the basic fractions (be-
sides those of Theorem 6.2.2), the dynamical mass matrices must satisfy the relations

I↑ ŶL I↓ = 0 = I↑ ŶR I↓ . (7.2.30)

Proof. According to the replacement rule (7.2.18), it suffices to derive the second
part of (7.2.30). We compute the matrix Λ modulo scalar multiples of I↑. Using (7.2.23)
and (5.3.20), we obtain

Λ = I↑ ŶL I↓ ŶL I↑ T
(0)
[1] T

(0)
[1]

− 1

λ− − λ+
I↑

(

ŶL T
(0)
[1] T

(−1)
[0] − ŶR T (−1)

[0] T
(0)
[1]

)

× I↓
(

ŶR T
(0)
[1] T

(0)
[0] − ŶL T

(0)
[0] T

(0)
[1]

)

I↑

=
(

I↑ ŶL I↓ ŶL I↑ + I↑ ŶR I↓ ŶR I↑

) λ−
λ− − λ+

T
(0)
[1] T

(0)
[1]

−I↑ ŶL I↓ ŶR I↑
1

λ− − λ+
T
(0)
[1] T

(0)
[1] T

(−1)
[0] T

(0)
[0]

−I↑ ŶR I↓ ŶL I↑
1

λ− − λ+
T
(−1)
[0] T

(0)
[0] T

(0)
[1] T

(0)
[1] .



178 7. SPONTANEOUS BLOCK FORMATION

Next we compute the square bracket in (7.2.20),

λ↑L− Λ+ λ↑L− Λ

= −I↑ ŶL I↓ ŶR I↑
λ− − λ+

(

λ+ T
(0)
[1] T

(0)
[1] T

(−1)
[0] T

(0)
[0] − λ− T

(−1)
[0] T

(0)
[0] T

(0)
[1] T

(0)
[1]

)

+
I↑ ŶR I↓ ŶL I↑
λ− − λ+

(

λ− T
(0)
[1] T

(0)
[1] T

(−1)
[0] T

(0)
[0] − λ+ T

(−1)
[0] T

(0)
[0] T

(0)
[1] T

(0)
[1]

)

.

Since I↓ projects onto a subspace of dimension 7 − p < p, the rank of the matrices

I↑ŶRI↓ŶLI↑ and I↑ŶLI↓ŶRI↑ is smaller than p, and therefore these matrices cannot be
scalar multiples of I↑. Thus the EL equations have a well-defined continuum limit only
if the factors (λ− − λ+)−1 in the above expression drop out. This is the case only if

I↑ ŶR I↓ ŶL I↑ = I↑ ŶL I↓ ŶR I↑ .

If these necessary conditions are satisfied, the above formula simplifies to

λ↑L− Λ+ λ↑L− Λ = I↑ ŶL I↓ ŶR I↑

(

T
(0)
[1] T

(0)
[1] T

(−1)
[0] T

(0)
[0] + T

(−1)
[0] T

(0)
[0] T

(0)
[1] T

(0)
[1]

)

.

Now the EL equations have a well-defined continuum limit, and assuming for the
regularization parameters only the relation (6.2.9), we conclude that

I↑ ŶR I↓ ŶL I↑ = 0 . (7.2.31)

The matrix product in this equation can be written in the form BB∗ with B ≡ I↑ŶRI↓.
Hence (7.2.31) implies that B = 0.

The previous two lemmas simplify considerably the structure of the perturbation
on the degenerate subspaces. Namely, we can write Λ in the form

Λ = ρ(ν, ν) I↑ − I↑ ÝR(y) (I↑ + µν I↓ + µ8ν8 I8) ỲL(x) I↑ T
(−1)
[0] T

(1)
[2] ,

where ρ is a complex function which is invariant under the replacements (7.2.25). A
short calculation yields

λ↑L− Λ+ λ↑L− Λ = (a+ ν b+ ν b) I↑ (7.2.32)

−ν I↑ ÝR(y) I↑ ỲL(x) I↑ N − ν I↑ ÝR(y) I↑ ỲL(x) I↑ N (7.2.33)

−µ I↑ ÝR(y) I↓ ỲL(x) I↑ N − µ I↑ ÝR(y) I↓ ỲL(x) I↑ N (7.2.34)

−µ8 νν8 I↑ ÝR(y) I8 ỲL(x) I↑ N − µ8 νν8 I↑ ÝR(y) I8 ỲL(x) I↑ N , (7.2.35)

where the complex functions a and b are invariant under (7.2.25), and N is the mono-
mial

N = T
(−1)
[0] T

(1)
[2] T

(−1)
[0] T

(0)
[0] . (7.2.36)

We split up the analysis of the EL equations corresponding to (7.2.32–7.2.35) into
several lemmas. We say that the summands (7.2.34) or (7.2.35) are non-trivial if
there are admissible dynamical mass matrices such that this summand or one of the
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expressions obtained by applying the replacements (7.2.18) and/or (7.2.19) are non-
zero. Furthermore, we refer to two phase functions α, β ∈ S1 as being independent if
for α fixed, β can take any value in S1 and vice versa1

Lemma 7.2.6. Under the assumptions (I)–(III), ν is independent of the phase
functions µ, µ8, ν8, and µµ8. The term (7.2.35) is non-trivial.

Proof. Suppose that the dynamical mass matrices were zero in the neutrino sector,
i.e.

YL I8 ≡ 0 ≡ YR I8 (7.2.37)

Then the Dirac operator, and thus also the fermionic projector, would be invariant
on the neutrino sector. As a consequence, the chiral Dirac particles would drop out
of all composite expressions due to chiral cancellations, in contradiction to (II). We
conclude that (7.2.37) is false. Since we are free to choose a convenient representation
of the dynamical mass matrices, we can assume that the matrices

ÝL I8 , ÝR I8 , ỲL I8 , ỲR I8 (7.2.38)

do not all vanish identically. The contributions to the fermionic projector which involve
the matrix products I8ÝL/R or ỲL/RI8 enter only the perturbation calculation for the
kernel of P (x, y) P (y, x), and according to Theorem G.5.1 they drop out of the EL
equations. Thus (II) is satisfied only if

(I↑ + I↓) ÝL I8 6≡ 0 or (I↑ + I↓) ÝR I8 6≡ 0 .

This shows that (7.2.35) is non-trivial.
According to (III), there is a free dynamical gauge field which couples differently

to the Dirac particles in the sectors n = 1 and n = 8. The corresponding free gauge
potentials describe relative phase shifts of the fermionic projector on Im I1 and Im I8.
These relative phases are captured by µ8 and µ8ν8 (see (7.2.9)). Since the free gauge
potentials on the line segment xy can be chosen arbitrarily, it follows that ν is inde-
pendent of µ8 and µ8ν8. A similar argument for I7 instead of I1 shows that ν and µµ8
are independent.

Lemma 7.2.7. Imposing at most one additional relation between the basic fractions
(besides those of Theorem 6.2.2), ν and µ are independent. The term (7.2.34) is
non-trivial.

Proof. Assume to the contrary that ν and µ are dependent or that (7.2.34) is
trivial. Then the phases in (7.2.32–7.2.34) are all dependent on ν. The independence
of the phases established in Lemma 7.2.6 yields that the EL equations must be satisfied
separately for (7.2.35). Imposing at most one additional relation between the basic
fractions, we cannot arrange that (7.2.35) drops out of the EL equations. We thus
obtain that for a suitable complex κ,

I↑ ÝR(y) I8 ỲL(x) I↑ = κ(x, y) I↑ , (7.2.39)

and this condition must also be satisfied after the replacements (7.2.18) and/or (7.2.19)
for the same κ. Since the rank of I8 is smaller than that of I↑, the lhs of (7.2.39) is a

1
Online version: The arguments in the following lemmas need to be modified if we allow for a

local chiral transformation as considered in the book [5] (listed in the references in the preface to the
second online edition).
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singular matrix, and thus κ vanishes identically. This implies that the lhs of (7.2.39)
is trivial (i.e. vanishes also after the replacements (7.2.18, 7.2.19)), in contradiction to
Lemma 7.2.6.

Having established that the phases in (7.2.32) and (7.2.33) are independent of those
in (7.2.34) and (7.2.35), we can now apply the uniform splitting lemma to (7.2.33).

Lemma 7.2.8. Imposing at most one additional relation between the basic fractions,
we can arrange by a constant unitary transformation that for all a, b = 1, . . . , p and
c, d = p+ 1, . . . , 7,

(I↑ ỲL/R I↑)
(aα)
b = δab u

α
L/R , (I↓ ỲR/L I↓)

(cα)
d = δcd u

α
L/R (7.2.40)

with uL/R(x) ∈ C3.

Proof. It clearly suffices to consider one chirality. Since ν is independent of µ and
µ8ν8, the EL equations imply that

I↑ ÝR(y) I↑ ỲL(x) I↑ = λ(x, y) I↑ . (7.2.41)

The dynamical mass matrices can be chosen independently at x and y. Denoting the
class of admissible matrices I↑ỲLI↑ by B, we are in the setting of Lemma 7.1.3 with
p1 = p and p2 = 3p. Since p2 is divisible by p1, we can, possibly after increasing r,
assume that p2 − rp1 = 0, and thus

I↑ ỲL I↑ = U (uL ⊕ · · · ⊕ uL
︸ ︷︷ ︸

p summands

)

with uL(x) ∈ C3. Omitting the constant unitary transformation and writing out the
components, this is just the lhs of (7.2.40). Under the replacement (7.2.25), ν as well
as α and β are unchanged. As a consequence, also the function λ in (7.2.41) is invari-
ant under (7.2.25), and this implies that the mappings πi of Lemma 7.1.3 obtained for

B = I↑ỲLI↑ and B = I↓ỲRI↓ are all unitarily equivalent. This proves the rightmost
equation of (7.2.40).

It remains to analyze (7.2.34) and (7.2.35).

Lemma 7.2.9. The EL equations to degree 4 can be satisfied only if we impose at
least one additional relation between the basic fractions.

Proof. In the limit y → x, the matrices I↑ÝR(y) I. ỲL(x) I↑ can be written in the

form B∗B with B = I. ỲL I↑ and are therefore Hermitian and positive semidefinite.
This shows that (7.2.34) and (7.2.35) cannot cancel each other identically. According
to Lemma 7.2.7, (7.2.34) is non-trivial. It suffices to consider the case that (7.2.34)
does not vanish identically (in the other cases when (7.2.34) is non-zero after apply-
ing (7.2.18, 7.2.19) the argument is analogous). Then we can arrange a contribution
to (7.2.33–7.2.35) of the form (µAN + µAN) with a matrix A 6= 0. The same con-
tribution must be present after performing the replacements (7.2.25). Since these
replacements transform µ into µ (see (7.2.18) and (7.2.19)), we obtain a condition of
the form

µAN + µAN = µBN + µBN for all µ ∈ S1 (7.2.42)



7.2. ANALYSIS OF DEGENERACIES 181

with B a matrix. Without introducing an additional relation between the basic frac-
tions, we must treat N and N as being independent, and thus (7.2.42) has no solution.

Using that A and B go over to positive matrices as y → x, one sees that in order to
arrange that (7.2.42) has a solution, we need to impose that N and N coincide in the
EL equations, i.e.2

(N −N)

(

T
(0)
[0]

)−1

= 0 . (7.2.43)

The next lemma is again an application of the uniform splitting lemma and uses the
non-degeneracy assumption of Def. 7.1.2.

Lemma 7.2.10. Suppose that the basic fractions satisfy (in addition to the con-
ditions of Theorem 6.2.2) the relation (7.2.43) with N according to (7.2.36). Then
the parameter p in (6.2.8) is equal to 4. The phase factors in the neutrino sector are
determined by

ν8 = ν and µ8 = µ or µ . (7.2.44)

We can arrange by constant unitary transformations that for a, b = 1, 2, 3,

(I↓ ỲL/R I↑)
(a+4 α)
b = δab v

α
L/R , (I↑ ỲR/L I↓)

(aα)
b+4 = δab v

α
L/R (7.2.45)

with vL/R(x) ∈ C3. In the two cases for µ8 in (7.2.44),

(I8 ỲL/R I↑)
(8α)
4 = vαL/R or vαL/R , (7.2.46)

respectively. Furthermore,

I8 ỲR/L I↓ = 0 . (7.2.47)

Proof. Imposing (7.2.43) and using (7.2.40), the EL equations (7.2.20) reduce to
the conditions

λ(x, y) I↑ = µ I↑ ÝR(y) I↓ ỲL(x) I↑ + µ I↑ ÝR(y) I↓ ỲL(x) I↑

+µ8 νν8 I↑ ÝR(y) I8 ỲL(x) I↑ + µ8 νν8 I↑ ÝR(y) I8 ỲL(x) I↑ . (7.2.48)

We first prove that the phase factors must be dependent in the sense that

µ8 νν8 = µ or µ . (7.2.49)

Assuming the contrary, we must treat the four summands in (7.2.48) as being inde-
pendent, and thus

I↑ ÝR(y) I↓ ỲL(x) I↑ = κ(x, y) I↑ . (7.2.50)

Performing the replacement (7.2.25) and using that µ transforms to µ, we obtain
furthermore that

I↓ ÝL(y) I↑ ỲR(x) I↓ = κ(x, y) I↓ (7.2.51)

2
Online version: For a difficulty to realize this relation between the basic fractions by a suitable

regularization see the proof of Lemma 3.10.3 in the book [5] (listed in the references in the preface
to the second online edition). One should keep in mind that, following the consideration after [5,

eq. (3.7.13)], the relation must still hold if we replace the factors T
(1)

[2]
and T

(1)

[2]
by a non-zero real

constant.
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with the same κ as in (7.2.50). We apply Lemma 7.1.3 to (7.2.50) (with p1 = p and
p2 = 3(7− p)) and to (7.2.51) (with p1 = 7− p and p2 = p). Leaving out the constant
unitary transformations, we obtain the representations

I↓ ỲL I↑ =





p summands
︷ ︸︸ ︷

b⊕ · · · ⊕ b
0



 , I↑ ỲR I↓ =





7 − p summands
︷ ︸︸ ︷

b⊕ · · · ⊕ b
0



 , (7.2.52)

where b is the complex conjugate of the vector b ∈ C3. According to Lemma 7.2.7,
(7.2.34) is non-trivial. Since the contributions to the EL equations involving µ are
unchanged when applying the replacements (7.2.18) and (7.2.19), we can arrange
that (7.2.50) does not vanish, and thus b 6= 0. On the lhs of (7.2.52), the inequal-
ity rp1 ≤ p2 implies that r < 3. Thus on the rhs of (7.2.52), the number of zero rows

is 3p− r(7− p) > 3. Therefore, IpỲRI↓ = 0, or, equivalently, by taking the adjoint and
in components,

(ÝL)
a
(d.) = 0 for d = p and a = p+ 1, . . . , 7.

On the other hand, the lhs of (7.2.52) implies that

(ỲL)
a
(d.) 6= 0 for d = p and a = p+ 1, . . . , 7.

The non-degeneracy assumption of Def. 7.1.2 allows us to conclude that

(ÝL)
a
(d.) = 0 for all a = p+ 1, . . . , 7 and d 6= a.

This implies that I↓ÝLI↑ = 0, in contradiction to the rhs of (7.2.52) and the fact that
b 6= 0.

Repeating the above argument for the opposite chirality gives in analogy to (7.2.49)
that

µ8 = µ or µ . (7.2.53)

Using that µ and ν are independent according to Lemma 7.2.7, (7.2.49) and (7.2.53)
are equivalent to (7.2.44).

In the case µ8 = µ, the EL equations (7.2.20) reduce to the conditions

I↑ ÝR(y) (I↓ + I8) ỲL(x) I↑ = κ(x, y) I↑ . (7.2.54)

After the replacement (7.2.25), the phase factors in (7.2.48) are no longer depen-
dent (cf. (7.2.18) and (7.2.19)), and thus we get the conditions

I↓ ÝL(y) I↑ ỲR(x) I↓ = κ(x, y) I↓ (7.2.55)

I↓ ÝL(y) I8 ỲR(x) I↓ = 0 . (7.2.56)

The last relation implies (7.2.47). Applying the above argument for (7.2.50) and
(7.2.51) to (7.2.54) and (7.2.55), we again get a contradiction unless RgI↑ = Rg(I↓+I8).
This shows that p = 4. Possibly after increasing r, we obtain in analogy to (7.2.52)
the representations

(I↓ + I8) ỲL I↑ = b⊕ b⊕ b⊕ b , I↑ ỲR I↓ = b⊕ b⊕ b . (7.2.57)

Writing these relations in components gives (7.2.45, 7.2.46).
In the case µ8 = µ, we obtain in analogy to (7.2.54) the condition

I↑ ÝR(y) I↓ ỲL(x) I↑ + I↑ ÝR(y) I8 ỲL(x) I↑ = κ(x, y) I↑ , (7.2.58)
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and after the replacement (7.2.25) again the conditions (7.2.55, 7.2.56). The lhs
of (7.2.55) can be split into a product of matrices of the form A(y) B(x). Since the
equations (7.2.55) and (7.2.58) involve the same function κ(x, y), the matrices on the

lhs of (7.2.58) must split in the same way. To this end, the matrix I↑ ÝR(y) I8 ỲL(x) I↑
must (possibly after a constant unitary transformation) be diagonal for all x and y, so
that the spectral adjoint reduces to the complex conjugate (i.e. to taking the complex
conjugate of all matrix entries). After taking this complex conjugate, we can proceed
exactly as in the case µ8 = µ above. The only difference is that we obtain a represen-
tation not for the matrix I8ỲLI↑ but for its complex conjugate, and this leads to the
complex conjugate in (7.2.46).

We remark that the fact that the partial trace is non-cyclic, (7.1.2), is essential for the
above construction to work. Namely, according to the lhs of (7.2.45),

I↑ ÝL I8 ỲR I↑
in general

6= 0 . (7.2.59)

On the other hand, the weak causality compatibility condition, Def. 7.1.1, implies that

I8 ÝR I↑ ỲL I8 = XR I8 ÝR I↑ ỲL I8 = 0 . (7.2.60)

If the partial trace were cyclic, (7.2.59) and (7.2.60) would be inconsistent.
Combining the previous lemmas and choosing a convenient representation for the

dynamical mass matrices gives the main result of this section.

Theorem 7.2.11. (spontaneous block formation) We consider the EL equa-
tions corresponding to the Lagrangian (5.5.15) in the presence of chiral and scalar
potentials (6.0.1–6.0.5) to the degree 4 on the light cone. We assume that the Dirac
operator is weakly causality compatible and that the dynamical mass matrices are non-
degenerate (see Defs. 7.1.1 and 7.1.2). Then, following (IV), we need to introduce two
relations between the basic fractions. Imposing that

(M −M) T
(0)
[0]

−1

= 0 = (N −N) T
(0)
[0]

−1

(7.2.61)

with M and N according to (6.2.6, 7.2.36), we can arrange by constant unitary trans-
formations that the Dirac operator is of the following form,

i∂/ −mχL

(

Y q
R ⊕ Y

q
R ⊕ Y

q
R ⊕ Y l

R

)

− mχR

(

Y q
L ⊕ Y

q
L ⊕ Y

q
L ⊕ Y l

L

)

(7.2.62)

+ (χR A/L + A/V )
(
σ3 ⊕ σ3 ⊕ σ3 ⊕ σ3

)
(7.2.63)

+ (A/q 11)⊕ 0
C

2 + 0
C

6 ⊕ (A/l 11 + A/s σ3) . (7.2.64)

Here Y
q/l
L/R are 2× 2 matrices on the sectors which depend also on the generations, i.e.

in components

Y q/l
c = (Y q/l

c )
(aα)
(bβ) with a, b = 1, 2, α, β = 1, 2, 3, c = L/R.

The chiral and vector potentials are trivial on the generations and depend only on the
sector index. AL, AV and Al are vector fields, and Aq is a 3 × 3 matrix potential (11
and σ3 are Pauli matrices). The vector field As is a function of AL and AR; the two
possible choices are

As ≡ 0 or As ≡ −AL − 2AV . (7.2.65)
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The dynamical gauge groups (see Def. 6.1.1) are given by

G = U(1)L ×F , F = U(1)V × U(3)q × U(1)l , (7.2.66)

where the indices clarify to which potentials in the Dirac operator the groups corre-
spond.

Proof. Lemmas 7.2.4 and 7.2.5 do not immediately apply here because they are
based on the assumption that we have only one relation between the basic fractions.
But it is straightforward to check that if in these lemmas we allowed for an addi-
tional relation between the basic fractions, the argument of Lemma 7.2.9 would still
go through, thus making it necessary to introduce a third relation between the basic
fractions.

Collecting the results of Lemmas 7.2.4–7.2.10 and choosing a convenient represen-
tation for the dynamical mass matrices, we obtain that the dynamical mass matrices
are block diagonal as in (7.2.62). Thus it remains to derive the dynamical gauge group
and the form of the corresponding gauge potentials. Possibly after reordering the
sectors, the U(1)L is precisely the group B4 in Def. 6.2.1. The free gauge group is
obtained by taking the maximal subgroup of F4 for which the gauge potentials respect
the phase conditions (7.2.44). In the two cases in (7.2.65), the U(1)V shifts the phases
of µ and µ8 by the same or the opposite amount, respectively. This corresponds to the
two cases in (7.2.44). The other potentials must leave the phase functions unchanged,
and thus they must coincide on the sectors which are mapped into each other by the
dynamical mass matrices (7.2.45). This gives the group U(3)q × U(1)l.

We point out that, except for the potentials Aq, the Dirac operator splits into four
direct summands. The first three summands are identical and involve massive Dirac
particles, whereas the chiral Dirac particles are contained in the last summand. The
gauge potentials Aq describe an interaction between the Dirac particles in the three
identical summands. In analogy to the standard model, it is natural to identify the
fermions in the first three and the last summands with the quarks and leptons, respec-
tively. In order to make these notions precise, we first observe that for the fermionic
projector, the above splitting means that for all contributions considered so far3,

P (x, y) = U(x, y)
(

P q ⊕ P q ⊕ P q ⊕ P l
)

, (7.2.67)

where U is the generalized phase transformation by the potentials Aq,

U(x, y) = Pexp

(

−i
∫ 1

0
dτ Aq

j(τy + (1− τ)x) (y − x)j
)

. (7.2.68)

The unitary transformation (7.2.68) clearly commutes with the direct sum and thus
drops out of the closed chain,

Axy = Aq
xy⊕Aq

xy⊕Aq
xy⊕Al

xy with Aq/l
xy ≡ P q/l(x, y)P q/l(y, x) . (7.2.69)

Def. 7.2.12. The first three direct summands in (7.2.67) and (7.2.69) are referred
to as the quark blocks. The last direct summand is the lepton block.

3We remark for clarity that the contributions to the fermionic projector which involve the U(3)q

gauge fields or currents, which have not been considered so far, do not split in the form (7.2.67).
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7.3. The Dynamical Mass Matrices in the Quark and Neutrino Blocks

We now specify the dynamical mass matrices in the quark and neutrino blocks.

Theorem 7.3.1. Under the assumptions of Theorem 7.2.11, the EL equations
are satisfied to degree 4 on the light cone if and only if the matrices Y q

L/R and Y l
L/R

in (7.2.62) have (after suitable constant unitary transformations) the following prop-
erties at all space-time points,

Ŷ q
L = (Ŷ q

R)
∗ =

(
c 0
0 c

)

(7.3.1)

Ŷ l
L = (Ŷ l

R)
∗ =

(
c 0
0 0

)

(7.3.2)

Ỳ q
L =

(

a VL b
UL b a

)

, Ỳ q
R =

(

a VR b
UR b a

)

(7.3.3)

and in the two cases in (7.2.65),

Ỳ l
L =

(
a 0
WL b 0

)

, Ỳ l
R =

(
a ∗
WR b ∗

)

(7.3.4)

and

Ỳ l
L =

(
a 0
WL b 0

)

, Ỳ l
R =

(
a ∗
WR b ∗

)

, (7.3.5)

respectively. Here we use a matrix notation in the sector index. In (7.3.3–7.3.5),
the matrix entries are vectors in C3 (and this takes into account the dependence on
the generations). The parameter c is complex, a, b ∈ C3, and the stars stand for any
vectors in C3. The off-diagonal elements are non-trivial in the sense that there is a
space-time point where b 6= 0. The matrices UL/R, VL/R, WL/R ∈ U(3) are constant
unitary transformations.

Proof. We only consider the first case in (7.2.65); the second is obtained in the
same way keeping track of the complex conjugates. The weak causality condition of
Def. 7.1.1 implies that ỲLI8 = 0. On the other hand, we already observed after (7.2.38)

that the matrix product ỲRI8 enters only the perturbation calculation for the kernel,
which is trivial according to Theorem G.5.1. This explains the zeros and stars in (7.3.2,
7.3.4). Then (7.3.1, 7.3.2) follow immediately from Lemma 7.2.4 and Lemma 7.2.5. A
short calculation using (7.3.1, 7.2.61, 7.2.44) yields that the EL equations to degree 4
reduce to the conditions

∫ z

x
dz I↑ ÝLỲR I↑ = α(x, y) I↑ (7.3.6)

ν I↑ ÝR(y) I↑ ỲL(x) I↑ + ν I↑ ÝR(y) I↑ ỲL(x) I↑ = β(x, y) I↑ (7.3.7)

µ I↑ ÝR(y) (I↓ + I8) ỲL(x) I↑

+ µ I↑ ÝR(y) (I↓ + I8) ỲL(x) I↑ = γ(x, y) I↑ (7.3.8)

as well as to the conditions obtained by the replacements

L ←→ R , ν ←→ ν (7.3.9)

and/or

I↑ + I8 −→ I↓ , I↓ −→ I↑ , µ ←→ µ , ν ←→ ν (7.3.10)
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with the complex functions α, β, and γ unchanged. We first substitute (7.2.40) into
(7.3.7). Comparing with the relation obtained by applying (7.3.9), one sees that

〈uL, uL〉 = 〈uR, uR〉, and thus we can arrange with a constant unitary transformation
that uL = uR. This explains the diagonal entries in (7.3.3, 7.3.4). Substituting (7.2.45)
and (7.2.46) into (7.3.8) and comparing with the relation obtained by applying (7.3.10),

we obtain similarly that 〈uR, uR〉 = 〈uL, uL〉 and thus, up to a constant unitary trans-
formation, vL = vL. Since we have already used the freedom in choosing orthogonal
bases in order to arrange that uL = uR, we now need to take into account these unitary
transformations. This gives the off-diagonal elements in (7.3.3, 7.3.4). We conclude
that (7.3.1–7.3.4) are necessary conditions. Substituting (7.3.1–7.3.4) into (7.3.6–7.3.8)
and applying (7.3.9, 7.3.10), one verifies immediately that these conditions are also suf-
ficient. The last statement in Lemma 7.2.7 implies that b is non-trivial.

In Chapters 6 and 7 we always restricted attention to our model variational prin-
ciple (5.5.14). We now make a few general comments on how our methods could be
extended to other two-point actions, and which features of the Lagrangian are impor-
tant for getting a physically interesting continuum limit.

The methods of Chapter 6 immediately apply to other two-point actions; the only
obstruction is that the gauge terms in the operator Q(x, y) must be simple fractions

in T
(n)
◦ and T

(n)
◦ . The general mechanism is that the eigenvalues of Axy are influenced

by the gauge terms (cf. (6.1.10, 6.2.12, 6.2.13)). When analyzed in the EL equations,
this leads to conditions for the eigenvalues of the “phase matrices” Wc (see (6.1.15)
or (6.2.22)), and these conditions can finally be translated into constraints for the
dynamical gauge fields. In this last step one uses crucially that the EL equations are
nonlocal in the sense that they yield relations between the chiral potentials even at
distant points (see e.g. (6.2.27)). This gives rise to global constraints, i.e. conditions
which must hold in all of space-time. For example, Theorem 6.2.2 states that the
dynamical gauge group in case (2) must be contained in one of the groups (Gp)p=0,...,3

in the whole space-time, but it cannot be the group Gp1 in one region of space-time
and a different group Gp2 in another region (as one sees by considering line integrals
which join the two regions).

For the spontaneous block formation, it is essential that the EL equations are
satisfied only if the eigenvalues of Axy are highly degenerate. The requirement that
these degeneracies should be respected by the scalar potentials can then be used to
show that the potentials must split globally into a direct sum.

While this general mechanism should occur similarly for most other Lagrangians,
the details depend sensitively on the particular form of the action. Our model La-
grangian has the special feature that it involves only the absolute squares of the
eigenvalues of Axy. This is the reason why Theorem 6.1.2 involves only the absolute
squares of νnc, (6.1.15), leading to the relatively weak constraint for the dynamical
gauge group (6.1.16) (if we had, for example, considered instead the polynomial La-
grangian (5.5.4), the gauge terms to highest degree would have led to conditions also
for the phases of νnc, giving rise to much stronger conditions). To the next lower
degree on the light cone, the phases of νnc do enter the analysis. But since perturbing
the absolute square gives rise to a real part, ∆|λncs|2 = 2Re(λncs∆λncs), we can easily
arrange that only the real part of νncs comes into play, and so the phases are fixed
only up to signs. This is a major advantage of our action over e.g. polynomial actions,
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where the same flexibility for the phases can be arranged only for a large degree of the
polynomial. Another action which has the nice property that it depends only on the
absolute squares of the eigenvalues is the determinant action (5.5.12). Working with
the spectral trace leads to the specific problem that one must handle spectral adjoints.
This is clearly a technical complication, but we do not consider it to be essential for
the spontaneous block formation.

Remark 7.3.2. (Massive neutrinos) In the analysis of Chapters 6 and 7, the struc-
ture of the neutrino sector was used several times: In the vacuum, the chiral cancella-
tions were useful because, as a consequence, the EL equations were trivially satisfied
in the neutrino sector (see (5.3.2) and (5.4.11)). In Theorem 6.1.2, the chiral cancel-
lations in the neutrino sector are the reason why the dynamical gauge fields are not
allowed to describe a mixing between the neutrinos and the massive fermions (see the
argument leading to (6.1.22)). In the proof of Theorem 6.2.2, it was essential that
the number of massive sectors is odd (see (6.2.30)). Finally, in the analysis of the
degeneracies we always treated the neutrino sector separately.

Generally speaking, the chiral fermions lead to complications in the case with
interaction, because the dynamical gauge fields were not allowed to describe a mixing
between the massive and the chiral fermions, and this made it necessary to take scalar
potentials into account. Also in view of recent experimental observations, it thus seems
tempting to consider a neutrino sector which is built up of massive chiral Dirac seas.
This is indeed possible, although we see the following difficulties. First, it is not clear
how chiral fermions should be described in Minkowski space (for details see §C.1).
Furthermore, building in massive chiral fermions is certainly not easy. Namely, if the
resulting neutrino sector does not give rise to chiral cancellations, we must extend the
Lagrangian in order to arrange that the EL equations are satisfied in the vacuum. The
analysis of the interaction would also be considerably different. Finally, one should
keep in mind that the recent experiments do not measure the mass of the neutrinos
directly, but merely observe neutrino oscillations, i.e. a mixing of the neutrinos in
different generations. This mixing could also be explained for massless neutrinos if the
interaction of the neutrinos were suitably modified. For these reasons, we feel that
before moving on to massive neutrinos, one should first get a better understanding of
variational principles for a massless neutrino sector.





CHAPTER 8

The Effective Gauge Group

In this chapter we will reformulate the interaction of the Dirac particles with
chiral and scalar fields as specified in Theorems 7.2.11 and 7.3.1 as an interaction via
“effective” non-Abelian gauge fields. Before working out the details in §8.1 and §8.2,
we begin by explaining the general construction. Consider the Dirac equation in the
presence of chiral and scalar potentials (6.0.5). Since the dynamical mass matrix

YL = (YL)
(aα)
(bβ)

(with a, b = 1, . . . , 8 and α, β = 1, 2, 3) need not be Hermitian, we

cannot diagonalize it by a unitary transformation. But using the polar decomposition,
we can at least represent YL in the form

YL = UL Y
eff U−1R (8.0.1)

with two unitary matrices UL/R ∈ U(3× 8) and Y eff a diagonal matrix with real non-

negative entries1. We introduce the so-called chiral transformation V by

V = χL UL + χR UR . (8.0.2)

Note that the adjoint of V ,

V ∗ = χR U
−1
L + χL U

−1
R ,

is in general different from its inverse, which we denote by a bar,

V ≡ V −1 = χL U
−1
L + χR U

−1
R .

Thus the chiral transformation need not be unitary. The chiral transformation of the
Dirac operator is defined by and computed to be

V
∗
(i∂/+ χL(A/R −mYR) + χR(A/L −mYL))V = i∂/+ χL A/

eff
R + χR A/

eff
L −mY eff

with Y eff as in (8.0.1) and

Aeff
c = U−1c AcUc + iU−1c (∂Uc) , c ∈ {L,R}. (8.0.3)

Finally, the effective fermionic projector is obtained from the auxiliary fermionic pro-
jector by the chiral transformation

P eff = V P V ∗ . (8.0.4)

1For the reader not familiar with the polar decomposition we outline the construction. For a
matrix A ∈ Mat(Cn) we introduce the Hermitian and positive semidefinite matrix R =

√
A∗A. A

short calculation shows that the matrix V defined by

V u =

{

u for u ∈ KerR
A R−1 u for u ∈ (KerR)⊥

is unitary and satisfies the relation A = V R. Diagonalizing R by a unitary transformation, i.e.
R = WDW−1 with D diagonal and W unitary, we obtain the desired representation A = U1DU−1

2

with U1 ≡ VW and U2 ≡ W .

189
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It satisfies the effective Dirac equation
(

i∂/+ χL A/
eff
R + χR A/

eff
L −mY eff

)

P = 0 . (8.0.5)

Since the chiral transformation is one-to-one, the effective fermionic projector gives
an equivalent formulation of the physical system. The advantage of the effective de-
scription is that the effective mass matrix Y eff is diagonal. This means that if we inter-
pret the sector index after the chiral transformation as labeling the different types of
Dirac particles (like u, d, e, νe, etc.), the effective scalar potentials describe a dynami-
cal shift of the mass of each type of fermion, whereas the interaction between different
types of fermions is described only by the effective chiral potentials. Thus, apart from
the fact that we allow for dynamical mass shifts, the Dirac particles interact as in the
standard model via chiral fields.

In general, the effective potentials have locally the form of non-Abelian gauge
potentials. But they cannot be chosen at every point independently, because it must
be possible to represent them in the form (8.0.3) with Ac the Abelian gauge potentials
of Theorem 7.2.11. We refer to (8.0.3) as the gauge condition.

For clarity, we point out that the unitary transformations in the polar decompo-
sition (8.0.1) are not uniquely determined. Thus, similar to the freedom of choosing
different gauges, there is a certain arbitrariness in the choice of UL and UR. Since at
infinity the dynamical mass matrices go over to the mass matrix Y of the vacuum, we
can and will always choose UL/R such that

lim
x→∞

UL/R(x) = 11 . (8.0.6)

8.1. The Chiral Transformation in the Quark Blocks

Using the splitting (7.2.69), we may disregard the U(3)q potentials and can analyze
the chiral transformation in the quark and lepton blocks separately. In this section,
we consider a quark block and for ease in notation omit the superscript q. According
to Theorem 7.3.1, the EL equations to degree 4 give information only on the partial
traces of the dynamical mass matrices. Therefore, the dynamical mass matrices, and
as a consequence also the chiral transformation and the effective potentials, are not
completely determined. This means that we have a certain freedom to arbitrarily
change these objects, and we shall use this freedom to make the following assumption
on the form of the effective chiral gauge potentials.

Def. 8.1.1. The effective chiral potential Aeff
c , c ∈ {L,R}, has unitary mixing if

for every space-time point x there is a unitary matrix Wc ∈ U(3) and a U(2) potential
ac such that at x,

Aeff
c =

(
11 0
0 Wc

)

ac

(
11 0
0 W−1c

)

=

(
a11c a12c W−1c

a21c Wc a22c

)

(8.1.1)

(here as in Theorem 7.3.1 we use a matrix notation in the sectors). The matrix Wc is
referred to as the mixing matrix.

Thus we impose that the effective chiral potentials be trivial on the generations
except for a unitary mixing of the generations in the off-diagonal matrix elements.
This assumption is clearly satisfied for the gauge potentials in the standard model if
we choose WR ≡ 11 and WL equal to the CKM mixing matrix. Our ansatz is more
general in that we allow for both left- and right-handed mixing matrices and that
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Wc = Wc(x) need not be a constant matrix. Ultimately, the assumption of unitary
mixing should be justified from the EL equations. But this makes it necessary to
consider the EL equations to the degree 3 on the light cone, and we do not want to
enter this analysis here. Therefore, we simply take Def. 8.1.1 as a physically reasonable
technical simplification.

Our first lemma characterizes those chiral transformations which respect the con-
dition of Def. 8.1.1.

Lemma 8.1.2. The effective chiral potential has unitary mixing if and only if the
unitary transformation Uc in (8.0.2) is for all x of the form

Uc =

(
u11c u12c W−1c

u21c Wc u22c

)

with uc ∈ U(2). (8.1.2)

Furthermore, the mixing matrix is constant.

If Uc is of the form (8.1.2) with Wc a constant matrix, it is obvious that the
corresponding effective chiral potential (8.0.3) has unitary mixing. In order to show
that the converse is also true, we must analyze the differential equation for Uc and use
the boundary conditions at infinity (8.0.6).

Proof of Lemma 8.1.2. It suffices to prove the “only if” part. Thus we assume that
Aeff

c has unitary mixing and shall derive that Uc is of the form (8.1.2). For ease in
notation we omit the subscript c. According to Theorem 7.2.11, A is diagonal and
can thus be written as A = α11 + βσ3 with real functions α and β. When substituting
into (8.0.3), α yields a contribution to Aeff with unitary mixing, independent of the
form of U . Thus α is irrelevant for the following argument, and we can assume that
A is a multiple of σ3.

Let Ω be the set where the field tensor F = dA− iA ∧A is non-zero,

Ω = {x | F (x) 6= 0} .
We shall first prove that on each connected component ΩC of Ω, U is for all x ∈ ΩC

of the form

U(x) =

(
V1 0
0 V2

)

u(x)

(
11 0
0 W−1

)

(8.1.3)

with u ∈ U(2) and constant unitary matrices V1, V2,W ∈ U(3). To this end, we
differentiate (8.0.3) and (8.1.1) to obtain

U−1 F U = F eff =

(
f11 f12 W−1

f21 W f22

)

(8.1.4)

with f = da+a∧a (these relations can be understood immediately from the behavior of
the field tensor under gauge transformations). We know that at x ∈ ΩC , the matrix F
has the properties 0 6= F ∼ σ3. Using this fact in (8.1.4) shows that U(x) must be of
the form

U =

(
B1 0
0 B2

)(
cosϕ sinϕ
− sinϕ cosϕ

)(
11 0
0 W−1

)

(8.1.5)

with B1, B2 ∈ U(3) and ϕ ∈ R. Hence at x, the first summand in (8.0.3) is of
the required form (8.1.1), and thus the second summand must also be of this form.
Computing iU−1(∂U) for U according to (8.1.5), one sees that this term is of the
form (8.1.1) only if at x,

∂W = 0 and ∂B1/2 ∼ B1/2 (8.1.6)
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(in the special case sinϕ = 0, we merely obtain that ∂(B2W
−1) ∼ B2W

−1, but since
in this case U only involves the product B2W

−1, we can arrange that ∂W = 0).
Integrating (8.1.6) gives (8.1.3).

Let Λ = R4\Ω be the set where F vanishes. We next prove that on each connected
component ΛC of Λ, U is of the form

U(x) =

(
eiφ(x) 0

0 e−iφ(x)

)

V ueff(x)

(
11 0
0 W−1

)

(8.1.7)

with real φ, ueff ∈ U(2) and constant matrices V ∈ U(6) and W ∈ U(3). In order to
derive this formula, we first use that F = 0 on ΛC to represent A as a pure gauge
potential, i.e.

A = iB−1 (∂B) with B =

(
e−iφ 0
0 eiφ

)

(8.1.8)

and a real function φ. According to the first part of (8.1.4), F eff also vanishes. Let
us consider what this tells us about the terms in (8.1.1). Using that the phase factors
can be absorbed into a21, we can arrange that W−1(∂W ) is trace-free. Then the
contributions to F eff involving ∂W and ∂a are linearly independent. From this we
conclude that W is constant on ΛC and that Aeff can be represented as

Aeff = i

(
11 0
0 W

)

u−1eff (∂ueff)

(
11 0
0 W−1

)

(8.1.9)

with ueff ∈ U(2). On the other hand, substituting (8.1.8) into (8.0.3) gives

Aeff = i(BU)−1 ∂(BU) . (8.1.10)

Differentiating the unitary matrix

B U

(
11 0
0 W

)

u−1eff

and using (8.1.9) and (8.1.10), one sees that this matrix is constant on ΛC , prov-
ing (8.1.7).

Note that the representation (8.1.7) poses a weaker constraint on U than equa-
tion (8.1.3). We shall now prove that on ΛC even (8.1.3) holds. If ΛC extends to
infinity, we can according to (8.0.6) assume that

lim
ΛC∋x→∞

φ = 0 , lim
ΛC∋x→∞

ueff = 11 and V =

(
11 0
0 W

)

.

Then (8.1.7) indeed goes over to (8.1.3). If conversely ΛC is compact, we choose
y ∈ ∂ΛC . Then at y both (8.1.3) and (8.1.7) hold, and comparing these formulas
one sees that V must be a diagonal matrix. This implies that on ΛC , (8.1.7) reduces
to (8.1.3).

We just showed that for all X, U can be represented in the form (8.1.3), where
V is constant on each connected component of Ω and Λ. Possibly after multiplying
U by piecewise constant unitary transformations and/or absorbing a constant unitary
transformation from u into V1, V2, orW , we can assume that all matrices in (8.1.3) are
continuous. The asymptotics at infinity (8.0.6) finally yields that V1 = 11 and V2 =W .
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Using the result of the previous lemma in (8.0.1), we can now compute the dynam-
ical mass matrices and analyze the conditions of Theorem 7.3.1. We restrict attention
to the special case, which will be of relevance later, that the right-handed chiral trans-
formation is trivial.

Lemma 8.1.3. Assume that UR ≡ 11. If (7.3.1) and (7.3.3) are satisfied, the mixing
matrix and the potential uL in (8.1.1) have the following properties,

Ý ẀL = 0 = ẂL Ỳ (8.1.11)

|Y ẀL| = |Ỳ | = |ẂL Y | (8.1.12)

uL ∈ SU(2) . (8.1.13)

Furthermore, (7.3.1) and (7.3.3) are also satisfied if we leave UL unchanged and set
the effective scalar potentials to zero,

Y eff ≡ Y . (8.1.14)

Conversely, if UR ≡ 11 and (8.1.11–8.1.14) are satisfied, then (7.3.1) and (7.3.3) hold.

Proof. Evaluating (8.0.1) for UL according to (8.1.1) and UR ≡ 11 gives

YL =

(
u11L Y eff

1 u12L W−1L Y eff
2

u21L WL Y
eff
1 u22L Y eff

2

)

with Y eff = diag(Y eff
1 , Y eff

2 ). Assume that (7.3.1) and (7.3.3) are satisfied. Let us
evaluate these relations for the off-diagonal elements of YL. Since b in (7.3.3) is non-
trivial, the function u21L (x) does not vanish identically, but clearly it is zero at infinity.
As usual, we implicitly assume that u21L decays asymptotically at infinity, without
necessarily being zero outside a compact set. Then we can apply a perturbation
argument to the lower left matrix element of YL. Namely, (7.3.1) yields that ẂLỲ

eff
1 =

0, and taking the asymptotic limit gives the rhs of (8.1.11). The rhs of (8.1.11) is
obtained similarly from the upper right matrix element of YL. Applying the above
perturbation argument to the off-diagonal terms in (7.3.3) yields (8.1.12).

We next evaluate (7.3.1) for the diagonal elements of YL. Since Y eff is a positive

matrix, Ŷ eff
1 and Ŷ eff

2 are real and ≥ 0. Furthermore, uL satisfies as a U(2) matrix the

relation |u11L | = |u22L |. From (7.3.1) we conclude that u11L = u22L , and thus u ∈ SU(2).
Finally, it is straightforward to check that (8.1.11–8.1.14) imply the (7.3.1) as well

as (7.3.3).

In the remainder of this section we shall analyze and discuss the gauge condi-
tion (8.0.3). First, we substitute (8.1.2) and pull the constant mixing matrix outside,

Aeff
c =

(
11 0
0 Wc

)
(
u−1c Acuc + iu−1c (∂uc)

)
(

11 0
0 W−1c

)

.

Next, we decompose the potential and the unitary transformation into the U(1) and
SU(2) parts, i.e.

Ac = α 11 + a σ3 and uc = e−iφ v

with real functions α, a, φ and v ∈ SU(2). This gives

Aeff
c = (α+ ∂φ) 11 +

(
11 0
0 Wc

)
[
a v−1σ3v + i v−1(∂v)

]
(

11 0
0 W−1c

)

. (8.1.15)
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Thus φ describes a usual U(1) gauge transformation. The square bracket can be
regarded as an SU(2) potential, and the matrix Wc introduces a unitary mixing in the
off-diagonal elements. The remaining question is in which way the expression in the
square brackets gives a constraint for the SU(2) potential.

Def. 8.1.4. The field tensor F = dA− iA∧A of an SU(2) potential A is simple
if for every x there is a real-valued 2-form Λ and s ∈ su(2) such that

F (x) = Λ s . (8.1.16)

Lemma 8.1.5. An SU(2) potential A can be represented in the form

A = a v−1σ3v + i v−1(∂v) (8.1.17)

with a(x) ∈ R and v(x) ∈ SU(2) if and only if its field tensor is simple.

Proof. If A is of the form (8.1.17), its field tensor is given by

F = f v−1σ3v

with f = da, and this is obviously simple.
Assume conversely that F is simple. We choose v1 ∈ SU(2) such that

v1 s v
−1
1 = λ σ3

with λ ∈ R and introduce the gauge potential Ã by

Ã = v1 A v
−1
1 − i v1(∂v

−1
1 ) . (8.1.18)

From (8.1.16) one sees that the corresponding field tensor is

F̃ = f σ3

with the real-valued 2-form f = λΛ. From the fact that F̃ is closed we conclude
that df = 0, and thus there is a 1-form a with f = da (note that we are working
in Minkowski space, which is clearly simply connected). By construction, the SU(2)

potentials Ã and aσ3 have the same field tensor F̃ . As a consequence, they are related
to each other by an SU(2) transformation, i.e.

Ã = a v−12 σ3v2 + i v−12 (∂v2) (8.1.19)

with v2 ∈ SU(2). Substituting (8.1.19) into (8.1.18) and solving for A gives (8.1.17)
with v = v2v1.

With this lemma we have reformulated the gauge condition (8.1.15) as a structure
condition for the effective field tensor. This makes it possible to regard the effective
chiral potentials as locally defined objects. More precisely, we shall treat the effective
chiral potentials as local gauge potentials, which are constrained only by local condi-
tions like e.g. that the effective field tensor be simple, but we shall not consider the
corresponding chiral transformation (which involves integrating the effective potentials
and is therefore defined in a nonlocal way). In particular, when we have conditions
between the effective potentials in the quark and neutrino sectors, we shall always
satisfy them by local relations, i.e. by algebraic or differential equations involving the
effective potentials. This procedure corresponds to the usual requirement of locality
in physics. It could be further justified later by the fact that the EL equations yield
differential equations for the effective potentials (the “field equations”), and it seems
impossible to satisfy such differential equations if the effective potentials obey nonlocal
constraints.
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8.2. The Chiral Transformation in the Lepton Block

We come to the analysis in the lepton block; for ease in notation the superscript
l will be omitted. As a consequence of the chiral massless fermions, the dynamical
matrices are different in the lepton and quark blocks. More precisely, YL and YR must
now be of the form (7.3.2) and (7.3.4, 7.3.5). We shall first show that these conditions
are incompatible with a unitary mixing and then resolve this problem by modifying
the mixing in the right-handed component. Let us assume that (7.3.4) or (7.3.5)
are satisfied for dynamical mass matrices of the form (8.0.1) with UL/R according to
Lemma 8.1.2. Then, choosing a space-time point where b 6= 0, we have

(UL Y
eff Ù−1R ) I2 = 0 but I2 (UR Y

eff Ù−1L ) 6= 0 , (8.2.1)

where I1/2 are again the projectors on the two sectors. Introducing the unit vectors

n = 3−
1
2 (1, 1, 1) ∈ C3 and u = (0, n) ∈ C6, we can write the first condition in (8.2.1)

without a partial trace as

UL Y
eff U−1R u = 0 . (8.2.2)

In the vacuum, the mass matrix Y eff = Y is strictly positive in the first sector. A
perturbation argument yields that, at least for weak fields, the effective mass matrix
is of the form Y eff = diag(Y eff

1 , Y eff
2 ) with Y eff

1 > 0. Therefore, the condition (8.2.1)

can only be satisfied if U−1R u vanishes in the first sector. Thus, using (8.1.2),
(

v11 v12 W−1c

v21 Wc v22

)(
0
n

)

=

(
0
∗

)

with v = u−1R . This implies that v12 = 0 and thus UR ≡ 1. Using this result in (8.2.2),

we obtain that Y effu = 0, and since Y eff is a diagonal matrix with non-negative entries,
we conclude that Y eff

2 = 0. Finally, the relations UR = 11 and Y eff
2 = 0 imply that

I2URY
eff = 0, in contradiction to the second equation in (8.2.1).

In order to avoid the above contradiction, the vector U−1R u must vanish identically
in the first sector without UR being trivial. The natural way to arrange this is to
replace the unitary matrix WR in (8.1.1) by a matrix which is zero on <n> and
is unitary on <n>⊥. In analogy to the procedure in the previous section, we first
introduce the corresponding effective potentials and determine UR afterwards. We let
Π be the projector

Π = |n><n| with n =
1√
3
(1, 1, 1) . (8.2.3)

Def. 8.2.1. The effective potential Aeff
R has projected mixing if for every space-

time point there is a unitary matrix WR ∈ U(3) with

WR n = n ,

as well as real functions b1R and b2R and a U(2) potential aR such that at x,

Aeff
R =

(
b1R 0
0 b2R

)

+ (1−Π)

(
a11R a12R W−1R

A21
R WR a22R

)

. (8.2.4)

WR is called the mixing matrix.



196 8. THE EFFECTIVE GAUGE GROUP

Lemma 8.2.2. The effective potential Aeff
R has projected mixing if and only if the

unitary transformation UR in (8.0.2) is for all x of the form

UR = Π

(
v1 0
0 v2

)

+ (11 −Π)

(
u11 u12 W−1R

u21 WR u22

)

(8.2.5)

with v1/2 ∈ U(1) and u ∈ U(2). Furthermore, the matrix WR is constant.

Proof. We consider the effective potential on <n> and <n>⊥ separately. On
<n>⊥, Aeff

R is of the form as in Def. 8.1.1, and so Lemma 8.1.3 applies. On <n>, on

the other hand, Aeff
R is a diagonal potential, and integrating the differential equation

for UR as in the proof of Lemma 8.1.2 shows that UR is also diagonal.

The effective potentials in the second summand in (8.2.4) have different properties
than usual gauge fields. First, one should keep in mind that the right-handed potential
AR

eff does not couple to the left-handed massless fermions, and therefore the off-diagonal
elements in (8.2.4) cannot be regarded as describing an interaction between the massive
leptons and the neutrinos. Indeed, one must be careful about associating any physical
interaction to the second summand in (8.2.4), because the factor (11 − Π) gives zero
when the partial trace is taken, and also because some degrees of freedom of the
corresponding potentials drop out of the fermionic projector when t̃ is multiplied by
the chiral asymmetry matrix (7.1.3). For these reasons, we regard the off-diagonal
elements in (8.2.4) as describing a new type of interaction whose physical significance
is not clear at the moment. We refer to an effective potential which involves a factor
(11−Π) as a nil potential.

The next lemma is very useful because it allows us to compute the vectors a and b
in Theorem 7.3.1 without specifying UR. In this way, we can get around the detailed
analysis of the nil potential.

Lemma 8.2.3. Suppose that Aeff
L and Aeff

R have unitary and projected mixing, re-
spectively. Then UL and UR can be chosen such that

ỲL = UL Ỳ
eff .

Proof. Since (11−Π)n = 0, the partial trace of the second summand in (8.0.4) is

zero, whereas in the first summand the factor Π drops out. Thus ỲL = ULY
effV̀ with

V a diagonal U(2) matrix. This matrix commutes with Y eff and can thus be absorbed
into UL.

8.3. Derivation of the Effective Gauge Group

We are now ready to prove the main result of this chapter.

Theorem 8.3.1. We consider the EL equations corresponding to the Lagrangian
(5.5.13) under the assumptions of Theorem 7.2.11. Assume furthermore that the right-
handed effective potentials in the lepton block have projected mixing and that all other
effective potentials have unitary mixing (see Defs. 8.1.1 and 8.2.1). Imposing local
relations between the effective potentials (as explained on page 194), the right-handed
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chiral transformation is trivial in the quark blocks, U q
R ≡ 11. The mixing matrices are

constant and satisfy the relations

Ź Ẁ q
L = Ẃ q

L Z̀ = Ź Ẁ l
L = 0 (8.3.1)

|Z Ẁ q
L| = |Ẃ q

L Z| = |Z Ẁ l
L| = |Z̀| , (8.3.2)

where Z = 1
m diag(m1,m2,m3) is the mass matrix of the massive fermions. The

effective Dirac operator is of the following form,

i∂/ −m
(

Y eff
q ⊕ Y eff

q ⊕ Y eff
q ⊕ Y eff

l

)

(8.3.3)

+ χR

(

A/effL ⊕ A/
eff
L ⊕ A/

eff
L ⊕ A/

eff
L

)

+ χL A/R
(
σ3 ⊕ σ3 ⊕ σ3 ⊕ σ3

)
(8.3.4)

+ (A/q 11)⊕
(

A/l 11 + (11−Π) A/nilR

)

. (8.3.5)

Here Aeff
L is a 2 × 2 matrix potential, Aq is a 3 × 3 matrix potential, AR and Al are

vector fields, and Anil is a nil potential. The effective gauge group is

Geff = SU(2)effL × U(1)R × U(3)q × U(1)l . (8.3.6)

The only constraint for the chiral potentials is that the field tensor corresponding to

Aeff
L must be simple (see Def. 8.1.4). The EL equations to degree 4 are satisfied for the

same effective potentials if the effective scalar potentials are set to zero,

Y eff = Y . (8.3.7)

Proof. We rewrite (7.3.7) and (7.3.8) in terms of the effective potentials. Accord-

ing to Lemma 8.2.3, Ỳ l
L is independent of UR, and thus β and γ can be expressed in

terms of Y eff
l , the Abelian potentials AV , As in (7.2.63), and the non-Abelian effective

potential Aeff
L in the lepton block. Furthermore, (7.3.7) and (7.3.8) can be satisfied

by local relations between the effective potentials only if the non-Abelian effective
gauge fields coincide in the quark and lepton blocks. This yields the effective chiral
gauge group (8.3.6) and the form of the corresponding potentials in (8.3.4) and (8.3.5).
Lemma 8.1.5 shows that the gauge conditions (8.0.3) are satisfied if and only if the
field tensor corresponding to Aeff

L is simple.
According to Lemmas 8.1.2 and 8.2.2, the mixing matrices are constant. Using

Lemma 8.1.3, we obtain (8.3.1) and (8.3.2) in the quark blocks. The corresponding
relations in the lepton block are obtained similarly from (7.3.2) and (7.3.4). Finally,
(8.3.7) follows immediately from Lemma 8.1.3 and an analogous perturbation argu-
ment in the lepton block.

Note that (8.3.1) and (8.3.2) are not satisfied if WL is equal to the identity matrix.
Thus the EL equations imply that the off-diagonal components of the effective gauge
fields involve a non-trivial mixing of the generations. The fact that we may set Y eff

equal to Y , (8.3.7), means that the effective scalar potentials are irrelevant for the
derivation of the effective gauge group. But this does not answer the question whether
effective scalar potentials may occur in the system or not; to this end one must analyze
the EL equations to lower degree on the light cone.

Finally we point out that Theorem 8.3.1 only gives necessary conditions for the
effective potentials. But it is to be expected the analysis of the EL equations to degree
3 will give further constraints for the effective potentials. Taking this into account,
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the results of Theorem 8.3.1 are in perfect agreement with physics: The SU(3)q and
SU(2)effL can be identified with the strong and weak gauge groups, respectively. The
coupling of the corresponding gauge potentials to the fermions is exactly as in the
standard model. The SU(3)q is a free gauge group (see the discussion on page 152),
and this implies that the corresponding gauge fields are necessarily massless. However,
the SU(2)effL is spontaneously broken. The electromagnetic potential corresponds to a

linear combination of the potentials of the subgroup SU(2)effL ×U(1)R×U(1)q×U(1)l ⊂
Geff, characterized by the property that it is a traceless vector potential. In order to
make the connection to the standard model more precise, it remains to explain why
only this particular linear combination occurs, and furthermore one must analyze the
masses of the spontaneously broken gauge fields in the resulting field equations. To
answer these questions, one needs to analyze the EL equations to degree 3 on the light
cone; this is an interesting project for the future.



APPENDIX A

Connection to the Fock Space Formalism

In this appendix it is shown that for an observer who is making measurements
only in a subsystem of the whole physical system, the description of a many-fermion
system with the fermionic projector is equivalent to the fermionic Fock space formalism,
provided that the number of fermions of the whole system (including the particles of
the sea) is infinite. The following consideration applies in the same way to either a
space-time continuum or to discrete space-time. Before beginning we point out that
the action principle, from which the fundamental physical equations can be deduced,
involves the fermions only via the Dirac action <Ψ, (i∂/+B−m)Ψ>. For the formulation
of the Dirac action one only needs on the fermionic Fock space the time/position
operators and the operator ∂/, which are all one-particle operators. Therefore, we can
say that many-particle operators (like for example in the four-fermion coupling of the
Fermi model) are not essential for the formulation of the quantum field theory of the
standard model. Having this in mind, we may here restrict attention to one-particle
operators1.

Let P be a fermionic projector acting on the vector space H. The one-particle
observables correspond to operators O on H. Our subsystem is described by a non-
degenerate subspace K ⊂ H; we decompose H as a direct sum H = K ⊕ L with
L = K⊥. We assume that the observables are localized in K; i.e. they are trivial on
L,

O|L = 0|L . (A.1)

We choose a (properly normalized) basis Ψ1, . . . ,Ψn of the subspace P (H) ⊂ H, and
decompose the states Ψj in the form

Ψj = ΨK
j +ΨL

j with ΨK
j ∈ K,ΨL

j ∈ L.
Substituting into (3.2.1), we obtain for the many-particle wave function the expression

Ψ =
∑

π∈P(n)

(−1)|π|



∧

j∈π

ΨK
j



 ∧




∧

j 6∈π

ΨL
j



 , (A.2)

where P(n) denotes the set of all subsets of {1, . . . , n}. For measurements in our
subsystem, we must calculate the expectation value <Ψ|O|Ψ>F

2, where the operators

1
Online version: For the description of entanglement, it is indeed necessary to consider two-particle

observables; see the paper “Entanglement and second quantization in the framework of the fermionic
projector” (arXiv:0911.0076 [math-ph]).

2We remark for clarity that this expectation value does not coincide with that of a measurement
in nonrelativistic quantum mechanics. Namely, in the continuum, the scalar product <.|.> involves
a time integration. But one can get a connection to nonrelativistic measurements by considering
operators O with a special time dependence (which, for example, act on the wave functions only in a
short time interval [t, t+∆t]).
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O act on the Fock space according to

O(Ψ1∧ · · · ∧Ψn) = (OΨ1)∧ · · · ∧Ψn + Ψ1∧ (OΨ2) · · · ∧Ψn + · · ·+ Ψ1∧ · · · ∧ (OΨn) ,

and where <.|.>F is the scalar product on the Fock space, induced by the scalar
product <.|.> on H. It is useful to rewrite the expectation value with the statistical
operator S, i.e.

<Ψ|O|Ψ>F = trF (S O) with S = |Ψ><Ψ|F ,
where trF denotes the trace in the Fock space. Using (A.1), we can take the partial
trace over L and obtain, applying (A.2),

<Ψ|O|Ψ>F = trFK
(SK O) with (A.3)

SK =

n∑

k=0

∑

π, π′ ∈ P(n),
#π = #π′ = k

cπ,π′ | ∧i∈π ΨK
i >< ∧j∈π′ ΨK

j |FK
(A.4)

cπ,π′ = (−1)|π|+|π′| < ∧i 6∈π ΨL
i | ∧j 6∈π′ ΨL

j >F ,

where trFK
is the trace in the Fock space FK = ⊕∞k=0 ∧k K generated by K. Thus

our subsystem is described by a statistical operator SK on FK , which is composed
of mixed states consisting of different numbers of particles. Since the constants cπ,π′

depend on the wave functions ΨL outside our subsystem, we can consider them as
arbitrary numbers.

In the limit when the number n of particles of the whole system tends to infinity,
(A.4) goes over to a statistical operator of the form

SK =
∞∑

k=0

∞∑

α,β=0

c
(k)
αβ |Ψ(k)

α ><Ψ
(k)
β |FK

(A.5)

with arbitrary complex coefficients c
(k)
αβ and k-particle states Ψ

(k)
α ∈ F k

K . This statistical

operator differs from a general statistical operator SK
gen in that it is diagonal on the

k-particle subspaces (i.e. that the wave functions in the “bra” and in the “ket” of
(A.5) are both k-particle states); more precisely, SK

gen has, compared to (A.5), the
more general form

SK
gen =

∞∑

k,l=0

∞∑

α,β=0

c
(k,l)
αβ |Ψ(k)

α ><Ψ
(l)
β |FK

. (A.6)

We remark for clarity that a pure state of the Fock space Ψ ∈ FK has a decomposition
Ψ =

∑∞
k=0 λkΨ

(k), and thus the corresponding statistical operator is

S = |Ψ><Ψ|FK
=

∞∑

k,l=0

λk λl |Ψ(k)><Ψ(l)|FK
.

This statistical operator is a special case of (A.6), but it is not of the form (A.5).
The difference between (A.5) and (A.6) becomes irrelevant if we keep in mind

that all physically relevant observables commute with the particle number operator.
Namely in this case, every expectation value reduces to the sum of the expectation
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values in the k-particle Fock spaces,

trFK
(SK

gen O) =

∞∑

k,l=0

∞∑

α,β=0

c
(k,l)
αβ <Ψ

(l)
β | O |Ψ(k)

α >FK

=

∞∑

k=0

∞∑

α,β=0

c
(k,k)
αβ <Ψ

(k)
β | O |Ψ(k)

α >FK
.

If we choose the coefficients c
(k)
αβ in (A.5) to be c

(k)
αβ = c

(k,k)
αβ , these expectation values

are also obtained from the statistical operator SK ,

trFK
(SK

gen O) = trFK
(SK O) .

We conclude that it is no loss of generality to describe the subsystem by the statistical
operator SK .





APPENDIX B

Some Formulas of the Light-Cone Expansion

This appendix is a compilation of some formulas of the light-cone expansion. More
precisely, we list the phase-free contribution to the light-cone expansion of the Green’s
functions (cf. Def. 2.5.5). According to Def. 2.5.5 and Theorem 2.5.6, the light-cone
expansion of the Green’s functions is immediately obtained by inserting ordered expo-
nentials into the line integrals. Furthermore, as explained after (2.5.45), the formulas
can be applied directly to the fermionic projector; they then describe the singularities
of P̃ (x, y) on the light cone. Without loss of generality, we restrict attention to the left
handed component of the Green’s functions. We compute precisely those contributions
which will be of relevance in Appendix G and in Chapters 6–8. The following formulas
were all generated by a computer program, see [F6] for details.

We begin with the perturbation by a chiral perturbation to first order. The phase-
free contribution (denoted by a corresponding superscript on the equal sign) is

χL (−s (χLA/R + χRA/L) s)(x, y)
phase-free

= ξ/O((y − x)0) +O((y − x)2)

+χL S
(0)(x, y) ξi

∫ y

x
dz [0, 1 | 0] (∂/ALi) (B.1)

−χL S
(0)(x, y)

∫ y

x
dz [0, 0 | 0] A/L (B.2)

+χL S
(0)(x, y) A/L(x) (B.3)

+
1

2
χL S

(0)(x, y) ξ/

∫ y

x
dz [0, 0 | 0] (∂/A/L) (B.4)

−χL S
(0)(x, y) ξ/

∫ y

x
dz [1, 0 | 0] (∂iALi) (B.5)

+
1

2
χL S

(0)(x, y) ξ/ ξi
∫ y

x
dz [0, 0 | 1] ( ALi) (B.6)

+χL S
(1)(x, y) ξi

∫ y

x
dz [0, 1 | 1] (∂/ ALi) (B.7)

+χL S
(1)(x, y)

∫ y

x
dz [0, 2 | 0] ( A/L) (B.8)

−2χL S
(1)(x, y)

∫ y

x
dz [0, 0 | 1] (∂/∂iALi) , (B.9)

where again ξ ≡ (y − x). The notation ξ/ O((y − x)2) means that we leave out all
contributions which are of the order O((y − x)0) and have a leading factor ξ/. This
formula has the disadvantage that it contains partial derivatives of the chiral potential;
it would be better for physical applications to work instead with the Yang-Mills field
tensor and the Yang-Mills current. Therefore, we introduce left and right handed
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gauge-covariant derivatives DL/R,

DL
j =

∂

∂xj
− iALj , DR

j =
∂

∂xj
− iARj ,

and define the corresponding field tensor and current as usual by the commutators

F c
jk = i

[
Dc

j , D
c
k

]
, jcl =

[

Dc k, F c
lk

]

(c = L or R). (B.10)

In the case of an Abelian gauge field, this formula reduces to the familiar formulas for
the electromagnetic field tensor and current,

F c
jk = ∂jAc k − ∂kAc j , jcl = ∂lkA

k
c − Ac l .

Notice, however, that in the general case of a system of Dirac seas, (B.10) involves
quadratic and cubic terms in the potential.

By substituting (B.10) into (B.1–B.9) and manipulating the line integrals with
integrations by parts, one can rewrite the phase-free contribution in a way where the
linear terms in the potential are gauge invariant. For example, we can combine (B.1–
B.3) by transforming the line integrals as

ξk
∫ y

x
dz [0, 1 | 0] (∂/ALk) = ξk

∫ y

x
dz [0, 1 | 0] (γjFL

jk + ∂kA/L) + O(A2
L)

= ξk
∫ y

x
dz [0, 1 | 0] γjFL

jk − A/L(x) +

∫ y

x
dz [0, 0 | 0] A/L + O(A2

L) . (B.11)

This procedure yields (in the non-Abelian case) quadratic and cubic terms in the
potential which are not gauge invariant. Fortunately, these gauge-dependent terms are
all compensated by corresponding contributions to the higher order Feynman diagrams.
We thus obtain

χL

∞∑

k=0

((−s (χLA/R + χRA/L))
k s)(x, y)

phase-free
= ξ/O((y − x)0) +O((y − x)2)

+χL S
(0)(x, y) ξi

∫ y

x
dz [0, 1 | 0] γlFL

li

+
1

4
χL S

(0)(x, y) ξ/

∫ y

x
dz [0, 0 | 0] γjγk FL

jk

−1

2
χL S

(0)(x, y) ξ/ ξi
∫ y

x
dz [0, 0 | 1] jLi

−iχL S
(0)(x, y) ξ/ ξiξ

j

∫ y

x
dz1 [0, 1 | 1] FL

kj

∫ y

z1

dz2 [0, 1 | 0] F ki
L

+χL S
(1)(x, y) ξi

∫ y

x
dz [0, 1 | 1] (∂/jLi )

+χL S
(1)(x, y)

∫ y

x
dz [0, 2 | 0] jLk γk

−iχL S
(0)(x, y) ξ/ ξiξ

j

∫ y

x
dz1 [0, 1 | 1] FL

kj

∫ y

z1

dz2 [0, 1 | 0] F ki
L

+iχL S
(1)(x, y) ξiξj

∫ y

x
dz1 [0, 3 | 0] γk FL

kj

∫ y

z1

dz2 [0, 0 | 1] jLi
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+iχL S
(1)(x, y) ξiξj

∫ y

x
dz1 [0, 2 | 1] jLj

∫ y

z1

dz2 [0, 1 | 0] γl FL
li

−2iχL S
(1)(x, y) ξiξ

j

∫ y

x
dz1 [0, 2 | 1] FL

mj

∫ y

z1

dz2 [0, 2 | 0] (∂/Fmi
L )

−2iχL S
(1)(x, y) ξiξ

j

∫ y

x
dz1 [0, 2 | 1] (∂/FL

kj)

∫ y

z1

dz2 [0, 1 | 0] F ki
L

+iχL S
(1)(x, y) ξiξj

∫ y

x
dz1 [0, 2 | 1] γkFL

kj

∫ y

z1

dz2 [0, 2 | 0] jLi

− i
2
χL S

(1)(x, y) ξi
∫ y

x
dz1 [0, 2 | 0] γjFL

ji

∫ y

z1

dz2 [0, 0 | 0] γkγlFL
kl

− i
2
χL S

(1)(x, y) ξi
∫ y

x
dz1 [0, 2 | 0] γjγkFL

jk

∫ y

z1

dz2 [0, 1 | 0] γlFL
li

+2iχL S
(1)(x, y) ξi

∫ y

x
dz1 [0, 3 | 0] γjFL

jk

∫ y

z1

dz2 [0, 1 | 0] F ki
L

−2iχL S
(1)(x, y) ξj

∫ y

x
dz1 [0, 1 | 1] FL

ij

∫ y

z1

dz2 [0, 1 | 0] γkF ki
L

−2χL S
(1)(x, y) ξiξ

jξk

×
∫ y

x
dz1 [0, 4 | 0] γlFL

lk

∫ y

z1

dz2 [0, 1 | 1] FL
mj

∫ y

z2

dz3 [0, 1 | 0] Fmi
L

−2χL S
(1)(x, y) ξiξ

jξk

×
∫ y

x
dz1 [0, 3 | 1] γlFL

lk

∫ y

z1

dz2 [0, 3 | 0] FL
mj

∫ y

z2

dz3 [0, 1 | 0] Fmi
L

−2χL S
(1)(x, y) ξiξ

jξk

×
∫ y

x
dz1 [0, 3 | 1] FL

mk

∫ y

z1

dz2 [0, 3 | 0] γlFL
lj

∫ y

z2

dz3 [0, 1 | 0] Fmi
L

−2χL S
(1)(x, y) ξiξjξ

k

×
∫ y

x
dz1 [0, 3 | 1] FL

mk

∫ y

z1

dz2 [0, 3 | 0] Fmj
L

∫ y

z2

dz3 [0, 1 | 0] γlFL
li .

We call this formulation of the phase-free contributions purely in terms of the Yang-
Mills field tensor and the Yang-Mills current the gauge invariant form of the light-cone
expansion.

It remains to consider the scalar/pseudoscalar perturbation; i.e. we must study
how the dynamic mass matrices YL/R(x) show up in the light-cone expansion. We
begin with the case of a single mass matrix. To first order in the external potential,
the corresponding Feynman diagram has the light-cone expansion

χL m (−s (−χLYR − χRYL) s)(x, y)

phase-free
=

1

2
χL mS(0)(x, y) ξ/

∫ y

x
dz [0, 0 | 0] (∂/YL)

+χL mS(0)(x, y) YL(x) + O((y − x)0) . (B.12)

The higher orders in the chiral potentials yield no phase-free contributions. The next
orders in the mass parameter are treated similarly. The contributions quadratic in m
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are

χL m
2

∞∑

n1,n2,n3=0

((−s A/L)n1 s YL s (−A/R s)n2 YR s (−A/R s)n3)(x, y)

phase-free
=

i

2
χL m

2 S(0)(x, y) ξ/

∫ y

x
dz [0, 0 | 0] YL YR

+iχL m
2 S(1)(x, y)

∫ y

x
dz [0, 1 | 0] YL γj(DjYR)

+iχL m
2 S(1)(x, y)

∫ y

x
dz [0, 1 | 0] γj(DjYL) YR

−iχL m
2 S(1)(x, y) YL

∫ y

x
dz [0, 0 | 0] γj(DjYR)

+χL m
2 S(1)(x, y) ξi

∫ y

x
dz1 [0, 2 | 0] γjFL

ji

∫ y

z1

dz2 [0, 0 | 0] YL YR

+χL m
2 S(1)(x, y) ξi

∫ y

x
dz1 [0, 2 | 0] YL YR

∫ y

z1

dz2 [0, 1 | 0] γjFL
ji

+ξ/O((y − x)0) +O((y − x)2) ,
whereas there is only one term cubic in m,

χL m
3

∞∑

n1,n2,n3,n4=0

((−s A/L)n1 s YL s (−A/R s)n2 YR s (−A/L s)n3 YL s (−A/R s)n4)(x, y)

phase-free
= χL m

3 S(1)(x, y) YL

∫ y

x
dz [0, 0 | 0] YR YL

+ ξ/O((y − x)0) +O((y − x)2) .
To the order ∼ m4 and higher all contributions are on the light cone of the or-
der ξ/O((y − x)0) +O((y − x)2).

The above Feynman diagrams completely characterize the Green’s functions to the
order O((y − x)0) on the light cone. Notice that in agreement with Theorem 2.5.6 we
get only a finite number of phase-free contributions.



APPENDIX C

Normalization of Chiral Fermions

In this appendix we describe a method for normalizing chiral fermions. The main
difficulty is that for a proper normalization one needs to give the chiral fermions a small
rest mass; this will be discussed in Section C.1 for a single Dirac sea in Minkowski space.
In Section C.2 we develop a method for analyzing the normalization of chiral fermions
with a small generalized “mass,” whereas Section C.3 gives the general construction
including the infrared regularization and the interaction.

C.1. Massive Chiral Fermions – Preparatory Discussion

Before introducing the infrared regularization, we need to understand how a chiral
Dirac sea can be normalized in infinite volume using some kind of “δ-normalization.”
To this end we consider a non-interacting left-handed fermionic projector in Minkowski
space,

P (x, y) = χL tm(x, y)|m=0 , (C.1.1)

where we set

tm =
1

2
(pm − km)

with pm and km according to (2.2.4, 2.2.5). Naively, products of this fermionic projec-
tor vanish due to chiral cancellations,

P 2(x, y) =

∫

d4z P (x, z) P (z, y) =

∫

d4z χL t0(x, z) χL t0(z, y)

=

∫

d4z χL χR t0(x, z) t0(z, y)
formally

= 0 . (C.1.2)

However, this formal calculation has no meaning in the formalism of causal perturba-
tion theory §2.2 because in this formalism we are not allowed to multiply Dirac seas of
the same fixed mass. Instead, we must treat the masses as variable parameters. Thus
before we can give a mathematical meaning to products of chiral Dirac seas, we must
extend the definition of a chiral Dirac sea to non-zero rest mass.

Giving chiral Dirac particles a mass is a delicate issue which often leads to confusion
and misunderstandings. Therefore, we discuss the situation in the example (C.1.1) in
detail. In momentum space, the distribution tm, m ≥ 0, takes the form

tm(k) = (k/ +m) δ(k2 −m2) Θ(−k0) .
On the mass shell, the range of the (4 × 4)-matrix k/ + m is two-dimensional; this
corresponds to a twofold degeneracy of the eigenspaces of the Dirac operator (k/−m)
for any fixed k. If m = 0, the Dirac equation splits into two separate equations for the
left- and right-handed component of the spinor, and this makes it possible to project
out half of the eigenvectors simply by multiplying by χL,

P (k) = χL k/ δ(k
2) Θ(−k0) . (C.1.3)
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If m > 0, this method cannot be applied because the left- and right-handed subspaces
are no longer invariant. In particular, the product χLtm for m > 0 is not Hermitian
and is not a solution of the Dirac equation. Nevertheless, we can project out one of
the degenerate eigenvectors as follows. For given k on the lower mass shell we choose
a vector q with

kq = 0 and q2 = −1 . (C.1.4)

A short calculation shows that

[tm(k), ρq/] = 0 and (ρq/)2 = 11

(where ρ is again the pseudoscalar matrix (1.2.13)). This means that the matrix ρq/
has eigenvalues ±1, and that the Dirac equation is invariant on the corresponding
eigenspaces. Projecting for example onto the eigenspace corresponding to the eigen-
value −1 gives

Pm(k) :=
1

2
(11− ρq/) (k/+m) δ(k2 −m2) Θ(−k0) . (C.1.5)

Thus, similar to the procedure in the massless case (C.1.3), Pm is obtained from tm by
projecting out half of the Dirac eigenstates on the lower mass shell. But in contrast
to (C.1.3), the construction of Pm depends on the vector field q, which apart from
the conditions (C.1.4) can be chosen arbitrarily. A short calculation shows that Pm is
idempotent in the sense that

Pm Pm′ = δ(m−m′) Pm . (C.1.6)

The distribution (C.1.5) can be regarded as a generalization of the chiral Dirac
sea (C.1.3) to the massive case. In order to make this connection clearer, we now show

that (C.1.5) reduces to (C.1.3) in the limit mց 0. Thus, for fixed ~k 6= 0 and variable

m > 0, we let k be on the lower mass shell, k(m) = (−
√

|~k|2 +m2, ~k), and choose q(m)

such that (C.1.4) is satisfied. A simple example for q is

q(m) =
1

m

(

−|~k|,
√

|~k|2 +m2
~k

|~k|

)

. (C.1.7)

In this example, k and mq coincide as mց 0; more precisely,

k −mq = O(m2) .

This relation holds for a large class of functions q(m). Therefore, it seems general
enough to concentrate on the situation where

k −mq = m2 v with v(m) = O(m0) . (C.1.8)

Solving this relation for q and substituting into (C.1.5) gives

Pm(k) =
1

2

(

11− ρ k/

m
+mρv/

)

(k/ +m) δ(k2 −m2) Θ(−k0) . (C.1.9)

Using that on the mass shell k/(k/ +m) = m(k/ +m), we get

Pm(k) =
1

2
(11− ρ+mρv/) (k/ +m) δ(k2 −m2) Θ(−k0) . (C.1.10)

If now we take the limit mց 0, we obtain precisely (C.1.3), i.e.

lim
mց0

Pm = P (C.1.11)
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with convergence in the sense of distributions. This calculation shows that (C.1.5)
indeed includes (C.1.3) as a limiting case and that the dependence on q drops out as
mց 0.

The distribution (C.1.5) gives a possible definition of a massive chiral Dirac sea.
However, it would be too restrictive to use only (C.1.5) as the basis of our construction,
because there are other common ways to give chiral Dirac particles a rest mass. These
alternatives are more general than (C.1.5) in that the wave functions are no longer
solutions of the Dirac equation. To give a simple example, one could describe a massive
left-handed Dirac sea for m > 0 by

Pm(k) =
(

χL k/ +
m

4

)

δ

(

k2 − m2

4

)

Θ(−k0) . (C.1.12)

This distribution has the advantage over (C.1.5) that it is Lorentz invariant, but it is
clearly not a solution of the Dirac equation. As mց 0, we again recover the massless
chiral Dirac sea (C.1.1). We compute the operator product PmPm′ in momentum
space,

(Pm Pm′)(k) =
(

χL k/ +
m

4

)(

χL k/ +
m′

4

)

δ

(

k2 − m2

4

)

δ

(

k2 − m′2

4

)

Θ(−k0)

= δ

(
m2

4
− m′2

4

)(
m+m′

4
χL k/+

mm′

16

)

δ

(

k2 − m2

4

)

Θ(−k0)

= δ(m−m′)
(

χL k/ +
m

8

)

δ

(

k2 − m2

4

)

Θ(−k0) ,

where in the last step we used that m,m′ > 0. Note that in the last line the sum-
mand m/8 appears (instead of the summand m/4 in (C.1.12)), and therefore Pm is
not idempotent in the sense (C.1.6). On the other hand, one can argue that (C.1.6) is
a too strong normalization condition, because we are interested in the situation when
the masses of the chiral particles are arbitrarily small, and thus it seems sufficient
that (C.1.6) should hold in the limit m,m′ ց 0. In this limit, the problematic sum-
mands m/4 and m/8 both drop out, and thus we can state the idempotence of Pm as
follows,

lim
m,m′ց0

(
Pm Pm′ − δ(m−m′) Pm

)
= 0 . (C.1.13)

The above example shows that, in order to have more flexibility to give the chiral
Dirac particles a mass, it is preferable to work with the weaker normalization condi-
tion (C.1.13) instead of (C.1.6). Comparing with the naive calculation (C.1.2), one sees
that introducing the mass changes the behavior of the operator products completely,
even if the masses are arbitrarily small. Therefore, we refer to the limit m,m′ ց 0
in (C.1.13) as the singular mass limit.

For the correct understanding of the singular mass limit, it is important to observe
that, in contrast to operator products as considered in (C.1.13), the formalism of
the continuum limit is well-behaved as m ց 0. Namely, in the continuum limit we
consider an expansion in powers of m. The different orders in m have a different
singular behavior on the light cone. In particular, to every order on the light cone only
a finite number of orders in m contribute. Thus to every order on the light cone, the
m-dependence is polynomial and therefore smooth. Expressed in terms of the kernel,
the limit m ց 0 is singular when we form the product P (x, z) P (z, y) and integrate
over z (as in (C.1.2)). But if we take the closed chain P (x, y) P (y, x) and consider
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the singularities on the light cone, the limit mց 0 is regular and well-behaved. This
justifies why in Chapters 6–8 it was unnecessary to give the neutrinos a mass and
take the limit mց 0 afterwards. We could treat the neutrino sector simply as being
composed of massless chiral particles. In particular, the chiral cancellations in the
formalism of the continuum limit are consistent with the singular mass limit.

Our next goal is to develop the mathematical framework for analyzing the singular
mass limit for a fermionic projector with interaction. Clearly, this framework should
be general enough to include the examples (C.1.5) and (C.1.12). Thus we first return
to (C.1.5). After writing Pm in the form (C.1.10), it seems natural to interpret the
leading factor as a generalization of the chiral asymmetry matrix X. This is indeed
convenient in the vacuum, because introducing the operator Xm by

Xm(k) =
1

2
(11− ρ−mρv/(k)) , (C.1.14)

we obtain in analogy to the corresponding formulas for massless chiral particles that

Pm = Xm tm = tm X∗m .

Unfortunately, the operator Xm does not seem to be useful in the case with interaction.
The reason is that Xm depends on the momentum k, and this leads to the following
serious difficulties. First, the k-dependence of Xm makes it very difficult to satisfy the
analogue of the causality compatibility condition

X∗m (i∂/+ B −m) = (i∂/+ B −m)Xm .

As a consequence, it is in general not possible to commute the chiral asymmetry matrix
through the operator products of the causal perturbation expansion; in particular
Xm t̃m and t̃m Xm do in general not coincide (where t̃m is the interacting Dirac sea
as defined via the causal perturbation expansion). Even if we assume that there is
a canonical definition of the fermionic projector Pm obtained by suitably inserting
factors of Xm and X∗m into the operator product expansion for t̃m, we cannot expect
that the correspondence to the massless Dirac sea is respected; i.e. in the case with
interaction,(C.1.11) will in general be violated. In order to explain how this comes
about, we point out that our argument leading to (C.1.8) was based on the assumption
that k converges to the mass cone as m ց 0. More precisely, if limmց0 k(m) is not
on the mass cone, the function v will diverge like v(m) ∼ m−2, and so Xm(k) will not
converge to X as mց 0. Thus limmց0Xm = X only if in this limit all the momenta
are on the mass cone. But in the causal perturbation expansion off-shell momenta also
appear (note that the Green’s functions are non-zero away from the mass cone). This
means that in the limit m ց 0, the momenta are in general not on the lower mass
cone, and so Xm will not converge to X. Because of these problems, we conclude that
it is not admissible to first perform the perturbation expansion for tm and to multiply
by Xm afterwards. Instead, the k-dependence of Xm must be taken into account in
the perturbation expansion.

At this point it is very helpful that we stated the normalization condition for a chi-
ral Dirac sea in the form (C.1.13). The key observation is that if we substitute (C.1.10)
into (C.1.13), compute the operator product and take the limits m,m′ ց 0, all con-
tributions to (C.1.10) which are at least quadratic in m drop out. More precisely, if
we expand Pm in the form

Pm =
(

χL k/ +
m

2
(11 − ρ) +

m

2
ρv/k/ +O(m2)

)

δ(k2 −m2) Θ(−k0) , (C.1.15)
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the error term is of no relevance for the normalization condition (C.1.13). Taking the
inner product of (C.1.8) with k and using the first part of (C.1.4) together with the
relation k2 = m2, one sees that vk = 1. We use this identity in (C.1.15) to obtain

Pm =
(

χL k/ +
m

2
+

m

4
ρ [v/, k/]

)

δ(k2 −m2) Θ(−k0) . (C.1.16)

Writing Pm in this form has the advantage that we can pull out the chiral projectors
by setting

Pm =
1

2
(X t̃m + t̃m X∗) (C.1.17)

with X = χL and

t̃m =
(

k/+m+
m

2
ρ [v/, k/]

)

δ(k2 −m2) Θ(−k0) .

Again neglecting terms quadratic in m, t̃m is a solution of the Dirac equation,

(i∂/+ B0 −m) t̃m = 0 , (C.1.18)

where

B0(k) = −m
2
ρ [v/, k/] . (C.1.19)

The formulation of the vacuum (C.1.17) and (C.1.18, C.1.19) has the advantage that
the interaction can easily be introduced. Namely, in order to describe the interaction
we simply insert the external potentials into the Dirac equation (C.1.18). In this way,
the problems mentioned after (C.1.14) get resolved. Instead of working with a k-
dependent chiral asymmetry matrix Xm, the k-dependent vector field v in (C.1.10) is
now taken into account by a perturbation B0 of the Dirac equation, making it possible
to apply perturbative methods in the spirit of §2.2.

An obvious technical problem in this approach is that the perturbation operator
B0, (C.1.19), is not of a form previously considered in that it is nonlocal, is not causality
compatible and does not decay at infinity. This problem will be analyzed in detail in
Section C.2. What makes the problem tractible is that B0 tends to zero as mց 0 and
is homogeneous, meaning that its kernel B0(x, y) depends only on the difference x− y.

Let us verify in which generality the above method (C.1.17, C.1.18) applies. In the
example (C.1.12), we can write the chiral Dirac sea in the form (C.1.17) with

t̃m =
(

k/ +
m

2

)

δ

(

k2 − m2

4

)

Θ(−k0) , (C.1.20)

and t̃m is a solution of the Dirac equation (C.1.18) with B0 = m/2. Thus in this case,
B0 is a homogeneous local operator. More generally, the method of pulling out the
chiral asymmetry (C.1.17) applies to any distribution Pm of the form

Pm(k) =
(
χL (odd) + (even) +O(m2)

)
δ(k2 − c m2) Θ(−k0) ,

where “(odd)” and “(even)” refer to a product of an odd and even number of Dirac
matrices, respectively (and c is a constant). Namely, the corresponding t̃m is

t̃m(k) =
(
(odd) + 2 (even) +O(m2)

)
δ(k2 − c m2) Θ(−k0) .

Hence the only restriction of the method (C.1.17, C.1.18) is that the right-handed odd
contribution to Pm should be of the order O(m2). For example, our method does not
apply to

Pm(k) =
(
χL k/+mχR f k/ +m+O(m2)

)
δ(k2 −m2) Θ(−k0)
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with a scalar function f(k), although in this case the normalization condition (C.1.13)
is satisfied. Dropping this restriction would make it necessary to give up (C.1.17) and
thus to treat the trace compatibility on a level which goes far beyond what we can
accomplish here. It is our view that assuming that the right-handed odd contribution
to Pm is of the order O(m2) is a reasonable technical simplification.

We close our discussion with a comment on the example (C.1.12). We saw above
that Pm can be written in the form (C.1.17) with t̃m according to (C.1.20), and that
t̃m is a solution of the Dirac equation (C.1.18) with the perturbation B0 = m/2. An
alternative point of view is that t̃m is a solution of the free Dirac equation of half the
mass,

(i∂/−M) t̃m = 0 with M =
m

2
. (C.1.21)

We refer to the method of considering a Dirac equation in which the mass parameter
is multiplied by a constant as the modified mass scaling. The modified mass scaling
has the advantage that one can satisfy the normalization conditions for chiral Dirac
seas (C.1.13) with Pm according to (C.1.17) and t̃m a solution of the free Dirac equa-
tion.

C.2. The Homogeneous Perturbation Expansion

In the above examples we saw that there are different methods for giving a chiral
Dirac sea a rest mass, which all correspond to inserting a suitable homogeneous oper-
ator B0 into the Dirac equation. Furthermore, we found that the terms quadratic in
the mass were irrelevant for the normalization of the Dirac sea, and this suggests that
it should be possible to treat B0 perturbatively. This is indeed possible, as we shall
now show for a general class of operators B0.

For simplicity, we again consider a single Dirac sea. We let B0 be a homogeneous
operator, whose further properties will be specified below. In order to keep track of
the different orders in perturbation theory, we multiply B0 by a small parameter ε > 0.
Exactly as in (2.6.10), we insert a parameter µ into the Dirac equation, which then
reads

(i∂/+ ε B0 − µ 11) Ψ = 0 .

Here the Dirac operator is homogeneous and is therefore diagonal in momentum space.
Thus for given momentum k, the Dirac equation reduces to the 4× 4 matrix equation

(k/+ ε B0(k)− µ) Ψ(k) = 0 . (C.2.1)

Our aim is to introduce and analyze the spectral projectors and Green’s functions of
the Dirac operator i∂/+ εB0, where we regard µ as the eigenvalue. In preparation, we
shall now analyze the matrix equation (C.2.1) for fixed k in a perturbation expansion
to first order in ε. If k2 6= 0, the matrix k/ is diagonalizable with eigenvalues and
spectral projectors

µ± = ±µk , E± =
1

2

(

11± k/

µk

)

, (C.2.2)

where we set µk =
√
k2 (if k2 < 0, our sign convention is such that µk lies in the

upper complex half plane). The eigenspaces ImE± are two-dimensional. The spectral
projectors E± become singular as k2 → 0. The reason is that on the mass cone
C := {k | k2 = 0}, the matrix k/ is not diagonalizable. We will address this problem
later and for the moment simply assume that k2 6= 0. We next consider the Dirac
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operator k/ + εB0 for small ε. Perturbing the eigenspaces Im E± gives rise to two-
dimensional invariant subspaces, and a standard calculation shows that the projectors
Eε
± onto these subspaces are given by

Eε
s = Es + s

ε

2µk
(Es B0 Es̄ + Es̄ B0 Es) + O(ε2) (C.2.3)

with s = ± and s̄ = −s = ∓. It remains to diagonalize the operator k/ + εB0 on the
invariant subspaces Im Eε

s . This is carried out in the next lemma. We choose three
(possibly complex) Lorentz vectors (qi)i=1,2,3 such that

〈qi, k〉 = 0 and 〈qi, qj〉 = −δij . (C.2.4)

More precisely, if k is time-like, we choose the (qi) as a real orthonormal basis of the
space-like hypersurface <k>⊥. If on the other hand q is space-like, we choose q1 and q2
real and space-like, whereas q3 is time-like and imaginary. We use the vector notation
~q = (q1, q2, q3) and introduce the matrices Σ1,2,3 by

~Σ = ρ ~q/ . (C.2.5)

Lemma C.2.1. Suppose that k2 6= 0 and that for small ε, the matrix k/ + εB0 is
diagonalizable. Then its eigenvalues (µas)s=±,a=1/2 are given by

µ
1/2
+ = µk + ε (ν+ ± τ+) + O(ε2) (C.2.6)

µ
1/2
− = −µk + ε (ν− ∓ τ−) + O(ε2) , (C.2.7)

where

νs =
1

2
Tr (Es B0) (C.2.8)

~τs =
1

2
Tr(~Σ Es B0) (C.2.9)

τs =
√

(τ1s )
2 + (τ2s )

2 + (τ3s )
2 . (C.2.10)

The corresponding spectral projectors can be written as

Ea
s = Πa Es + s

ε

2µk
(Πa Es B0 Es̄ +Es̄ B0 Πa Es) + O(ε2) (C.2.11)

with

Π1/2 =
1

2

(

11 ± 1

τs
~τs~Σ

)

. (C.2.12)

If ~τs = 0, the invariant subspace ImEε
s is an eigenspace to first order in ε; i.e.

(k/+ εB0)|Im Eε
s

= (s µk + ε νs) 11|Im Eε
s
+ O(ε2) .

Proof. We restrict attention to the invariant subspace ImEε
+; for E

ε
− the proof is

similar. A short calculation using (C.2.5) and (C.2.2, C.2.4) shows that

[Σi, E+] = 0 , Σ2
i = 11 , Tr(Σi Σj E+) = 2 δij .

This means that the matrices Σi are invariant on Im E+, have the eigenvalues ±1 on
this subspace and are orthogonal. Thus by choosing a suitable basis (and possibly

after changing the orientation of ~Σ by exchanging Σ1 with Σ2), we can arrange that

the matrices ~Σ|Im E+ coincide with the Pauli matrices ~σ. To first order in ε, the eigen-
values are obtained by diagonalizing B0 on the unperturbed invariant subspace ImE+.
A short calculation shows that the 2× 2 matrix ν11+~τ~σ has the eigenvalues ν± τ and
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corresponding spectral projectors Π1/2 =
1
2 (11+

1
τ ~τ~σ) with τ =

√

(τ1)2 + (τ2)2 + (τ3)2.
This gives (C.2.6, C.2.7). Finally, (C.2.11) follows from standard perturbation theory
without degeneracies.

To avoid confusion, we point out that in general τs 6= |~τs| because (C.2.10) involves
ordinary squares instead of absolute squares. In particular, it is possible that τs = 0
although ~τs 6= 0. However, in this case the 2×2 matrix εB0|Im Es is not diagonalizable,
and thus the above lemma does not apply.

Remark C.2.2. In the proof of the previous lemma we used that the three matrices
Σi|Im E+ can be represented as the Pauli matrices σi. It is instructive to verify explicitly
that these matrices satisfy the correct commutation relations, for example

i

2
[Σ1, Σ2]|Im E+ = Σ3|Im E+ .

We now give this calculation in detail. By a choice of coordinates, we can arrange
that k = (ω, ~p) and q1/2 = (0, ~q1/2). The standard identity between the Dirac matrices

iσjk = ρ
2 ǫjklm σlm yields that (possibly after changing the orientation of ~Σ),

iq1/ q2/ =
ρ

2|~p| [k/, γ
0] . (C.2.13)

From the definition of ~Σ, (C.2.5), one sees that [Σ1,Σ2] = −2q1/ q2/ , and using (C.2.13)
as well as the identity [µk, γ

0] = 0, we conclude that

i

2
[Σ1, Σ2] = − ρ

2|~p| [k/ − µk, γ
0] . (C.2.14)

In order to simplify the rhs of (C.2.14) on Im E+, we use that E+ satisfies the
Dirac equation

(k/ − µk)E+ = 0 . (C.2.15)

This identity allows us to replace the commutator with k/−µk by an anti-commutator,

[k/ − µk, γ0] E+ = {k/− µk, γ0} E+ = (2ω − 2µkγ
0)E+ . (C.2.16)

Multiplying (C.2.15) by 2ω/µk and adding (C.2.16) gives

[k/ − µk, γ0] E+ =
2ω

µk

(

k/− µ2

ω
γ0
)

E+ .

Using this identity in (C.2.14) gives

i

2
[Σ1, Σ2]|Im E+ = ρ q3/ |Im E+

with

q3 = − ω

µk |~p|

(

k/ − µ2k
ω
γ0
)

,

and a short calculation shows that this vector q3 has indeed all the properties listed
after (C.2.4).

We shall now define the spectral projectors and Green’s functions corresponding
to the Dirac operator i∂/ + εB0. We denote the spectrum of the matrix in (C.2.1) by
σε(k),

σε(k) = σ(k/ + εB0(k)) .
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It is natural to define the spectrum σε of the Dirac operator i∂/+ εB0 as the union of
the σε(k)s,

σε =
⋃

k∈IR4

σε(k) .

As we saw above, the matrix k/ + εB0(k) in general is not diagonalizable, and thus
we cannot introduce the spectral projectors for all k pointwise. But since the diag-
onalizable matrices are dense in Gl(C4), it is reasonable to assume that the matrix
k/ + εB0(k) is diagonalizable for almost all (a.a.) k. Our formalism will involve mo-
mentum integrals where sets of measure zero are irrelevant. Therefore, we may in what
follows restrict attention to those k for which the matrix k/+ εB0(k) is diagonalizable.
Moreover, we shall assume that B0 is smooth and bounded. According to (C.2.2), the
spectrum of the unperturbed Dirac operator is σε=0 = R∪ iR. The next lemma shows
that the real part of the spectrum is stable under perturbations.

Lemma C.2.3. Suppose that k2 > 0. Then for ε sufficiently small, σε(k) ⊂ R.

Proof. Choosing coordinates such that k = (ω,~0), it is obvious that the eigenspaces
of k/ are definite, i.e.

≺Ψ |Ψ≻ 6= 0 for all eigenvectors Ψ.

By continuity, the eigenspaces of k/ + εB0(k) will also be definite for sufficiently small
ε. As a consequence, the corresponding eigenvalues are real, because

λ≺Ψ |Ψ≻ = ≺Ψ | (k/ + εB0) Ψ≻ = ≺(k/ + εB0) Ψ |Ψ≻ = λ≺Ψ |Ψ≻ .

Unfortunately, we have a-priori no control of how the imaginary part of the spec-
trum changes with ε. For this reason, it is most convenient to introduce the spectral
projectors for all µ ∈ C, such that they vanish identically for µ 6∈ σε. For the nor-
malization, we work with δ-distributions supported at one point in the complex plane.
More precisely, we set

δ2(z) = δ(Re z) δ(Im z)
∫

C

d2z · · · =

∫

IR2
d(Re z) d(Im z) · · · .

Def. C.2.4. For µ ∈ C and k ∈ R4 we set

pεµ(k) =
∑

s=±, a=1/2

Ea
s (k) δ

2(µ− µas(k)) (C.2.17)

kεµ(k) = ǫ(k0) pεµ(k) (C.2.18)

sεµ(k) =

∫

C

d2ν
PP

µ− ν p
ε
ν(k) . (C.2.19)

We also consider pεµ, k
ε
µ, and s

ε
µ as multiplication operators in momentum space.

In formal calculations, the operators pεµ and kεµ are solutions of the Dirac equation,

(i∂/+ εB0 − µ) pεµ = 0 = (i∂/+ εB0 − µ) kεµ ,
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and satisfy in analogy to (2.2.26–2.2.28) the multiplication rules

pεµ p
ε
µ′ = kεµ k

ε
µ′ = δ2(µ− µ′) pεµ (C.2.20)

pεµ k
ε
µ′ = kεµ p

ε
µ′ = δ2(µ − µ′) kεµ (C.2.21)

as well as the “completeness relation”
∫

C

pεµ d
2µ = 11 .

Using these identities in (C.2.19) yields that

(i∂/+ εB0 − µ) sεµ = 11 .

Thus on a formal level, the operators pεµ, k
ε
µ and sεµ are the spectral projectors and

Green’s functions of the Dirac operator, respectively. In order to give these operators
a mathematical meaning, we can proceed as follows. Let k be such that the matrix
k/ + εB0(k) can be diagonalized. Then the functional calculus for finite matrices (as
defined e.g. via the approximation by polynomials) allows us to introduce for f ∈ C1(C)
the matrix f(k/ + εB0(k)). Formally, we can write the functional calculus with the
spectral projectors,

∫

C

f(µ) pεµ(k) d
2µ = f(k/+ εB0(k)) . (C.2.22)

We can use this relation to give the integral in (C.2.22) a rigorous sense for a.a. k.
The same argument applies to kεµ. For s

ε
µ, we can similarly use the formal identity

∫

C

f(µ) sεµ(k) d
2µ

(C.2.19)
=

∫

C

g(µ) pεν(k) d
2µ (C.2.23)

with

g(ν) =

∫

C

PP

µ− ν f(µ) d
2µ .

In this way, one sees that the operators pεµ, k
ε
µ and sεµ are well-defined when evaluated

weakly in µ and k.
Under additional assumptions, we can make sense of the operators in Def. C.2.4

even for fixed real µ. We first justify the δ-distribution and the principal part.

Lemma C.2.5. Suppose that for a given interval I ⊂ R, the spectral projectors Ea
s

in (C.2.17) are bounded uniformly in µ ∈ I and k ∈ R4. Then for a.a. µ ∈ I, the
operators pεµ, k

ε
µ, and s

ε
µ are well-defined distributions in momentum space.

Proof. We write the Dirac equation (k/ + εB0(k))Ψ = 0 in the Hamiltonian form

ω Ψ = H(ω, µ) Ψ with H(ω, µ) = −γ0 (~k/+ εB0(ω,~k)− µ11)

and k = (ω,~k). In what follows we keep ~k fixed and consider this equation for variable
parameters ω, µ ∈ R. The matrix H(ω, µ) is Hermitian with respect to the positive
scalar product (.|.) = ≺.|γ0|.≻. Thus it can be diagonalized; we denote its eigenvalues
(counting multiplicities) by Ω1 ≤ · · · ≤ Ω4. The min-max principle (see [RS]) allows
us to write Ωn as

Ωn = min
U, dimU=n

max
u∈U, ‖u‖=1

‖Hu‖ ,
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where ‖.‖ is the norm induced by (.|.) and U denotes a subspace of C4. It follows from
this representation that the Ωn depend Lipschitz-continuously on ω and µ. Namely,

Ωn(ω) = min
U, dimU=n

max
u∈U, ‖u‖=1

‖H(ω) u‖

= min
U, dimU=n

max
u∈U, ‖u‖=1

‖H(ω′) u+ (H(ω)−H(ω′)) u‖

≤ min
U, dimU=n

max
u∈U, ‖u‖=1

(
‖H(ω′) u‖+ ‖H(ω) −H(ω′)‖ ‖u‖

)

= Ωn(ω
′) + ‖H(ω)−H(ω′)‖ .

Using that B0(k) is C1 with bounded derivatives, we obtain the estimate

‖H(ω)−H(ω′)‖ ≤ ‖εγ0 (B0(ω)− B0(ω′))‖ ≤ εc |ω − ω′|
and thus Ωn(ω) − Ωn(ω

′) ≤ εc|ω − ω′|. Exchanging the roles of ω and ω′ gives the
bound

|Ωn(ω)− Ωn(ω
′)| ≤ εc |ω − ω′| . (C.2.24)

A similar calculation shows that

|Ωn(µ)− Ωn(µ
′)| ≤ |µ − µ′| . (C.2.25)

We next consider for given n the equation

ω = Ωn(ω, µ) . (C.2.26)

The following argument shows that for sufficiently small ε, this equation has a unique
solution ωn, which depends Lipschitz-continuously on µ. Let φ (for fixed µ and n) be
the mapping

φ : R→ R : ω 7→ Ωn(ω, µ) .

According to (C.2.24),

|φ(ω) − φ(ω′)| = |Ωn(ω)− Ωn(ω
′)| ≤ εc |ω − ω′| .

Thus if we choose ε small enough, φ is a contraction. The Banach fixed point theorem
yields a unique fixed point ωn. The dependence on the parameter µ is controlled
by (C.2.24) and (C.2.25). Namely,

|ωn(µ)− ωn(µ
′)| = |Ωn(ωn(µ), µ)− Ωn(ωn(µ

′), µ′)|
≤ εc |ωn(µ)− ωn(µ

′)| + |µ− µ′|
and thus

|ωn(µ)− ωn(µ
′)| ≤ (1− εc)−1 |µ− µ′| . (C.2.27)

If we regard the spectral projector (C.2.17) as a distribution in ω, it is supported
at those ω for which the Dirac equation (k/+ εB0−µ)Ψ = 0 has a non-trivial solution.
These are precisely the solutions ωn of the equation (C.2.26). Thus we can write pεµ as

pεµ =
4∑

n=1

Ea
s (ωn) δ(ω − ωn) δ(Im µ)

∣
∣
∣
∣

∂ω(µ)

∂µ

∣
∣
∣
∣
, (C.2.28)

where the parameters a = a(n) and s = s(n) must be chosen such that µas(ωn) = µ.
Since ωn(µ) is Lipschitz (C.2.27), the factor |∂µωn(µ)| in (C.2.28) is well-defined for
a.a. µ and is uniformly bounded. Thus pεµ(ω) is a well-defined distribution for a.a. µ.
The same argument applies to kεµ.
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It remains to justify the Green’s function sεµ. We can write it in the Hamiltonian
framework as

sεµ =
PP

k/+ εB0 − µ 11
=

PP

ω −H(ω, µ)
γ0 .

Thus denoting the spectral projectors of H by (Fn)n=1,...,4, we have

sεµ(ω) =

4∑

n=1

PP

ω − Ωn(ω, µ)
Fn(ω, µ) γ

0 . (C.2.29)

According to (C.2.24), Ωn(ω) is Lipschitz and thus differentiable almost everywhere
with |∂ωΩn| ≤ εc. The spectral projectors Fn(ω) can also be chosen to be Lipschitz.
As a consequence, the principal part in (C.2.29) is well-defined for a.a. µ.

This lemma involves the strong assumption that the spectral projectors Ea
s must be

uniformly bounded. We shall now analyze this assumption in detail. As one sees
from (C.2.2) in the limit µ → 0, the spectral projectors can have poles and thus in
general are not uniformly bounded. Thus we need to impose an extra condition, which
we will formulate using the following notion.

Def. C.2.6. Let A be a 4× 4 matrix, which is Hermitian (with respect to ≺.|.≻).
A point µ ∈ σ(A) is called ε-definite if there is a subset σ+ ⊂ σ(A) such that

(i) The invariant subspace I+ corresponding to σ+ is definite.
(ii) dist(σ+, σ(A) \ σ+) > ε.

Lemma C.2.7. If µ ∈ σ(A) is ε-definite, the matrix A is diagonalizable on I+, and
its spectral projectors Ea are bounded by

‖Ea‖ ≤ c

(‖A‖
ε

)3

, (C.2.30)

where ‖.‖ is a matrix norm and c is a constant which depends only on the choice of
the norm ‖.‖.

Proof. It clearly suffices to consider a particular matrix norm. We introduce the

positive scalar product (.|.) = ≺.|γ0|.≻, let ‖.‖ = (.|.) 1
2 be the corresponding norm,

and set

‖A‖ = sup
Ψ with ‖Ψ‖=1

‖AΨ‖ .

We denote the projector onto I+ by E. E can be constructed with a functional calculus.
Namely, let P(z) be a complex polynomial satisfying the conditions

P|σ+ = 1 and P|σ− = 0 .

Since these are at most four conditions, P can be chosen to be of degree three,

P(z) =
3∑

n=0

cn z
n .

Furthermore, the fact that A is ε-definite can be used to bound the coefficients cn by

|cn| ≤
C

εn
(C.2.31)
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with a suitable constant C (this is easily seen from a scaling argument). The projector
E is given by E = P(A), and (C.2.31) gives the estimate

‖E‖ ≤
3∑

n=0

C

εn
‖A‖n ≤ C

(‖A‖
ε

)3

, (C.2.32)

where we used ε < ‖A‖ in the last step.
By definition, Im E = I+ is a definite subspace. We can assume without loss of

generality that it is positive, i.e.

≺Ψ |E Ψ≻ ≥ 0 for all Ψ.

The matrix A|I+ is Hermitian with respect to the positive scalar product ≺.|.≻|I+ .
Thus it has a spectral decomposition with eigenvalues µa and corresponding spectral
projectors Ea, a = 1, . . . , N ,

A|I+ =

n∑

a=1

µa Ea|I+ .

Extending the Ea by zero to the invariant subspace corresponding to σ(A) \ σ+, the
spectral projectors satisfy the relations

E∗a = Ea = E2
a ,

N∑

a=1

Ea = E , ≺Ψ |Ea Ψ≻ ≥ 0 for all Ψ,

where the star denotes the adjoint with respect to ≺.|.≻.
We introduce the operators F and Fa by

F = γ0 E , Fa = γ0 Ea .

It is straightforward to check that these operators have the following properties,

F+
a = Fa , (Ψ | Fa Ψ) ≥ 0 (C.2.33)

∑

a

Fa = F , (C.2.34)

where “+” denotes the adjoint with respect to (.|.). The relations (C.2.33) mean that
the Fa are positive self-adjoint operators on a Hilbert space. This makes it possible to
estimate the norm of the spectral projectors as follows,

‖Ea‖ = ‖γ0 Fa‖ ≤ ‖γ0‖ ‖Fa‖ ≤ ‖Fa‖ = sup
Ψ with ‖Ψ‖=1

(Ψ | Fa Ψ)

≤ sup
Ψ with ‖Ψ‖=1

N∑

b=1

(Ψ | Fb Ψ) = sup
Ψ with ‖Ψ‖=1

(Ψ | F Ψ)

= ‖F‖ = ‖γ0 E‖ ≤ ‖E‖ .
We now apply (C.2.32) to obtain (C.2.30).

Def. C.2.8. The Dirac operator i∂/ + εB0 has an ε-definite kernel if for all
µ ∈ (−ε, ε) and all k with µ ∈ σε(k), µ is in the ε-definite spectrum of the matrix
k/+ εB0(k).

Combining Lemma C.2.5 and Lemma C.2.7 gives the following result.
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Theorem C.2.9. If the Dirac operator i∂/ + εB0 has an ε-definite kernel, then
its spectral projectors and Green’s functions (as given in Def. C.2.4) are well-defined
distributions in momentum space for a.a. µ ∈ (−ε, ε) .

It remains to specify under which assumptions on B0 the Dirac operator has an
ε-definite kernel. We decompose B0 as

B0(k) = α 11 + iβ ρ+ v/+ ρ a/+
iρ

2
wij σ

ij . (C.2.35)

Here α, β, v, a, and w are real potentials (namely the scalar, pseudoscalar, vector,
axial, and bilinear potentials, respectively; clearly we assume w to be anti-symmetric).
We introduce the function ∆(k) as the following combination of the axial and bilinear
potentials,

∆2 = −k2 〈a, a〉 + 〈a, k〉2 −wijk
j wilkl . (C.2.36)

The first two summands can also be written as

− k2 〈a, a〉+ 〈a, k〉2 = −k2
(

a− 1

k2
〈a, k〉 k

)2

. (C.2.37)

For timelike k, the vector inside the round brackets is spacelike, and thus (C.2.37) ≥ 0.
Similarly, the vector wijk

j is spacelike for k timelike. We conclude that

∆(k) ≥ 0 if k2 > 0. (C.2.38)

Furthermore, ∆(q) vanishes on the mass cone C = {q2 = 0} if and only if q is collinear
to the vector a and is an eigenvector of w,

a = νq and wijq
j = λ qi (ν, λ ∈ R, q ∈ C). (C.2.39)

Expanding (C.2.36), one sees that in this case, ∆ is finite to the next order on the
light cone, i.e.

∆(q) = 0 =⇒ l ≡ lim
k→q

1

k2
∆(k) exists. (C.2.40)

Qualitatively speaking, the next theorem states that the Dirac operator has an ε-
definite kernel if and only if the scalar potential is non-zero and dominates the axial
and bilinear potentials.

Theorem C.2.10. Suppose that for all q ∈ C,

|α(q)| > 3

2
+







∣
∣
∣
∣

wij(q)a
iqj

∆(q)

∣
∣
∣
∣

if ∆(q) 6= 0

(

1 + Θ(1− 2
√

|l(q)|
) √

|l(q)| if ∆(q) = 0.

(C.2.41)

Then for sufficiently small ε, the Dirac operator i∂/ + εB0 has an ε-definite kernel. If
conversely there is q ∈ C for which the opposite inequality holds (i.e. (C.2.41) with
“>” replaced by “<”), then the Dirac operator has no ε-definite kernel.

Proof. A short calculation using (C.2.8, C.2.2, C.2.35) gives

ν± = α± 1

µk
〈v, k〉 . (C.2.42)

In the special case k/ = µk γ
0 and ~q/ = ~γ, we obtain furthermore from (C.2.9) that

(τ±)r = ar ± wr0 (r = 1, 2, 3).
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Thus, according to (C.2.10),

(τ±)
2 =

3∑

r=1

(ar)
2 ± 2 ar wr0 + (wr0)

2 ,

and this can be written covariantly as

(τ±)
2 = −〈a, a〉+ 1

µ2k
〈a, k〉2 − 1

µ2k
wijk

i wilkl ∓
2

µk
wija

ikj . (C.2.43)

This tensor equation is valid for any time-like k, and it is easy to check that it holds
for spacelike k as well.

Let q ∈ C. We first consider the case ∆(q) 6= 0. By continuity, ∆ 6= 0 in a neigh-
borhood U of q, and according to (C.2.38), ∆ is positive in U . We substitute (C.2.42)
and (C.2.43) into (C.2.6) and (C.2.7). In order to remove the singularities at µk = 0,
we write the eigenvalues µas in the form

µ
1/2
+ =

√

k2 + 2εδ1/2 + ε (α± κ+) +O(ε2)

µ
1/2
− = −

√

k2 + 2εδ1/2 + ε (α∓ κ−) +O(ε2)






, (C.2.44)

where we set

δ1/2 = 〈v, k〉 ±∆ , κ± = τ± −
1

µk
∆ .

The functions κ± have the following expansion,

κ± =
1

µk

(√

∆2 ∓ 2µk wijaikj −∆

)

= ∓wija
ikj

∆
+ O(µk) . (C.2.45)

In particular, one sees that these functions are bounded locally uniformly in µk. Let
us verify under which conditions the Dirac operator restricted to U has an ε-definite
kernel. Suppose that µ1+ ∈ (−ε, ε). Then, due to the square root in (C.2.44),

k2 + 2εδ1 = O(ε2) .
It follows from (C.2.44) that

µ2± =
√

k2 + 2εδ2 +O(ε) =
√

O(ε2) + 2ε(δ2 − δ1) +O(ε)
=
√
−4ε∆+O(ε) ∼ √ε

and therefore
|µ1+ − µ2+| ∼

√
ε ≫ ε .

Moreover, we obtain from (C.2.44) and (C.2.45) that

µ1+ − µ1− = 2µ1+ + 2εα − ε(κ+ − κ−) +O(ε2)

= 2µ1+ + 2ε

(

α+
wij a

ikj

∆
+O(µk)

)

+O(ε2) .

Thus the condition |µ1+ − µ1−| > ε is satisfied if
∣
∣
∣
∣
α+

wija
ikj

∆

∣
∣
∣
∣
>

3

2
.

As is proved in Lemma C.2.11 below, the eigenspace corresponding to µ1+ is definite.

We conclude that µ1+ is an ε-definite eigenvalue of A. Repeating the above argument
in the three other cases µ2−, µ

2
± ∈ (−ε, ε), one obtains that for sufficiently small ε, the
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kernel of the Dirac operator is ε-definite in U . If conversely (C.2.41) holds with “>”
replaced by “<”, it is straightforward to check that the Dirac operator for small ε has
no ε-definite kernel.

It remains to consider the case ∆(q) = 0. We write the eigenvalues µas as

µ
1/2
+ =

√

k2 + 2ε 〈v, k〉 + ε (α± τ+)

µ
1/2
− = −

√

k2 + 2ε 〈v, k〉 + ε (α∓ τ−) .






(C.2.46)

According to (C.2.40), the first three summands in (C.2.43) have a finite limit at q.
Furthermore, (C.2.39) yields that

2

µk
wija

ikj = O(µk) .

We conclude that the functions τ± in a neighborhood of q have the expansion

τ± =
√

|l|+O(
√

|µk|) . (C.2.47)

For small ε, µk ∼
√
ε, and so the term O(√µk) is of higher order in ε and can be

omitted. Furthermore, the following continuity argument varying l shows that the
eigenvalues µa+ and µa− correspond to positive and negative eigenvectors, respectively:
If l = 0, only the scalar and vector potentials enter the perturbation calculation to
first order in ε (see (C.2.46, C.2.47)). If only scalar and vector potentials are present,
the spectral decomposition of the matrix k/+ εB0 is easily obtained from the identity

[(k/ + εv/+ εα)− εα]2 = (k + εv)2 11 .

One sees that the eigenvalues are twofold degenerate, σε(k) = {µ+, µ−}, and that if
they are real, the corresponding eigenspaces are definite. The parameter l removes the
degeneracy of these eigenspaces, but the resulting invariant subspaces remain definite.

Suppose that µ1+ ∈ (−ε, ε). We consider the two subcases 2
√

|l| > ε and 2
√

|l| < ε
separately. In the first case, |µ1s − µ2s| > ε, and thus we must arrange that

|µ1+ − µ2∓| > ε (2
√
l > ε). (C.2.48)

In the second case, |µ1s − µ2s| < ε. Thus we must combine the eigenvalues to pairs and
consider the definite eigenspaces corresponding to the sets σs = {µ1s, µ2s}, s = ±, and
must satisfy the condition

dist (σ+, σ−) > ε (2
√
l < ε). (C.2.49)

Evaluating (C.2.48) and (C.2.49) using (C.2.46, C.2.47) and analyzing similarly the
three other cases µ1−, µ

2
± ∈ (−ε, ε) gives the condition (C.2.41).

Lemma C.2.11. Let A be a Hermitian matrix (with respect to ≺.|.≻). If µ ∈ σ(A)
is real and the corresponding invariant eigenspace I is one-dimensional, then I is a
definite eigenspace.

Proof. Since each invariant subspace contains at least one eigenvector, I is clearly
an eigenspace. We must show that I is definite. Assume to the contrary that I = <Ψ>
is null, i.e.

AΨ = λΨ with λ ∈ R and ≺Ψ|Ψ≻ = 0.
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We denote the invariant subspaces of A by (Iµ)µ∈σ(A). Since Iλ = <Ψ> is one-
dimensional and null, there must be an invariant subspace Iµ, µ 6= λ, which is not
orthogonal to Ψ,

Iµ ∩<Ψ>⊥ 6= ∅ .
We choose on Iµ a basis (e1, . . . , en) such that A is in the Jordan form, i.e.

A|Iµ =








µ 1 · · · 0
0 µ · · · 0
...

...
. . . 1

0 0 · · · µ







.

Let k ∈ {1, . . . , n} be the smallest index such that ≺ek|Ψ≻ 6= 0. Then

λ≺ek|Ψ≻ = ≺ek |AΨ≻ = ≺Aek |Ψ≻
= µ≺ek |Ψ≻ + ≺ek−1 |Ψ≻ = µ≺ek |Ψ≻ .

This is a contradiction.

Suppose that the homogeneous operator B0 satisfies the condition (C.2.41) in The-
orem C.2.10. Then the Dirac operator has an ε-definite kernel. As a consequence,
the distributions tεµ = 1

2(p
ε
µ− kεµ) are well-defined (see Def. C.2.4 and Theorem C.2.9).

Following (C.1.17), we introduce the fermionic projector by

P ε
µ =

1

2

(
X tεµ + tεµ X

∗
)

(C.2.50)

with X = χL. In order to analyze the normalization of P ε
µ, we consider the product

P ε
µ P

ε
µ′ =

1

4

(
X tεµ t

ε
µ′ X∗ +X tεµ X tεµ′ + tεµ X

∗ tεµ′ X∗
)
. (C.2.51)

According to (C.2.20) and (C.2.21),

tεµ t
ε
µ′ = δ2(µ − µ′) tεµ . (C.2.52)

Thus the only problem is to compute the products tεµXt
ε
µ′ and tεµX

∗tεµ′ . Using the

relations χL / R = 1
2(11 ∓ ρ) together with (C.2.52), this problem reduces to making

mathematical sense of the operator product

tεµ ρ t
ε
µ′ .

It seems impossible to give this expression a meaning without making additional as-
sumptions on B0. For simplicity, we shall impose a quite strong condition, which is
motivated as follows. The spectral projectors pµ corresponding to the unperturbed
Dirac operator i∂/− µ satisfy the relations ρ pµ ρ = p−µ and thus pµ ρ pµ = 0 (µ > 0).
It is natural to demand that the last identity should also hold in the presence of the
homogeneous perturbation for small ε.

Def. C.2.12. The kernel of the homogeneous Dirac operator i∂/ + B(ε, k) is ε-
orthogonal to ρ if for all µ, µ′ ∈ σε(k)∩(− ε

2 ,
ε
2 ), the corresponding spectral projectors

Eµ(k) and Eµ′(k) satisfy the condition

Eµ ρ Eµ′ = 0 . (C.2.53)
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If the kernel of the Dirac operator is ε-definite and ε-orthogonal to ρ, it follows
immediately that for all µ, µ′ ∈ (− ε

2 ,
ε
2),

tεµ ρ t
ε
µ′ = 0 . (C.2.54)

Using (C.2.52) and (C.2.54) in (C.2.51), we see that

P ε
µ P

ε
µ′ = δ2(µ− µ′) 1

8

(
X P ε

µ + P ε
µ X

∗ + 2X P ε
µ X

∗
)
.

Now we can take the limits ε, µց 0 to obtain

lim
εց0

lim
µ,µ′ց0

(

P ε
µ P

ε
µ′ − 1

2
δ2(µ− µ′) P ε

µ

)

= 0 . (C.2.55)

In analogy to (C.1.13), this relation states that the fermionic projector is idempotent
(apart from the factor 1

2 which will be treated in Section C.3 using the modified mass
scaling).

In the remainder of this section, we analyze under which assumptions on B0 the
kernel of the Dirac operator is ε-orthogonal to ρ. We begin with a simple calculation
in first order perturbation theory.

Lemma C.2.13. Suppose that the Dirac operator i∂/+ εB0 has an ε-definite kernel
and that the homogeneous potentials in (C.2.35) satisfy for all k ∈ R4 the relations

β(k) = 0 and ǫijlm wij(k) kl = 0 . (C.2.56)

Then for all k and µ, µ′ ∈ σε(k) ∩ (− ε
2 ,

ε
2),

Eµ(k) ρ Eµ(k) = O(ε2) . (C.2.57)

Proof. Choose k and µ, µ′ ∈ σε(k) ∩ (− ε
2 ,

ε
2). Since the Dirac operator has an ε-

definite kernel, the invariant subspace I corresponding to the set {µ, µ′} ⊂ σε(k) is def-
inite (notice that µ ∈ (−ε, ε) and |µ−µ′| < ε). We saw in the proof of Theorem C.2.10
that the invariant subspaces Im Eε

+ and Im Eε
+ (with Eε

± according to (C.2.3)) are
definite. Thus I ⊂ Im Eε

+ or I ⊂ Im Eε
−. Therefore, it suffices to show that for all

s = ±,
Eε

s ρ E
ε
s = O(ε2) . (C.2.58)

Substituting (C.2.3) and using the relations ρE±ρ = E∓, we obtain the equivalent
condition

Es {B0, ρ} Es = 0 . (C.2.59)

This equation means that the matrix {B0, ρ} must vanish on the two-dimensional

subspace ImEs. Since on this subspace, the matrices ~Σ, (C.2.5), have a representation
as the Pauli matrices, we can restate (C.2.59) as the four conditions

Tr (Es {B0, ρ}) = 0 = Tr
(

~Σ Es {B0, ρ}
)

.

Evaluating these relations using (C.2.2, C.2.5, C.2.35) gives (C.2.56).

This lemma is not satisfactory because it gives no information on how the error term
in (C.2.57) depends on k. More specifically, the error term may have poles on the mass
cone (and explicit calculations show that such poles ∼ k−2n indeed occur for n = 1
and n = 2). Since in the limit ε ց 0 the kernel of the Dirac operator is the mass
cone, it is far from obvious how to control the error term in this limit. In other words,
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(C.2.57) cannot be interpreted as “the kernel of the Dirac operator is ε-orthogonal to
ρ up to a small error term.”

In order to resolve this difficulty, we must proceed non-perturbatively. In general-
ization of our previous ansatz i∂/+ εB0, we shall consider the Dirac operator i∂/ + Bε,
where we assume that Bε(k) is a homogeneous potential which is smooth in both
arguments and has the power expansion

Bε(k) = ε B0(k) + ε2 B1(k) + ε3 B2(k) + · · · . (C.2.60)

The higher order potentials B1,B2, . . . are irrelevant for Def. C.2.8 because they are
negligible for small ε. In particular, the statement of Theorem C.2.10 remains valid
without changes. Furthermore, the potentials B1,B2, . . . should be irrelevant for the
statement of idempotence (C.2.55) because (C.2.55) involves a limit εց 0. Therefore,
it seems unnecessary to enter a detailed study of these potentials. The only point of
interest is under which assumptions on B0 there exist smooth potentials B1, B2,. . . such
that the spectral projectors corresponding to the Dirac operator i∂/ + Bε satisfy the
conditions (C.2.53) exactly.

Theorem C.2.14. Suppose that the Dirac operator i∂/+εB0 has an ε-definite kernel
and that the homogeneous potentials in (C.2.35) satisfy for all k the relations (C.2.56).
Then there is an ε > 0 and a smooth potential Bε(k) having the expansion (C.2.60)
such that the kernel of the Dirac operator i∂/+ Bε is ε-orthogonal to ρ.

Proof. Choose k and µ, µ′ ∈ σε(k) ∩ (− ε
2 ,

ε
2). Similar to what was described

before (C.2.58), we know from the proof of Theorem C.2.10 that the matrix A ≡
k/ + Bε(k) has a positive and a negative definite invariant subspace, one of which
contains Im Eµ ∪ Im Eµ′ . Again denoting the projectors onto these subspaces by Eε

+

and Eε
−, respectively, it thus suffices to show that for s = ±,

Eε
s ρ E

ε
s = 0 . (C.2.61)

We first evaluate these conditions in a special spinor basis. Namely, we let e1 and e2
be an orthonormal basis of ImEε

+ and set e3 = ρe1, e4 = ρe2. The conditions (C.2.61)
imply that e3 and e4 span Im Eε

−. Using the relation ρ2 = 11 as well as that the
subspaces <{e1, e2}> and <{e3, e4}> are invariant under A, we conclude that the
matrices ρ and A are of the form

ρ =

(
0 11
11 0

)

, A =

(
∗ 0
0 ∗

)

, (C.2.62)

where we used a block matrix notation corresponding to the splitting

C4 = <{e1, e2}>⊕<{e3, e4}> ,

and “∗” denotes an arbitrary block matrix entry. Furthermore, the relation ρ∗ = −11
yields that

≺e3 | e3≻ = −1 = ≺e4 | e4≻ ,
and thus the basis (eα) is pseudo-orthonormal,

≺Ψ | Φ≻ =

4∑

α=1

sα Ψα Φα with s1 = s2 = 1, s3 = s4 = −1. (C.2.63)

We see that the matrix ρ and the spin scalar product are in the usual Dirac repre-
sentation. In this representation, the fact that A is block diagonal (C.2.62) can be
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expressed by saying that A must be a real linear combination of the 8 matrices

11, γ0, ρ~γ, ργ0~γ . (C.2.64)

We next express this result in a general basis, but again in the Dirac representa-
tion. Since the representations of the matrix ρ, (C.2.62), and of the scalar product,
(C.2.63), are fixed, the freedom in choosing the basis is described by even U(2, 2) trans-
formations. This group, which we denote by U(2, 2)even, contains the normal Abelian
subgroup U = {exp(ϑρ/2) : ϑ ∈ R}. Acting by U on (C.2.64) gives the matrices

11, ((cosh ϑ+ ρ sinhϑ) γ0, ((cosh ϑ+ ρ sinhϑ) ρ~γ, ργ0~γ . (C.2.65)

When the factor group U(2, 2)even/U acts on (C.2.65), the resulting transformations
correspond precisely to Lorentz transformations of the tensor indices (see Lemma 1.2.1
for details). Thus the conditions (C.2.61) are satisfied if and only if A is of the form

A = α 11 + ((cosh ϑ+ ρ sinhϑ) u/+ ((ρ cosh ϑ+ sinhϑ) a/+ ρu/b/ (C.2.66)

with a time-like vector field u and two vector fields a and b, which are orthogonal to
u,

〈u, a〉 = 0 = 〈u, b〉 . (C.2.67)

We substitute the identity A = k/+Bε(k) into (C.2.66) and solve for Bε(k). Expanding
in powers of ε gives the result.

C.3. The General Construction, Proof of Idempotence

In this section we shall make precise what “idempotence” means for a fermionic
projector with chiral asymmetry in the presence of a general interaction. We proceed
in several steps. We begin with a straightforward extension of the results of Section C.2
to systems of Dirac seas. Then we introduce the interaction and perform the causal
perturbation expansion. After putting in an infrared regularization, we can define the
fermionic projector. Finally, idempotence is established via a singular mass limit.

We begin with a system of Dirac seas in the vacuum, described by the mass matrix
Y and the chiral asymmetry matrix X (see §2.3). In order to give the chiral fermions
a “small generalized mass,” we introduce a homogeneous operator B0 and consider for
ε > 0 the Dirac operator i∂/+ εB0−mY . For simplicity, we assume that B0 is diagonal
on the sectors and is non-trivial only in the chiral blocks, i.e.

(B0)(aα)(bβ) = δab δ
α
β B

(aα)
0 with B(aα)0 = 0 if Xa = 11.

Then on each sector the methods of Section C.2 apply; let us collect the assumptions
on B0 and the main results: For every index (aα) with X(aα) 6= 11 we assume that

(1) B(aα)0 (k) depends smoothly on k ∈ R4 and grows at most polynomially at
infinity.

(2) The (4× 4)-matrix k/+ εB(aα)0 (k) is diagonalizable for a.a. k.

(3) B(aα)0 has the decomposition into scalar, vector, axial, and bilinear potentials,

B(aα)0 (k) = α 11 + v/+ ρ a/+
iρ

2
wij σ

ij ,
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such that for all k ∈ R4 and q ∈ C the following conditions are satisfied,

ǫijlm wij(k) kl = 0

|α(q)| >
3

2
+







∣
∣
∣
∣

wij(q)a
iqj

∆(q)

∣
∣
∣
∣

if ∆(q) 6= 0

(

1 + Θ(1− 2
√

|l(q)|
) √

|l(q)| if ∆(q) = 0.

(with ∆ and l defined by (C.2.36) and (C.2.40), C = {k | k2 = 0} is the mass
cone).

Then for sufficiently small ε, the Dirac operator i∂/ + εB(aα)0 has an ε-definite kernel
(see Def. C.2.8 and Theorem C.2.10). Thus for a.a. µ ∈ (−ε, ε), the spectral projec-

tors p
ε,(aα)
µ , k

ε,(aα)
µ and the Green’s functions s

ε,(aα)
µ are well-defined distributions in

momentum space (see Def. C.2.4 and Theorem C.2.9). Furthermore, the kernel of the
Dirac operator is ε-orthogonal to ρ (see Def. C.2.12 and Theorem C.2.14; for simplicity
we here omit the higher order potentials B1,B2, . . . in (C.2.60), this is justified because
these potentials obviously drop out in the singular mass limit), and this can be stated
in the form (cf. (C.2.17))

pε,(aα)µ ρ p
ε,(aα)
µ′ = 0 for all µ, µ′ ∈ (− ε

2 ,
ε
2) .

We build up the spectral projectors pε+µ, k
ε
+µ and the Green’s function sε+µ of the

whole system by taking direct sums; namely,

Aε
+µ =

⊕

a,α

{
Amaα+µ if Xa = 11

A
ε,(aα)
µ
2

if Xa 6= 11,
(C.3.1)

where A stands for p, k, or s. Note that in the chiral blocks the mass parameter µ
2

(and not µ) is used. The purpose of this modified mass scaling is to get rid of the
factor 1

2 in the normalization of a chiral Dirac sea (C.2.55) (also see the paragraph
after (C.1.21)). The corresponding Dirac operator is

i∂/+ εB0 −mY − µZ ,

where the matrix Z ≡ 1
2(X +X∗) takes into account the modified mass scaling. The

spectral projectors satisfy the multiplication rules

pε+µ p
ε
+µ′ = kε+µ k

ε
+µ′ = δ2(µ− µ′) Z−1 pε+µ

pε+µ k
ε
+µ′ = kε+µ p

ε
+µ′ = δ2(µ− µ′) Z−1 kε+µ

}

(C.3.2)

Cε
+µ ρ C

ε
+µ′ = 0 for µ, µ′ ∈ (− ε

2 ,
ε
2) , (C.3.3)

where C stands for k or p. The Green’s functions satisfy the relations

Cε
+µ s

ε
+µ′ = sε+µ C

ε
+µ′ =

PP

µ− µ′ Z
−1 Cε

+µ

sε+µ s
ε
+µ′ =

PP

µ− µ′ Z
−1 (sε+µ − sε+µ′) .







(C.3.4)

These multiplication rules differ from those in §2.2 only by the additional factor Z−1.
To describe the interaction, we insert a potential B into the Dirac operator, which

then reads
i∂/+ B + εB0 −mY − µZ . (C.3.5)

We assume that Y and B have the following properties:
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(a) Only the chiral particles are massless, i.e.

Y (aα) > 0 if Xa = 11.

(b) B is the operator of multiplication with the Schwartz function B(x).
(c) Y and B are causality compatible, i.e.

X∗ (i∂/ + B −mY ) = (i∂/+ B −mY )X . (C.3.6)

In order to introduce the spectral projectors with interaction p̃ε+µ and k̃ε+µ, we take
the operator expansion of causal perturbation theory §2.3 and replace the operators
according to A→ Aε

+µ (with A = p, k, or s). All the operator products of the resulting

expansion are well-defined for a.a. µ (note that B̃(k) has rapid decay and Aε
+µ(k) grows

at most polynomially at infinity).
For the infrared regularization, we proceed exactly as in §2.6 and replace space by

the three-dimensional torus (2.6.2). Furthermore, we “average” the mass parameter
µ. More precisely, combining (2.6.13) with (C.2.50), the auxiliary fermionic projector
is defined by

P ε,δ =
1

2

∫

(0,δ)×(−δ,δ)
(X t̃ε+µ + t̃ε+µ X

∗) d2µ , (C.3.7)

where as usual t̃ε+µ = 1
2(p̃

ε
+µ − k̃ε+µ). Finally, the regularized fermionic projector is

obtained by taking the partial trace,

(P ε,δ)ab =

g(a)
∑

α=1

g(b)
∑

β=1

(P ε,δ)
(aα)
(bβ) . (C.3.8)

Before we can prove idempotence, we need to impose the following extension of
the non-degeneracy assumption (2.6.1). We set

σε(aα) = σ(k/ + εB(aα)0 ) .

Def. C.3.1. The Dirac operator i∂/ + εB0 −mY has ε-non-degenerate masses
if for all a and β 6= γ,

σε(bβ) ∩ (−ε
2
,
ε

2
) 6= ∅ =⇒ σε(bγ) ∩ (−ε, ε) = ∅ . (C.3.9)

Roughly speaking, the next theorem states that the masses are ε-non-degenerate
if they are non-degenerate in the massive sectors and if the homogeneous potentials in
the chiral sectors are sufficiently different from each other.

Theorem C.3.2. Suppose that Y and B0 have the following properties:

(i) In the massive blocks (i.e. Xa = 11), the masses are non-degenerate,

Y (bβ) 6= Y (bγ) if β 6= γ.

(ii) In the chiral blocks (i.e. Xa 6= 11), for all β 6= γ and all q ∈ C either

〈v(bβ), q〉+ s∆(bβ)(q) 6= 〈v(bγ), q〉+ s′ ∆(bγ)(q) for all s, s′ ∈ {±1} (C.3.10)

or else

|α(bβ)(q)− α(bγ)(q)| > 2 + 2 |d(bβ)(q) + d(bγ)(q)| (C.3.11)
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with

d(q) =







∣
∣
∣
∣

wij(q)a
iqj

∆(q)

∣
∣
∣
∣

if ∆(q) 6= 0

√

|l(q)| if ∆(q) = 0

(and ∆, l according to (C.2.36) and (C.2.40)).

Then for sufficiently small ε, the Dirac operator has ε-non-degenerate masses.

Proof. The condition in (i) follows immediately from the fact that the eigenvalues

µas in the two sectors differ precisely by m(Y (bβ)−Y (bγ)). For part (ii) we consider the
formulas for the eigenvalues (C.2.44) and (C.2.46). If (C.3.10) holds, the eigenvalues
in the two sectors all differ by contributions of the order

√
ε, and so (C.3.9) is satisfied

for small ε. If on the other hand (C.3.10) is violated, there are eigenvalues in two
different sectors such that the square roots in (C.2.44) and/or (C.2.46) coincide. Thus

these eigenvalues differ by (α+ σ)(bβ) − (α+ σ)(bγ), where each σ is an element of the
set {±κ+,±κ−,±τ+,±τ−}. The condition (C.3.11) guarantees that this difference is
greater than 2ε, and so (C.3.9) is again satisfied.

We can now state the main result of this chapter.

Theorem C.3.3. (Idempotence) Consider the Dirac operator (C.3.5) under the
above assumptions (1)–(3) and (a)–(c). Assume furthermore that the masses are ε-
non-degenerate (see Def. C.3.1 and Theorem C.3.2). Then the corresponding fermionic
projector (C.3.7, C.3.8) satisfies the identity

lim
εց0

lim
δց0

δ

(
∫

IR×T 3

N∑

b=1

P a
b (x, z) P

b
c (z, y) d

4z − P a
c (x, y)

)

= 0 (C.3.12)

with convergence as a distribution to every order in perturbation theory.

Proof. Similar to (C.2.19), the Green’s function sε+µ has a spectral representation
in a mass parameter ν. We want to decompose sε+µ into contributions ṡε+µ and s̆ε+µ

where |ν − µ| is small and large, respectively. To this end, we introduce in each sector
the operator







ṡ
ε,(aα)
µ =

∫

Bε/4(µ)

PP

ν − µ p
ε
µ d

2ν if X1 6= 11

ṡmaα+µ =

∫

Bε/2(µ)

PP

ν − µ pmaα+ν d
2ν if X1 = 11

and define ṡε+µ by taking as in (C.3.1) the direct sum. Setting s̆ε+µ = sε+µ − ṡε+µ, we
obtain the decomposition

sε+µ = ṡε+µ + s̆ε+µ . (C.3.13)

Our first step is to show that for small µ, the matrix s̆ε+µ(k) is bounded, more
precisely that

‖sε+µ(k)‖ ≤
C(k)

ε7
for µ ∈ (−ε

2
,
ε

2
) (C.3.14)

with C(k) a smooth function with at most polynomial growth at infinity (the exponent
7 is probably not optimal, but (C.3.14) is sufficient for our purpose). It clearly suffices
to prove (C.3.14) in a given sector (aα); for simplicity the sector index will be omitted
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(i.e. B0 ≡ B(aα)0 ). Furthermore, we only consider the case Xa 6= 11; the other case is
analogous (and even simpler, because in the massive sectors no homogeneous potentials
are present). We introduce the projector E(k) by

E =
∑

(a,s)∈S

Ea
s with S =

{

(a, s) with |µas − µ| <
ε

4

}

According to Lemma C.2.7,

‖E‖ ≤ C1(k)

ε3
(C.3.15)

with C1(k) smooth with at most polynomial growth at infinity. The matrix s̆ε+µ has a
simple spectral representation,

s̆ε+µ =
∑

(a,s)6∈S

1

µas − µ
Ea

s .

Unfortunately, this representation is not suitable for estimates, because we have no
control of ‖Ea

s ‖ for (a, s) 6∈ S. To avoid this problem, we rewrite s̆ε+µ as follows,

s̆ε+µ =




∑

(a,s)6∈S

1

µas − µ
Ea

s +
∑

(a,s)∈S

1

µas − µ+ ε
Ea

s



 (11− E)

= (k/ + εB0 − µ+ εE)−1 (11− E) .

Introducing the “Hamiltonian” H = −γ0 (~k/+ εB0(ω,~k)− µ+ εE), we obtain

s̆ε+µ = (ω −H)−1 γ0 (11− E) . (C.3.16)

The matrix H(k) is Hermitian with respect to the positive scalar product (.|.) =
≺.|γ0|.≻ and can thus be diagonalized, i.e.

H =

4∑

n=1

Ωn Fn

with real eigenvalues Ωn and spectral projectors Fn. Substituting into (C.3.16) gives

s̆ε+µ =

4∑

n=1

1

ω − Ωn
Fn γ

0 (11− E) ,

and (C.3.15) yields the bound

‖s̆ε+µ‖ ≤ 2max
n

1

|ω − Ωn|
‖11 − E‖ ≤ C2(k)

ε3
max
n

1

|ω − Ωn|
. (C.3.17)

It remains to estimate the factors |ω − Ωn| from below. We use that the determinant
is multiplicative to obtain

4∏

n=1

(ω − Ωn) = det(ω −H) = det(γ0 (ω −H))

= det(k/ + εB0 − µ+ εE) =
∏

(a,c)6∈S

(µac − µ)
∏

(a,c)∈S

(µac − µ+ ε) .
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Taking the absolute value, the factors |µac − µ| and |µac − µ+ ε| are all greater than ε
4 ,

and thus
4∏

n=1

|ω − Ωn| ≥
(ε

4

)4
. (C.3.18)

Since the eigenvalues of the Hermitian matrix ω−H can be estimated by the sup-norm
of the matrix,

|ω − Ωn| ≤ ‖ω −H‖ ,
we can deduce from (C.3.18) that each factor |ω − Ωn| is bounded by

|ω − Ωn| ≥ ‖ω −H‖−3
(ε

4

)4
.

Substituting this inequality into (C.3.17) gives (C.3.14).
The causal perturbation expansion expresses t̃ε+µ as a sum of operator products of

the form

t̃ε+µ ≍ Aε
+µ B0 Aε

+µ · · · Aε
+µ B0 Aε

+µ , (C.3.19)

where each factor A stands for p, k, or s. Since B0(k) has rapid decay and Aε
µ(k) grows

at most polynomially, these operator products are well-defined. According to (C.3.7)
and (C.3.8), the first summand inside the brackets in (C.3.12) can be written as

1

4

∫ δ

0
dµ

∫ δ

0
dµ′
∑

b

∑

β,γ

(

Xa (t
ε
+µ)

(aα)
(bβ) (t

ε
+µ′)

(bγ)
(cδ) X

∗
c + Xa (t

ε
+µ)

(aα)
(bβ) Xb (t

ε
+µ′)

(bγ)
(cδ)

+(tε+µ)
(aα)
(bβ) X

∗
b (tε+µ′)

(bγ)
(cδ) X

∗
c + (tε+µ)

(aα)
(bβ) X

∗
b Xb (t

ε
+µ′)

(bγ)
(cδ)

)

. (C.3.20)

When we substitute (C.3.19) into (C.3.20), the difficult point is to multiply the right-
most factor A of the first factor t to the leftmost factor A of the second factor t. More
precisely, we must analyze the following operator products,

(· · · Aε
+µ)

(aα)
(bβ) (A

ε
+µ′ · · · )(bγ)(cδ) (C.3.21)

(· · · Aε
+µ)

(aα)
(bβ) ρ (A

ε
+µ′ · · · )(bγ)(cδ) (C.3.22)

with A = p, k, or s.
If one of the factors A in (C.3.21) or (C.3.22) is the Green’s function, we substi-

tute (C.3.13) and expand. Since s̆ε+µ is bounded (C.3.14), the products involving s̆ε+µ

have a finite limit as δ ց 0. Since the two integrals in (C.3.20) give a factor δ2, these
products all drop out when the limit δ ց 0 is taken in (C.3.12). Thus it suffices to
consider the case when the factors A in (C.3.21) and (C.3.22) stand for p, k, or ṡ.

Since the Dirac operator has ε-non-degenerate masses, the distributions Aε
+µ(k)

have disjoint supports in different sectors. More precisely, for all µ, µ′ ∈ (− ε
2 ,

ε
2),

supp (Aε,(bβ)
µ ) ∩ supp (A

ε,(bγ)
µ′ ) = ∅ if β 6= γ and Xb 6= 11,

where each factor A stands for p, k, or ṡ. A similar relation holds in the massive
blocks. Therefore, (C.3.21) and (C.3.22) vanish if β 6= γ.

In the case β = γ, (C.3.22) is zero because the Dirac operator is ε-orthogonal to
ρ (C.3.3). Thus, using a matrix notation in the sectors, we only need to take into
account the operator products

(· · · Aε
+µ)(A

ε
+µ′ · · · )
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with A = p, k, or s (here we may again consider s instead of ṡ because, as we saw
above, all factors s̆ drop out in the limit δ ց 0). Now we can apply the multiplication
rules (C.3.2) and (C.3.4). Applying (C.3.2) gives a factor δ2(µ−µ′), and we can carry
out the µ′-integral. After dividing by δ, we can take the limits δ ց 0 and ε ց 0.
Using that in this limit the Dirac operator is causality compatible (C.3.6), we can
“commute X through” the resulting operator products (see §2.3). In this way, one
recovers precisely the unregularized fermionic projector P = limε,δց0 P

ε,δ. If (C.3.4)
is applied, the resulting principal part is bounded after the integrals over µ and µ′ are
carried out, and we can take the limits δ ց 0 and εց 0. After commuting X through
the resulting operator products we find that all terms cancel.

For understanding better what the above results mean physically, it is instructive
to consider a cosmological situation where the 4-volume of space-time is finite. In this
case, the limits ε, δ ց 0 in (C.3.12) are a merely mathematical idealization correspond-
ing to the fact that the size of the universe is very large compared to the usual length
scales on earth. We can extrapolate from (C.3.7, C.3.8) to get some information on
how the properly normalized physical fermionic projector should look like: The pa-
rameter δ is to be chosen of the order T−1 with T the lifetime of the universe (also
see §2.6). Then, due to the µ-integral in (C.3.7), the Dirac seas are built up from those
fermionic states whose momenta lie in a thin strip around the mass cone. Naively, the
modified mass scaling implies that for neutrinos this strip must be thinner. However,
this naive picture is misleading because the detailed form of the chiral Dirac seas de-
pend strongly on the homogeneous operator B0, which is unknown. We point out that
in (C.3.12) the order of limits is essential: we must first take the infinite volume limit
and then the limit ε ց 0. This means for our cosmology in finite 4-volume that the
homogeneous perturbation εB0 must be large compared to T−1. One possibility for
realizing this is to give the neutrinos a small rest mass. But, as shown above, the same
can be achieved by more general, possibly nonlocal potentials which do not decay at
infinity.



APPENDIX D

The Regularized Causal Perturbation Theory

In §4.5 we gave a procedure for regularizing the formulas of the light-cone expan-
sion (4.5.5–4.5.10). We shall now derive this regularization procedure. The basic idea
is to extend the causal perturbation expansion of §2.2 to the case with regularization,
in such a way that the causality and gauge symmetry are preserved for macroscopic
perturbations. Using the methods of §2.5 one can then analyze the behavior of the
so-regularized Feynman diagrams near the light cone. For simplicity, we will restrict
attention to the first order in perturbation theory. But our methods could be applied
also to higher order Feynman diagrams, and the required gauge symmetry suggests
that our main result, Theorem D.2, should hold to higher order in perturbation theory
as well.

We first state our assumptions on the fermionic projector of the vacuum. As in
Chapter 4 we describe the vacuum by a fermionic projector P (x, y) of the form (4.1.3)

with vector-scalar structure (4.1.5). For small energy-momentum, P̂ should coincide
with the unregularized fermionic projector of the vacuum, i.e.

P̂ (k) = (k/ +m) δ(k2 −m2) Θ(−k0) if |k0| ≪ EP and |~k| ≪ EP . (D.1)

Furthermore, we assume that the vector component is null on the light cone (i.e. that
(4.4.21) holds with εshear ≪ 1), and that P satisfies all the regularity assumptions

considered in §4.3 and §4.4. For simplicity, we finally assume that P̂ is supported
inside the lower mass cone,

supp P̂ ⊂ C∧ (D.2)

(with C∧ according to (5.6.15)). This last condition is quite strong, but nevertheless
reasonable. In particular, it is satisfied when P is composed of one-particle states
which are small perturbations of the Dirac eigenstates on the lower mass shell.

In this appendix we shall address the question of how one can introduce a classical
external field into the system. For clarity, we will develop our methods mainly in the
example of an electromagnetic field. As described in §4.1, we consider the regularized
fermionic projector as a model for the fermionic projector of discrete space-time. In
this sense, the regularization specifies the microscopic structure of space-time. Follow-
ing the concept of macroscopic potentials and wave functions introduced in §4.1, the
electromagnetic field should modify the fermionic projector only on length scales which
are large compared to the Planck length, but should leave the microscopic structure
of space-time unchanged. In order to fulfill this requirement, we impose the following
conditions. First of all, we assume that the electromagnetic field be “macroscopic” in
the sense that it can be described by an electromagnetic potential A which vanishes
outside the low-energy region, i.e.

Â(k) = 0 unless |k0| ≪ EP and |~k| ≪ EP , (D.3)

233
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where Â is the Fourier transform of A. We denote the fermionic projector in the pres-
ence of the electromagnetic field by P [A/]. In order to prevent that the electromagnetic
potential might influence the microscopic structure of space-time locally, we demand
that A can locally be made to zero by a gauge transformation. Thus we impose that
the usual behavior under U(1) gauge transformations

P [A/+ (∂/Λ)](x, y) = eiΛ(x) P [A/](x, y) e−iΛ(y) (D.4)

(with a real function Λ) should hold also for the regularized fermionic projector, as-
suming that the involved potentials A and (A+ ∂Λ) are both macroscopic (D.3). We
point out that, because of the gauge symmetry in discrete space-time (following from
the freedom in choosing the gauge (3.3.8)), the local phase transformations in (D.4)
are irrelevant in the equations of discrete space-time, and thus the transformation
law (D.4) implies the freedom to transform the electromagnetic potential according to
A/ → A/ + ∂/Λ. Finally, we must rule out the possibility that the electromagnetic po-
tential might influence the microscopic structure of space-time in a nonlocal way. For
this purpose, we impose that the perturbation expansion for the regularized fermionic
projector be causal, in the sense introduced in §2.2.

Let us consider how these conditions can be implemented in the perturbation the-
ory to first order. We first recall the standard perturbation theory for Dirac eigenstates.
For a solution Ψ of the free Dirac equation (i∂/ −m)Ψ = 0, the perturbation to first
order in A, which we denote by ∆Ψ[A/], is given by

∆Ψ[A/](x) = −
∫

d4y sm(x, y) A/(y) Ψ(y) , (D.5)

where sm(x, y) is the Dirac Green’s function (2.2.18),

sm(x, y) =

∫
d4k

(2π)4
PP

k2 −m2
(k/ +m) e−ik(x−y) . (D.6)

If we consider sm(x, y) as the integral kernel of an operator sm and the potentials as
multiplication operators, we can calculate ∆Ψ in the case A/ = ∂/Λ to be

∆Ψ[∂/Λ] = −sm (∂/Λ) Ψ = ism [i∂/−m, Λ] Ψ
= i((i∂/ −m)sm) Λ Ψ − ism Λ ((i∂/ −m)Ψ) = iΛ Ψ . (D.7)

Thus in this case, ∆Ψ(x) = iΛ(x) Ψ(x) is simply the contribution linear in Λ to
the phase transformed wave function exp(iΛ(x)) Ψ(x); this shows explicitly that the
perturbation calculation is gauge invariant.

As a consequence of the regularization, the fermionic projector P (x, y) is in general
not composed of Dirac eigenstates. Therefore, we next consider a wave function Ψ
which is not necessarily a solution of the free Dirac equation. But according to (D.2),

we may assume that its Fourier transform Ψ̂ has its support in the interior of the mass
cone,

supp Ψ̂ ⊂ {k | k2 ≥ 0} . (D.8)

In this case we can introduce ∆Ψ[A/] as follows. The spectral projector pµ of the free
Dirac operator i∂/ corresponding to the eigenvalue µ ∈ R has the form

pµ(x, y) =

∫
d4k

(2π)4
ǫ(µ) (k/+ µ) δ(k2 − µ2) e−ik(x−y) (D.9)

(see (2.2.4); notice that we added the step function ǫ(µ) to allow for the case µ < 0).
Since the real axis is only part of the spectrum of the free Dirac operator (namely, the



D. THE REGULARIZED CAUSAL PERTURBATION THEORY 235

free Dirac operator has also an imaginary spectrum), the spectral projectors (pµ)µ∈IR
are clearly not complete, i.e.

∫∞
−∞ pµdµ 6= 11. By integrating (D.9) over µ,

∫ ∞

−∞
pµ(x, y) dµ =

∫
d4k

(2π)4
Θ(k2) e−ik(x−y) , (D.10)

one sees more precisely that the operator
∫∞
−∞ pµdµ is the projector on all the momenta

in the mass cone. But according to (D.8), Ψ lies in the image of this projector, and
we can thus use the spectral projectors pµ to decompose Ψ into eigenstates of the free
Dirac operator. Each eigenstate can then be perturbed using (D.5). This leads us to
introduce ∆Ψ[A/] according to

∆Ψ[A/] = −
∫ ∞

−∞
dµ sµ A/ pµ Ψ . (D.11)

This definition of ∆Ψ shows the correct behavior under gauge transformations; namely,
similar to (D.7),

∆Ψ[∂/Λ] = i

∫ ∞

−∞
dµ sµ [i∂/− µ, Λ] pµ Ψ

= iΛ

(∫ ∞

−∞
pµ dµ

)

Ψ
(D.10,D.8)

= iΛΨ . (D.12)

Thinking in terms of the decomposition (2.2.1) of the fermionic projector into the
one-particle states, it seems natural to introduce the perturbation of the fermionic
projector ∆P [A/] by perturbing each one-particle state according to (D.11). This leads
to the formula

∆P [A/] = −
∫ ∞

−∞
dµ (sµ A/ pµ P + P pµ A/ sµ) . (D.13)

The gauge symmetry can again be verified explicitly. Namely, a calculation similar to
(D.12) using (D.2) yields that

∆P [∂/Λ](x, y) = iΛ(x) P (x, y)− iP (x, y) Λ(y) ,
and this is the contribution linear in Λ to (D.4). The perturbation calculation (D.13)
is immediately extended to a general perturbation operator B by setting

∆P [B] = −
∫ ∞

−∞
dµ (sµ B pµ P + P pµ B sµ) . (D.14)

Let us verify if the perturbation calculation (D.14) is causal in the sense of §2.2.
Since it seems impossible to write (D.14) in a manifestly causal form, we apply here
a different method, which allows us to analyze the causality of the perturbation ex-
pansion in momentum space. As mentioned in §2.5, the causality of the perturbation
expansion can be understood via the causality of the line integrals over the exter-
nal potentials and fields which appear in the light cone expansion. More precisely,
causality means that the light-cone expansion of ∆P (x, y) should involve only line
integrals along the line segment xy, but no unbounded line integrals like for example
∫∞
0 dλ B(λy + (1− λ)x). This way of understanding the causality of the perturbation
expansion yields a simple condition in momentum space. Namely, if B has the form
of a plane wave of momentum q, i.e. B(x) = Bq exp(−iqx), then the unbounded line
integrals become infinite when q goes to zero (for Bq fixed), whereas integrals along
the line segment xy are clearly bounded in this limit. Hence we can say that the per-
turbation calculation (D.14) is causal only if it is regular in the limit q → 0. In order
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to analyze this condition, we substitute the explicit formulas (D.6, D.9) into (D.14)
and obtain

∆P [B](x, y) = −
∫ ∞

−∞
dµ ǫ(µ)

∫
d4k

(2π)4

×
(

PP

(k + q)2 − µ2 (k/ + q/+ µ) Bq (k/ + µ) δ(k2 − µ2) P̂ (k) e−i(k+q)x+iky

+ P̂ (k) δ(k2 − µ2) (k/ + µ) Bq (k/ − q/+ µ)
PP

(k − q)2 − µ2 e
−ikx+i(k−q)y

)

.

We set q = εq̌ with a fixed vector q̌ and consider the behavior for ǫց 0. Taking only
the leading order in ε, one can easily carry out the µ-integration and gets

∆P [B](x, y) = −1

ε

∫
d4k

(2π)4
e−ik(x−y)

×
(

PP

2kq̌ + εq̌2
(k/ Bq + Bq k/) P̂ (k)

+ P̂ (k) (k/ Bq + Bq k/)
PP

−2kq̌ + εq̌2

)

+O(ε0) . (D.15)

Since

lim
ǫց0

PP

2kq̌ + εq̌2
= lim

ǫց0

PP

2kq̌ − εq̌2 =
PP

2kq̌

in the sense of distributions in the argument kq̌ (notice that this kind of convergence

is sufficient using the regularity of P̂ ), the leading singularity of (D.15) for εց 0 has
the form

− 1

ε

∫
d4k

(2π)4
e−ik(x−y)

PP

2kq̌

[

{Bq, k/}, P̂ (k)
]

. (D.16)

Taking the Fourier transform in the variable (x − y), it is clear that (D.16) vanishes

only if the commutator/anti-commutator combination [{Bq, k/}, P̂ (k)] is zero for all
k. Since the perturbation Bq can be arbitrary, one sees (for example by considering
a scalar perturbation, Bq ∼ 11) that it is a necessary condition for the perturbation
calculation (D.14) to be regular in the limit q → 0 that

[k/, P̂ (k)] = 0 for all k. (D.17)

This commutator vanishes only if the vector field v(k) in (4.1.5) is a multiple of k, or,
using the notation of §4.4, if the surface states have no shear. We conclude that the
perturbation calculation (D.14) is in general not causal.

Before resolving this causality problem, we briefly discuss how this problem comes
about. The condition (D.17) can be stated equivalently that the operator P must com-
mute with the free Dirac operator. In other words, the perturbation calculation (D.14)
is causal only if the fermionic projector of the vacuum is composed of eigenstates of
the free Dirac operator. In this formulation, our causality problem can be understood
directly. Namely, since our perturbation method is based on the perturbation calcula-
tion (D.5) for Dirac eigenstates, it is not astonishing that the method is inappropriate
for non-eigenstates, because the perturbation expansion is then performed around the
wrong unperturbed states. It is interesting to see that this shortcoming leads to a
breakdown of causality in the perturbation expansion.
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In order to comply with causality, we must modify the perturbation calculation
(D.14). Our idea is to deduce the perturbation calculation for the fermionic projector
from that for a modified fermionic projector, which satisfies the causality condition
(D.17). The simplest idea for modifying the fermionic projector would be to introduce

a unitary transformation Û(k) ∈ U(2, 2) which makes the vector v(k) in (4.1.5) parallel
to k, more precisely

Û(k)−1 vj(k) γ
j Û(k) = λ(k) k/ with λ(k) ∈ R.

However, a unitary transformation is too restrictive because it keeps the Lorentzian
scalar product v(k)2 invariant, and thus it cannot be used for example in the case
when v(k) is space-like, but k is time-like. Therefore, we shall consider here a linear
combination of unitary transformations. More precisely, we introduce for L > 1 and
l = 1, . . . , L unitary operators Ûl(k) ∈ U(2, 2) and real coefficients cl such that1

L∑

l=1

cl(k) = 1 and vj(k) γ
j =

L∑

l=1

cl(k) Ûl(k) λ(k) k/ Ûl(k)
−1 (D.18)

with λ(k) ∈ R. The existence of (Ûl, cl) is guaranteed by the fact that the U(2, 2)
transformations comprise Lorentzian transformations §1.5. Clearly, the representation
(D.18) is not unique. According to (D.1), we can choose the transformation (D.18) to
be the identity in the low-energy region, and can thus assume that

Ûl(k) = 11 if |k0| ≪ EP and |~k| ≪ EP . (D.19)

Furthermore, the regularity assumptions and the particular properties of the fermionic
projector mentioned before (D.2) give rise to corresponding properties of the operators

Ûl; this will be specified below (see (D.31, D.52)). The operators obtained by multipli-

cation with Ûl(k) in momentum space are denoted by Ul; they have in position space
the kernels

Ul(x, y) =

∫
d4k

(2π)4
Ûl(k) e

−ik(x−y) . (D.20)

Finally, we introduce the “modified fermionic projector” Q by replacing the vector
field v(k) in (4.1.5) by λ(k) k/, i.e.

Q̂(k) = (λ(k) k/ + φ(k) 11) f(k) . (D.21)

According to (D.18), the fermionic projector P is obtained from Q by the transforma-
tion

P =

L∑

l=1

cl Ul Q U−1l . (D.22)

The modified fermionic projector (D.21) satisfies the condition [Q̂(k), k/] = 0.
Hence the perturbation calculation for Q does not suffer from our above causality
problem, and we can introduce ∆Q[B] in analogy to (D.14) by

∆Q[B] := −
∫ ∞

−∞
dµ (sµ B pµ Q + Q pµ B sµ) . (D.23)

1
Online version: Taking such linear combinations has the disadvantage that normalization and

definiteness properties are not preserved. Therefore, it is preferable to use instead the construction in
the book [5, Appendix F] (listed in the references in the preface to the second online edition).
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We now deduce the perturbation of P by applying to (D.23) a transformation analogous
to that in (D.22), namely

∆P [B] :=

L∑

l=1

cl Ul ∆Q[B] U−1l (D.24)

= −
L∑

l=1

cl

∫ ∞

−∞
dµ Ul (sµ B pµ Q + Q pµ B sµ)U−1l . (D.25)

This last transformation should not affect the causality (in the sense of §2.2) because if
(D.23) is regular when the momentum q of the bosonic potential goes to zero, then the
transformed operator (D.24) will clearly also be regular in this limit. We call (D.25)
the regularized causal perturbation of the fermionic projector to first order.

The perturbation calculation (D.25) requires a detailed explanation. Qualitatively
speaking, the difference between (D.14) and (D.25) is that the spectral projectors pµ,
the Green’s functions sµ, and the perturbation operator B have been replaced by the
unitarily transformed operators

Ul pµ U
−1
l , Ul sµ U

−1
l and Ul B U−1l , (D.26)

and that a linear combination is taken. According to (D.19), the unitary transforma-
tions in (D.26) have no influence on the macroscopic properties of these operators, i.e.
on the behavior when these operators are applied to wave functions with support in
the low-energy region. But the transformation (D.26) changes the operators on the
microscopic scale, in such a way that causality is fulfilled in the perturbation expan-
sion. We point out that in the case where B is the usual operator of multiplication
with the external potentials, the transformed operator UlBU−1l is in general no longer
a multiplication operator in position space; thus one can say that the classical poten-
tials have become nonlocal on the microscopic scale. In order to better understand
why the causality problem of (D.14) has disappeared in (D.25), it is useful to observe
that Q commutes with the spectral projectors pµ. This means that Q is composed of
eigenstates of the Dirac operator, so that the perturbation expansion is now performed
around the correct unperturbed states.

Let us consider a gauge transformation. In the case B = ∂/Λ, the perturbation
(D.25) is computed to be

∆P [∂/Λ] = i
L∑

l=1

cl

∫ ∞

−∞
dµ Ul (sµ [i∂/− µ, Λ] pµ Q + Q pµ [i∂/ − µ, Λ] sµ)U−1l

= i

L∑

l=1

cl

∫ ∞

−∞
dµ Ul (Λ pµ Q − Q pµ Λ)U−1l

=

L∑

l=1

cl

(

iUlΛ

(∫ ∞

−∞
pµ dµ

)

QU−1l − iUlQ

(∫ ∞

−∞
pµ dµ

)

ΛU−1l

)

. (D.27)

By construction of Q̂, we can assume that the distributions P̂ and Q̂ have the same
support, and thus (D.2) holds for Q̂ as well,

supp Q̂ ⊂ C∧ . (D.28)
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Hence, according to (D.10), the projectors
∫∞
−∞ pµdµ in (D.27) can be omitted, and

we conclude that

∆P [∂/Λ] =

L∑

l=1

cl
(
iUlΛU

−1
l UlQU

−1
l − iUlQU

−1
l UlΛU

−1
l

)
. (D.29)

If in this formula we were allowed to replace the factors UlΛU
−1
l by Λ, we could

substitute in (D.22) and would obtain the contribution linear in Λ to the required
transformation law (D.4). Indeed, the difference between Λ and UlΛU

−1
l is irrelevant,

as one sees in detail as follows. We consider one summand in (D.29) and set for
ease in notation U = Ul. According to (D.19), the operators Λ and UΛU−1 coincide
macroscopically (i.e. when applied to functions with support in the low-energy region),
and thus (D.29) yields gauge symmetry on the macroscopic scale. However, such a
macroscopic gauge symmetry is not sufficient for us: to ensure that the microscopic
structure of space-time is not influenced by the electromagnetic field, it is essential that
(D.4) holds even on the Planck scale. In order to show microscopic gauge invariance,
we consider the operator UΛU−1 in momentum space,

(UΛU−1 f)(q) =

∫
d4p

(2π)4
Û(q) Λ̂(q − p) Û(p)−1 f(p) , (D.30)

where Λ̂ is the Fourier transform of Λ, and f is a test function in momentum space.
Since we assume that the electromagnetic potential A/ = ∂/Λ is macroscopic (D.3), the
integrand in (D.30) vanishes unless q − p is in the low-energy region. More precisely,
we can say that

|q0 − p0|, |~q − ~p| ∼ l−1macro ,

where lmacro denotes a typical length scale of macroscopic physics. Since the vector
q − p is in this sense small, it is reasonable to expand the factor Û(q) in (D.30) in a

Taylor series around p. As the operators Ûl are characterized via (D.18), we can assume
that they have similar regularity properties as P . In particular, we may assume that
the partial derivatives of Ûl(p) scale in powers of E−1P , in the sense that there should
be a constant c≪ lmacroEP such that

|∂κÛl(p)| ≤
(

c

EP

)|κ|

for any multi-index κ. (D.31)

From this we conclude that the Taylor expansion of Û(q) around p is an expansion in
powers of (lmacroEP )

−1, and thus

(UΛU−1 f)(q) =

∫
d4p

(2π)4
Û(p) Λ̂(q − p) Û(p)−1 f(p)

+ (higher orders in (lmacroEP )
−1). (D.32)

Using that Λ̂(q − p) is a multiple of the identity matrix, the factors Û(p) and Û(p)−1

in (D.32) cancel each other. We conclude that the operators UΛU−1 and Λ coincide
up to higher order in (lmacroEP )

−1. For the integral kernels in position space, we thus
have

(UΛU−1)(x, y) = Λ(x) δ4(x− y) + (higher orders in (lmacroEP )
−1). (D.33)

We point out that this statement is much stronger than the equality of the operators
UΛU−1 and Λ on the macroscopic scale that was mentioned at the beginning of this
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paragraph. Namely, (D.33) shows that these operators coincide even microscopically,
up to a very small error term. Notice that it was essential for the derivation that Λ
is a scalar function (for example, (D.33) would in general be false if we replaced Λ by
A/). Using (D.33) in each summand of (D.29) and applying (D.22), we conclude that

∆P [∂/Λ](x, y) = iΛ(x) P (x, y) − iP (x, y) Λ(y)

+ (higher orders in (lmacroEP )
−1). (D.34)

This shows gauge symmetry of the perturbation calculation (D.25).
It is interesting that, according to (D.34), gauge symmetry holds only up to an error

term. This is unproblematic as long as the length scales of macroscopic physics are
large compared to the Planck length. But (D.34) indicates that the regularized causal
perturbation theory fails when energy or momentum of the perturbation B are of the
order of the Planck energy. In this case, the distinction between the “macroscopic” and
“microscopic” length scales, on which our constructions relied from the very beginning
(cf. (D.3)), can no longer be made, and it becomes impossible to introduce a causal
and gauge invariant perturbation theory.

We conclude the discussion of the regularized causal perturbation expansion by
pointing out that our construction was based on condition (D.17), which is only a
necessary condition for causality. Hence the causality of (D.25) has not yet been
proved. We shall now perform the light-cone expansion of (D.25). This will show
explicitly that the light-cone expansion involves, to leading orders in (lmacroEP )

−1

and (lEP )
−1, no unbounded line integrals, thereby establishing causality in the sense

of §2.2.
In the remainder of this appendix, we will analyze the regularized causal pertur-

bation calculation (D.25) near the light cone. Our method is to first perform the
light-cone expansion of ∆Q, and then to transform the resulting formulas according to
(D.24) to finally obtain the light-cone expansion of ∆P . In preparation, we describe
how a decomposition into Dirac eigenstates can be used for an analysis of the operator
Q near the light cone. A short computation using (D.21, D.28) yields that Q̂ can be
represented in the form

Q̂(k) =

∫ ∞

−∞
dµ wµ(~k) ǫ(µ) (k/+ µ) δ(k2 − µ2) Θ(−k0) (D.35)

with the real-valued distribution

wµ(~k) = (φ(k) + µ λ(k)) f(k) and k(~k) = (−
√

|~k|2 + µ2, ~k). (D.36)

This representation can be understood as follows. According to (D.9), the distributions
ǫ(µ) (k/ + µ) δ(k2 − µ2) in the integrand of (D.35) are the spectral projectors of the
free Dirac operator in momentum space. The factor Θ(−k0) projects out all states

on the upper mass cone, and the function wµ(~k) multiplies the states on the lower

mass shell k = (−
√

|~k|2 + µ2, ~k) with a scalar weight factor. In this sense, (D.35) can

be regarded as the spectral decomposition of the operator Q into Dirac eigenstates.
Notice that the factor δ(k2 − µ2) Θ(−k0) in (D.35) is the Fourier transform of the
distribution Ta, (2.5.40). Exactly as described for the scalar component in §4.3, we are
here interested only in the regularization effects for large energy or momentum and
may thus disregard the logarithmic mass problem (see §2.5 for details). Therefore, we
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“regularize” Ta according to (2.5.42) and consider instead of (D.35) the operator

Q̂reg(k) :=

∫ ∞

−∞
dµ ǫ(µ) wµ(~k) (k/ + µ) T reg

µ2 (k) ,

where T reg
a (k) is the Fourier transform of (2.5.42). We expand the distribution T reg

µ2 in

a power series in µ2,

Q̂reg(k) =

∫ ∞

−∞
dµ ǫ(µ) wµ(~k) (k/ + µ)

∞∑

n=0

1

n!
T (n)(k) µ2n

with T (n) according to (2.5.43). Commuting the integral and the sum, we obtain

Q̂reg(k) = 32π3
∞∑

n=0

1

n!

(

g[n](~k) k/ + h[n](~k)
)

T (n)(k) (D.37)

with

g[n](~k) =
1

32π3

∫ ∞

−∞
dµ ǫ(µ) wµ(~k) µ

2n (D.38)

h[n](~k) =
1

32π3

∫ ∞

−∞
dµ ǫ(µ) wµ(~k) µ

2n+1 . (D.39)

The representation (D.37) is very useful because it reveals the behavior of the operator
Q near the light cone. To see this, we consider the Fourier transform of (D.37) in light-

cone coordinates (s, l, x2, x3). For the Fourier transform of the factor T (n)(k), we have
the representation (4.5.2). This representation can immediately be extended to the

Fourier transform of k/ T (n)(k) by acting on (4.5.2) with the differential operator i∂/;
more precisely in light-cone coordinates y − x = (s, l, x2, x3),

∫
d4k

(2π)4
k/ T (n)(k) e−ik(x−y)

= − 1

32π3
(−il)n−2

∫ ∞

0

[

il γs
(

1

un−1

)reg

− (n− 1) γl
(

1

un

)reg]

e−ius . (D.40)

In order to treat the factors g[n] and h[n] in (D.37), we note that the Fourier transform of
(D.37) can be computed similar as described in §4.3 by integrating out the transversal
momenta according to (4.3.4) and analyzing the remaining two-dimensional Fourier
integral (4.3.7) with the integration-by-parts method (4.3.14). If this is done, the
functions g[n] and h[n] appear in the integrand of (4.3.7). Our regularity assumption
on the fermionic projector of the vacuum (see §4.3 and §4.4) imply that g[n] and h[n] are

smooth functions, whose partial derivatives scale in powers of E−1P . Hence all derivative
terms of the functions g[n] and h[n] which arise in the integration-by-parts procedure

(4.3.14) are of higher order in (lEP )
−1. Taking into account only the leading order

in (lEP )
−1, we thus obtain a representation of the fermionic projector of the vacuum

involving only g[n] and h[n] at the boundary v = αu. Comparing this representation
with (4.5.2) and (D.40), we conclude that the Fourier transform of (D.37) is obtained,
to leading order in (lEP )

−1, simply by inserting the functions g[n] and h[n] into the

integrands of (4.5.2) and (D.40), evaluated along the line ~k = (kx = 2u, ky = 0, kz = 0).
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Thus

Qreg(s, l) = −
∞∑

n=0

1

n!
(−il)n−1

∫ ∞

0

(
1

un

)reg

e−ius h[n](u) du

−
∞∑

n=0

1

n!
(−il)n−2

∫ ∞

0

[

il γs
(

1

un−1

)reg

− (n− 1) γl
(

1

un

)reg]

e−ius g[n](u) du

+ (higher orders in (lEP )
−1), (D.41)

where h[n](u) and g[n](u) are the functions (D.38, D.39) with ~k = (−2u, 0, 0).
The decomposition of the operator Q into Dirac eigenstates (D.35) is also useful

for analyzing its perturbation ∆Q.

Lemma D.1. Let B(x) ∈ C2(R4) ∩ L1(R4) be a matrix potential which decays so
fast at infinity that the functions xiB(x) and xixjB(x) are also L1. Then the light-
cone expansion of the operator ∆Q[B], (D.23), is obtained by regularizing the light-
cone expansion of the Dirac sea to first order in the external potential as follows. A
summand of the light-cone expansion of the Dirac sea which is proportional to mp,

mp (iterated line integrals in bosonic potentials and fields) T (n)(s, l) ,

must be replaced by

(−1) (iterated line integrals in bosonic potentials and fields)

×(−il)n−1
∫ ∞

−∞
du

(
1

un

)reg

e−ius ×
{

h[ p−1
2

] for p odd

g[ p
2
] for p even

+ (rapid decay in l) + (higher orders in (lEP )
−1, (lmacroEP )

−1). (D.42)

A contribution ∼ mp which contains a factor (y − x)jγj ,

mp (iterated line integrals in bosonic potentials and fields) (y − x)jγj T (n)(s, l) ,

is to be replaced by

(−1) (iterated line integrals in bosonic potentials and fields)

×(−il)n−1
∫ ∞

−∞
du

[

2l γs
(

1

un

)reg

+ 2in γl
(

1

un+1

)reg]

× e−ius ×
{

h[ p−1
2

] for p odd

g[ p
2
] for p even

+ (contributions ∼ γ2, γ3)

+ (rapid decay in l) + (higher orders in (lEP )
−1, (lmacroEP )

−1) . (D.43)

In these formulas, g[n] and h[n] are the functions (D.38, D.39) with ~k = (−2u, 0, 0).
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Proof. By substituting (D.6) and (D.35) into (D.23), we obtain the following
representation for ∆Q in momentum space,

∆Q[B]
(

k +
q

2
, k − q

2

)

= −
∫ ∞

−∞
dµ ǫ(µ) (k/+

q/

2
+ µ) Bq (k/−

q/

2
+ µ)

×
(

PP

(k + q
2)

2 − µ2 wµ(~k −
~q

2
) Tµ2(k − q

2
)

+ wµ(~k +
~q

2
) Tµ2(k +

q

2
)

PP

(k − q
2)

2 − µ2
)

=

∫ ∞

−∞
dµ ǫ(µ) (k/ +

q/

2
+ µ) Bq (k/ −

q/

2
+ µ)

× PP

2kq

(

wµ(~k +
~q

2
) Tµ2(k +

q

2
) − wµ(~k −

~q

2
) Tµ2(k − q

2
)

)

. (D.44)

Using the methods developed in [F5], we now perform the light-cone expansion in
momentum space and then transform back to position space. Since we are here in-
terested in the regularization effects for large energy or momentum, we may disregard
the logarithmic mass problem and work on the level of the formal light-cone expansion
of [F5, Section 3] (our constructions could be made rigorous using the resummation
method of [F5, Section 4]). As in [F5, Section 3], we expand the distributions Tµ2 in
a Taylor series in q and rewrite the resulting k-derivatives as derivatives with respect
to µ2. This gives

Tµ2(k ± q

2
) =

∞∑

j,r=0

cjr (±kq)j
(
q2

4

)r

T
(j+r)
µ2 (k) (D.45)

with combinatorial factors cjr whose detailed form is not needed in what follows. Next,
we expand (D.45) in a Taylor series in µ2 and obtain

Tµ2(k ± q

2
) =

∞∑

n,j,r=0

cnjr µ
2n (±kq)j

(
q2

4

)r

T (n+j+r)(k) (D.46)

with new combinatorial factors cnjr. We substitute the expansions (D.46) into (D.44)
and write the even and odd terms in kq together,

∆Q[B]
(

k +
q

2
, k − q

2

)

= −
∫ ∞

−∞
dµ ǫ(µ) (k/ +

q/

2
+ µ) Bq (k/ −

q/

2
+ µ)

×




PP

2kq

∞∑

n,j,r=0, j even

cnjr µ
2n (kq)j

(
q2

4

)r

T (n+j+r)(k)

(

wµ(~k +
~q

2
)− wµ(~k −

~q

2
)

)

+
PP

2kq

∞∑

n,j,r=0, j odd

cnjr µ
2n (kq)j

(
q2

4

)r

T (n+j+r)(k)

(

wµ(~k +
~q

2
) + wµ(~k −

~q

2
)

)


 .

(D.47)

We first consider the contributions to (D.47) for even j. These terms contain the

factor (wµ(~k+
~q
2)−wµ(~k− ~q

2)). If the distribution wµ were a smooth function and its
derivatives had the natural scaling behavior in powers of the Planck length, we could

immediately conclude that |wµ(~k + ~q
2 ) − wµ(~k − ~q

2 )| ∼ |~q| |∂wµ| ∼ (lmacroEP )
−1, and
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thus all the terms for even j would be negligible. Unfortunately, the situation is more
difficult because wµ is in general not a smooth function (cf. (D.36)), and we obtain

the desired regularity in ~k only after the µ-integration has been carried out. This
makes it necessary to use the following argument. Consider one summand in (D.47)
for even j. After carrying out the µ-integration, this summand yields a finite number
of contributions to ∆Q(k + q

2 , k −
q
2) of the following form,

PP

kq
(kq)j

(
q2

4

)r

· · · Bq · · ·T (n+j+r)(k)

[

g(~k +
~q

2
)− g(~k + ~q

2
)

]

, (D.48)

where each symbol “· · · ” stands for a possible factor k/ or q/, and where g is a scalar func-
tion, which coincides with one of the functions g[n] or h[n] (see (D.38) and (D.39)). As
already mentioned after (D.40), our regularity assumptions on the fermionic projector
of the vacuum imply that the functions g[n] and h[n], and thus also g, are smooth, and
that their derivatives scale in powers of the Planck length. Applying the fundamental
theorem of calculus, we rewrite the square bracket in (D.48) as a line integral,

(D.48) =

∫ 1
2

− 1
2

dλ
PP

kq
(kq)j

(
q2

4

)r

· · · Bq · · ·T (n+j+r)(k) (~q ~∇)g(~k + λ~q) . (D.49)

We now transform (D.49) to position space. Our regularity assumptions on B mean

in momentum space that B(q) ∈ C2∩L∞. Using furthermore the regularity of ~∇g, we
can carry out the q-integration in the Fourier integral. Carrying out also the integral
over λ, we end up with a contribution to ∆Q(x, y) of the form

∫
d4k

(2π)4
T (n+j+r)(k) F (k, x+ y) e−ik(x−y) (D.50)

with a (matrix-valued) function F which is differentiable in k and is of the order
(lmacroEP )

−1. In the low-energy region, the function g in (D.48) is constant and
thus F is homogeneous in k of degree at most j + 1. After transforming to light-
cone coordinates, this implies that (D.50) is close to the light cone dominated by
the fermionic projector of the vacuum, in the sense that in light-cone coordinates,
|(D.50)| ≤ const(l) |P (s, l)|. We conclude that all summands in (D.47) for even j are
of higher order in (lmacroEP )

−1.
It remains to consider the summands in (D.47) for odd j. In this case, one factor

kq cancels the principal value, and we obtain

∆Q[B]
(

k +
q

2
, k − q

2

)

= −
∫ ∞

−∞
dµ ǫ(µ) (k/ +

q/

2
+ µ) Bq (k/ −

q/

2
+ µ)

×
∞∑

n,j,r=0

Cnjr µ
2n (kq)2j

(
q2

4

)r

T (n+2j+1+r)(k)

(

wµ(~k +
~q

2
) + wµ(~k −

~q

2
)

)

+(higher orders in (lmacroEP )
−1) (D.51)

with some combinatorial factors Cnjr. This formula has similarities to the light-cone
expansion of the Dirac sea in momentum space [F5, equation (3.15)]. In [F5, Section

3], we proceeded by rewriting the factors kq as k-derivatives acting on T (.). When
taking the Fourier transform, these k-derivatives were integrated by parts onto the
exponential factor exp(−ik(x− y)) to yield factors (y − x). After collecting and rear-
ranging all resulting terms, we obtained the line-integrals of the light-cone expansion.
This method can be applied also to the integrand of (D.51), and we can carry out
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the µ-integration afterwards. We shall not go through all these constructions steps in
detail here, but merely consider what happens in principle. Whenever a k-derivative
∂ki acts on the factors wµ in the integration-by-parts procedure, we get instead of a
factor (y − x)i wµ (which is obtained when the k-derivative acts on the exponential
exp(−ik(x−y))) a factor ∂iwµ. After carrying out the µ-integration, one sees that the
resulting term is of higher order in (lEP )

−1. Thus we can, to leading order in (lEP )
−1,

neglect all derivatives of the factors wµ. But then, the integration-by-parts procedure
reduces to the construction in [F5, Section 3], and we thus obtain precisely the line
integrals of the light-cone expansion [F5]. Furthermore, we can replace the factor

(wµ(~k+
~q
2 )+wµ(~k− ~q

2)) in (D.51) by 2wµ(~k), because a Taylor expansion of this factor
around ~q = 0 amounts, again after carrying out the µ-integration, to an expansion
in powers of (lmacroEP )

−1, and it thus suffices to take into account the leading term
of this expansion. These considerations show that the light-cone expansion of (D.51)

differs from that in [F5] merely by the additional µ-integration and the factor wµ(~k).
Hence the light-cone expansion of (D.51) is obtained from that of the Dirac sea by the
following replacements,

mp T (n)(x, y) →
∫

d4k

(2π)4

∫ ∞

−∞
dµ ǫ(µ) µp T (n)(k) e−ik(x−y) wµ(~k)

mp (y − x)jγj T (n)(x, y)

→
∫

d4k

(2π)4

∫ ∞

−∞
dµ ǫ(µ) µp (−2ik/) T (n+1)(k) e−ik(x−y) wµ(~k)

(where we used the identity (y − x)iT (n)(x, y) = 2∂xiT (n+1)(x, y); see [F5, equa-
tion (3.5)]). The lemma follows by carrying out the µ-integrals applying (D.38, D.39)
and by analyzing the behavior near the light cone as explained before (D.41).

From this lemma we can deduce the light-cone expansion of the regularized fermionic
projector.

Theorem D.2. The light-cone expansion of the regularized causal perturbation
(D.25) is obtained by regularizing the light-cone expansion of the Dirac sea to first
order in the external potential as follows. A summand of the light-cone expansion of
the Dirac sea which is proportional to mp,

mp (iterated line integrals in bosonic potentials and fields) T (n)(s, l) ,

must be replaced by (4.5.7). A contribution ∼ mp which contains a factor (y − x)jγj ,

mp (iterated line integrals in bosonic potentials and fields) (y − x)jγj T (n)(s, l) ,

is to be replaced by (4.5.9). In these formulas, g, h, a and b are the regularization
functions introduced in §4.3 and §4.4 (see (4.4.27, 4.3.25, 4.5.10, 4.4.19)).

Proof. As mentioned at the beginning of this appendix, we assume here that the
vector component is null on the light cone (4.4.21). Let us consider what this condition

tells us about the operators Ul. According to (D.19), the operators Ûl are trivial in
the low-energy region. Conversely, for large energy or momentum, (4.4.21) yields that
the vector field v(k) is parallel to k, up to a perturbation of the order εshear. Hence
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we can assume that the transformation (D.22) is a small perturbation of the identity,
in the sense that

cl |Ûl(k)− 11| ∼ εshear for all k. (D.52)

We next derive the light-cone expansion of ∆P by transforming the result of
Lemma D.1 according to (D.24). Since the transformation (D.24) is small in the
sense of (D.52), it leaves the iterated line integrals in (D.42) and (D.43) unchanged
to leading order in εshear. Hence it suffices to consider the transformation of the u-
integrals in (D.42) and (D.43). The u-integral in (D.42) is as a homogeneous scalar
operator invariant under the unitary transformations. In the u-integral in (D.43), on
the other hand, only the Dirac matrices γl and γs are modified. More precisely, we
have to leading order in εshear,

L∑

l=1

cl (Ûlγ
sÛ−1l )(u, v = αu) = γs +

b1(u)

u2
γl + (contributions ∼ γ2, γ3)

L∑

l=1

cl (Ûlγ
lÛ−1l )(u, v = αu) = γl +

b2(u)

u2
γs + (contributions ∼ γ2, γ3)

with suitable regularization functions bs and bl which are small in the following sense,

b1/2(u)

u2
∼ εshear .

Notice that in the high-energy region u ∼ EP , the contribution ∼ γl in the integrand
of (D.43) is smaller than the contribution ∼ γs by a relative factor of (lEP )

−1. Hence
we can neglect b2, whereas b1 must be taken into account. We conclude that the
transformation (D.24) of the contributions (D.42) and (D.43) is carried out simply by
the replacement

γs → γs +
b1(u)

u2
γl . (D.53)

It remains to derive relations between the regularization functions g[n], h[n], and bs,
which appear in the transformed contributions (D.42) and (D.43), and the regulariza-
tion functions g, h, a, and b in (4.5.7) and (4.5.9). For this, we apply the transformation
(D.22) to Qreg, (D.41). Exactly as described above, this transformation reduces to the
replacement (D.53), and we obtain the following expansion of the fermionic projector
near the light cone,

P reg(s, l) = −
∞∑

n=0

1

n!
(−il)n−1

∫ ∞

0

(
1

un

)reg

e−ius h[n](u) du

−
∞∑

n=0

1

n!
(−il)n−2

∫ ∞

0
e−ius g[n](u)

×
[

il γs
(

1

un−1

)reg

− (n− 1) γl
(

1

un

)reg

+ il γs b(u)

(
1

un+1

)reg]

du

+ (higher orders in εshear, (lEP )
−1).

Comparing this result with the formulas for the fermionic projector derived in §4.3 and
§4.4 (see (4.3.27, 4.3.28) and (4.4.6, 4.4.7)), one gets the following identities between
the regularization functions,

g[n](u) = g(u) a(u)n , h[n](u) = h(u) a(u)n , b1(u) = b(u) .
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We finally explain in which sense the regularized causal perturbation theory is
unique. In order to ensure regularity of the perturbation theory in the limit when the
momentum q of the external field goes to zero, one must satisfy a causality condition
similar to (D.17), and to this end one has to work with a modified fermionic projector
Q. Since we must modify the direction of the vector field v, it is natural to describe
the transformation from Q to P by linear combinations of unitary transformations
(D.22). Nevertheless, we remark that one could just as well work with a different
or more general transformation Q → P . The reason is that the particular form of
this transformation enters only in the proof of Theorem D.2, and we use merely that
this transformation is close to the identity, in the sense similar to (D.52). Hence the
restriction to transformations of type (D.22) is no loss in generality. Furthermore, we
point out that the gauge symmetry (D.34) uniquely determines the precise form of
how the potential B enters into the perturbation calculation (e.g. one may not replace
B in (D.25) by U−1l BUl). We conclude that our construction of the regularized causal
perturbation theory is canonical up to the freedom in choosing the coefficients cl(k) and

the unitary transformations Ûl(k). By assuming that the unitary transformations are

regular (D.31) and small (D.52), the arbitrariness in choosing (cl, Ûl) was constrained
so much that it has no influence on the regularization of the light-cone expansion.
Indeed, the cl and Ûl do not enter the statement of Theorem D.2. Thus we can say
that the regularized causal perturbation expansion is unique up to contributions of
higher order in (lEP )

−1, (lmacroEP )
−1 and εshear.





APPENDIX E

Linear Independence of the Basic Fractions

In this appendix we consider simple fractions of degree L ≥ 2 of the form

T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · ·T (bβ)

◦

T
(c1)
[0] · · ·T

(cγ)
[0] T

(d1)
[0] · · ·T

(dδ)
[0]

(E.1)

with integer parameters α, β ≥ 1, γ, δ ≥ 0 which satisfy the additional conditions

cj, dj ∈ {−1, 0} (E.2)

α− γ > β − δ ≥ 1 . (E.3)

We prove the following theorem which makes precise that the only relations between
the simple fractions are given by the integration-by-parts rules.

Theorem E.1. Assume that a linear combination of simple fractions (E.1–E.3)
vanishes when evaluated weakly on the light cone (4.5.29) to leading order in (lEP )

−1

and (lmacroEP )
−1, for any choice of η and the regularization functions. Then the linear

combination is trivial after suitably applying the integration-by-parts rules.

The condition (E.3) ensures that the simple fractions are asymmetric under com-
plex conjugations. Such an asymmetry is essential for our proof. However, (E.3) could
easily be weakened or replaced by other asymmetry conditions. Also, (E.2) and the
fact that the denominator involves only the square indices [0] is mainly a matter of
convenience. The reason why we are content with (E.1–E.3) is that all EL equations
in this book can be expressed in terms of simple fractions of this form.

We point out that the above theorem does not imply that the basic monomials are
independent in the sense that, by choosing suitable regularization functions, the ba-
sic regularization parameters can be given arbitrary values. Theorem E.1 states that
there are no identities between the basic fractions, but the basic regularization pa-
rameters might nevertheless be constrained by inequalities between them (e.g. certain
regularization parameters might be always positive). Furthermore, we remind that the
assumptions of positivity of the scalar component and of half occupied surface states
(see the last paragraph of §4.4) yield relations between the regularization functions
which might give additional constraints for the regularization parameters. For these
reasons, one should in applications always verify that the values for the basic regular-
ization parameters obtained in the effective continuum theory can actually be realized
by suitable regularization functions.

In the proof we will work with a class of regularization functions for which the
Fourier integrals and the weak evaluation integral can be computed explicitly; then we
will analyze in detail how the resulting formulas depend on the regularization. More

249
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precisely, we choose the regularization functions in (4.5.12, 4.5.14) as follows,

g(u) = uσ−1 (1 + ε uν) e
− u

2EP Θ(u) , h(u) = u4ν g(u) (E.4)

a(u) = u8ν , b(u) = u2ν (E.5)

with real parameters ε, σ, ν,EP > 0. These regularization functions have all the prop-

erties required in §2.5 if σ ≈ 1 and ε ≪ ν ≪ 1; note that the factor e
− u

2EP gives the
desired decay on the scale of the Planck energy. Using the decay of the integrand for
large Re u, we can deform the integration contours to obtain for any ρ > 0,

∫ ∞

0
uρ−1 e

− u
2EP e−ius du =

(

is+
1

2EP

)−ρ ∫ ∞

0
vρ−1 e−v dv =

Γ(ρ)

zρ
, (E.6)

where in the last step we set

z = is+
1

2EP

and used the definition of the gamma function. Here the power z−ρ is understood as
exp(−ρ log z) with the logarithm defined on the complex plane cut along the negative
real axis. By analytic continuation we can extend (E.6) to ρ in the complex plane with
the exception of the poles of the gamma function,

∫ ∞

0
uρ−1 e

− u
2EP e−ius du =

Γ(ρ)

zρ
, for ρ ∈ C \ {0,−1,−2, . . .}. (E.7)

This Fourier integral is also useful for computing the L2-scalar product of the Fourier
transform via Plancherel. Namely, under the conditions ρ, ρ′ > 1

2 we obtain

∫ ∞

0
uρ+ρ′−2e−EPudu =

1

2π

∫ ∞

−∞

Γ(ρ)

zρ
Γ(ρ′)

zρ
′ ds ,

and computing the integral on the left gives
∫ ∞

−∞

1

zρ zρ
′ ds = 2π Eρ+ρ′−1

P

Γ(ρ+ ρ′ − 1)

Γ(ρ) Γ(ρ′)
for ρ, ρ′ > 1

2 . (E.8)

The fact that the integral (E.7) diverges when ρ tends to a negative integer corre-
sponds precisely to the logarithmic mass problem as discussed after (4.5.1). A short
calculation shows that the infrared regularization can be introduced here simply by
subtracting the pole, i.e. for n ∈ N0

∫ ∞

0

(
u−n−1

)reg
e
− u

2EP e−ius du = lim
ρ→−n

(
Γ(ρ)

zρ
− (−1)n

n!

zn

ρ+ n

)

. (E.9)

Using this formula in (4.5.12, 4.5.14), we obtain

T
(n)
[p] = −(−il)n−1

∑

k=0,1

εk
Γ(σ − n+ (4p + k)ν)

zσ−n+(4p+k)ν
− (IR-reg) (E.10)

T
(n)
{p} = −(−il)n−1

∑

k=0,1

εk
Γ(σ − n+ (4p + k + 2)ν)

zσ−n+(4p+k+2)ν
− (IR-reg) , (E.11)

where “(IR-reg)” means that we subtract a counter term as in (E.9).
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For clarity we disregard the infrared regularization for the moment and consider

only the zeroth order in ε. Substituting the obtained formulas for T
(n)
◦ and their

complex conjugates into (E.1), we obtain

(E.1) =
(−1)A−C+β−δ

(−il)L
Γ(σ − a1 + ◦ν) · · ·Γ(σ − aα + ◦ν)

Γ(σ − c1) · · ·Γ(σ − cγ)
1

z(α−γ)σ−A+C+•ν

×Γ(σ − b1 + ◦ν) · · ·Γ(σ − bβ + ◦ν)
Γ(σ − d1) · · ·Γ(σ − dδ)

1

z(β−δ)σ−B+D+•ν
, (E.12)

where A =
∑α

j=1 aj , B =
∑β

j=1 bj , C =
∑γ

j=1 cj, D =
∑δ

j=1 dj . Here the parameter ◦
takes into account the lower indices of the corresponding factors T

(aj)
◦ or T

(bj)
◦ ; more

precisely for an index [p] and {p} it is equal to 4p and 4p + 2, respectively. The
parameter • stands for the sum of the parameters ◦ in the same line. Integrating
over s,

∫ ∞

−∞

T
(a1)
◦ · · · T (aα)

◦ T
(b1)
◦ · · ·T (bβ)

◦

T
(c1)
[0] · · ·T

(cγ)
[0] T

(d1)
[0] · · ·T

(dδ)
[0]

ds , (E.13)

using (E.8) and leaving out irrelevant prefactors, we obtain the expression

Γ(σ − a1 + ◦ν) · · ·Γ(σ − aα + ◦ν) Γ(σ − b1 + ◦ν) · · ·Γ(σ − bβ + ◦ν)
Γ(σ − c1) · · ·Γ(σ − cγ) Γ(σ − d1) · · ·Γ(σ − dδ)

× Eλ−1
P Γ(λ− 1)

Γ((α− γ)σ −A+ C + •ν) Γ((β − δ)σ −B +D + •ν) , (E.14)

where λ is the sum of the arguments of the two gamma functions in the denominator of
the second line. Since the EP -dependence tells us about λ, we are led to a combination
of gamma functions as considered in the next lemma. Although the statement of the
lemma is not surprising, the proof is a bit delicate, and we give it in detail.

Lemma E.2. Consider for given parameters N,M ∈ N quotients of gamma func-
tions of the form

Γ(σ − a1 + νb1) · · ·Γ(σ − aJ + νbJ)

Γ(σ − c1 + νd1) · · ·Γ(σ − cK + νdK)

1

Γ(n1σ − l1 + νm1) Γ(n2σ − l2 + νm2)
(E.15)

with integers J,K ≥ 0 and aj , bj , cj , dj , nj , lj ,mj ∈ Z, which satisfy the relations

n1 + n2 = N , n1 > n2 ≥ 1 (E.16)

m1 +m2 = M . (E.17)

If a linear combination of expressions of the form (E.15–E.17) vanishes for all (σ, ν)
in an open set of R2, then the linear combination is trivial after suitably applying the
identity

x Γ(x) = Γ(x+ 1) . (E.18)

Proof. Assume that a linear combination of terms of the form (E.15–E.17) vanishes
for all (σ, ν) in an open set of R2. By analytic continuation we can assume that the
linear combination vanishes for σ and µ in the whole complex plane with the exception
of the poles of the gamma functions.

We first consider the asymptotics for large σ and ν. If we fix ν and choose σ large,
we can approximate the gamma functions with the Stirling formula

Γ(x) =
√
2π xx+

1
2 e−x

(
1 +O(x−1)

)
(E.19)
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to obtain

log(E.15) = (J −K − n1 − n2) σ (log(σ)− 1)−
∑

i=1,2

ni log(ni) σ + O(log σ) .

Terms with a different asymptotics cannot compensate each other in the linear combi-
nation and must therefore vanish separately. Thus we can restrict attention to a linear
combination with fixed values of the parameters

J −K − n1 − n2 and
∑

i=1,2

ni log(ni) . (E.20)

More generally, we can choose ν = εσ for small fixed ε ≥ 0. Then for large σ,

log(E.15) =





J∑

j=1

(1 + εbi)−
K∑

k=1

(1 + εdk) −
∑

i=1,2

(ni + εmi)



σ (log(σ)− 1)

+

J∑

j=1

(1 + εbj) log(1 + εbj) σ −
K∑

k=1

(1 + εdk) log(1 + εdk) σ

−
∑

i=1,2

(ni + εmi) log(ni + εmi) σ + O(log σ) .

Expanding in powers of ε, we see that the asymptotics also determines the parameter

∑

i=1,2

mi log(ni) . (E.21)

We can assume that the parameters (E.20, E.21) are the same for all summands of our
linear combination. Combining (E.16) with the right of (E.20), we can compute n1
and n2. Furthermore, (E.17) and (E.21) uniquely determine m1 and m2.

By iteratively applying (E.18) we can write each term (E.15) as

P(σ, ν)
Q(σ, ν)

Γ(σ + νb1) · · ·Γ(σ + νbJ)

Γ(σ + νd1) · · ·Γ(σ + νdK)

1

Γ(n1σ + νm1) Γ(n2σ + νm2)
,

where P and Q are polynomials in σ and ν (which clearly depend also on all the integer
parameters). After bringing the summands of the linear combination on a common
denominator, the numerator must vanish identically. Thus it suffices to consider a sum
of expressions of the form

P(σ, ν) Γ(n1σ + νm1) Γ(n2σ + νm2)

L−2∏

l=1

Γ(σ + νbl) (E.22)

with new polynomials P and parameters L, bl. According to the left of (E.20), the
parameter L is the same for all summands. We denote the number of such summands
by P . For notational convenience we also write (E.22) in the more general form

P(σ, ν)
L∏

l=1

Γ(nlσ + νal) (E.23)
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with new parameters nl and al. We evaluate (E.23) at successive points σ+p with p =
0, . . . , P − 1. Again using (E.18), we obtain the expression

P(σ + p, ν)
L∏

l=1





nlp−1∏

q=0

(nlσ + q + νal)



Γ(nlσ + νal) .

We now consider the asymptotic regime

σ ≫ ν ≫ P .

Then (E.23) simplifies to

P(σ, ν)
L∏

l=1

(nlσ + νal)
nlp Γ(nlσ + νal)

(
1 +O(p σ−1) +O(p ν−1)

)
.

It is convenient to divide by
∏L

l=1(nlσ)
nlp (this is possible in view of the fact that the

parameters ni and L in (E.22) are known). This gives

P(σ, ν)
L∏

l=1

[

1 +
νal
σnl

]nlp

Γ(nlσ + νal)
(
1 +O(p σ−1) +O(p ν−1)

)
.

Since the parameters ni and mi in (E.22) are also known, we can finally divide by the
factors for l = 1, 2 to obtain the expressions

Fp(σ, ν) := P(σ, ν)
L−2∏

l=1

[

1 + bl
ν

σ

]p
Γ(nlσ + νbl) .

These functions satisfy the simple relations

Fp(σ, ν) = F0(σ, ν) G
(ν

σ

)p
(E.24)

with

G(λ) :=

L−2∏

l=1

[1 + λ bl] . (E.25)

Let us verify that the function G(λ) determines all the parameters bl in (E.22):

Assume that the functions G and G̃ corresponding to two choices of the parameters bl
are equal. Collecting and counting common factors, their quotient G(λ)/G̃(λ) can be
written as

G

G̃
=

I∏

i=1

[1 + λ bi]
qi

for some parameters qi ∈ Z satisfying the conditions

I∑

i=1

qi = 0 . (E.26)

Here the bi are (with a slight abuse of notation) a selection of the parameters bl and b̃l,
which are all different from each other, and I denotes the number of such parameters.
We must show that the powers qi are all zero. To this end we take the logarithm,

logG− log G̃ =
I∑

i=1

qi log (1 + λ bi) .
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Expanding in powers of λ up to the order I, we obtain the conditions

I∑

i=1

qi b
l
i = 0 for all l = 1, . . . , I.

We write these equations in the matrix form

AΨ = 0 (E.27)

with

A =










1 1 · · · 1
b1 b2 · · · bI
b21 b22 · · · b2I
...

...
. . .

...

bI−11 bI−12 · · · bI−1I










, Ψ =








q1b1
q2b2
...

qIbI







.

An elementary consideration shows that

detA =
∏

1≤i<j≤I

(bj − bi) 6= 0 (E.28)

because the bj are all different. We conclude that the matrix A is invertible and
thus Ψ = 0. Hence all the powers qi vanish whenever bi 6= 0. In the remaining
case bi = 0 the corresponding power qi is zero because of (E.26).

We now return to (E.24). By assumption the sum of the functions Fp(σ, ν) vanishes,

0 =

P∑

α=1

F (α)
p (σ, ν) for p = 0, . . . , P − 1,

where the index (α) labels the summands of the linear combination. Using (E.24) and
keeping σ fixed, we can again write these equations in matrix form (E.27) with

A(ν) =










1 1 · · · 1
G(1) G(2) · · · G(P )

G2
(1) G2

(2) · · · G2
(P )

...
...

. . .
...

GP−1
(1) GP−1

(2) · · · GP−1
(P )










, Ψ(ν) =









F
(1)
0

F
(2)
0
...

F
(P )
0









.

Suppose that Ψ(ν0) 6= 0. Then there is ε > 0 such that Ψ(ν) 6= 0 for all ν ∈ Bε(ν0).
Computing the determinant of A again using the formula (E.28) we conclude that for
each ν ∈ Bε(ν0), at least two of the functions G(α) coincide. Since there is only a finite
number of combinations to choose the indices, there must be two indices (α) 6= (β)

such that the function G(α) − G(β) has an infinite number of zeros on Bε(ν0)Bε(ν0).
Due to analyticity, it follows that G(α) ≡ G(β), in contradiction to our above result
that the functions G(α) are all different. We conclude that Ψ(ν0) = 0 and thus

F
(α)
0 (σ, ν) = 0 for all α = 1, . . . P .

This means that the terms (E.22) all vanish identically.

Proof of Theorem E.1. Consider a linear combination L of simple fractions which
satisfies the assumptions of the theorem. We regularize according to (E.4, E.5, E.10,
E.11), expand in powers of ε and evaluate weakly on the light cone (E.13). This
gives a series of terms of the general form (E.14) (note that due to (E.2) no infrared
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regularization is necessary in the denominator, and so the counter terms appear only
in the numerator). The scaling in EP distinguishes between the contributions with
different values of λ. For every basic fractions (E.1) we introduce the parameter

N = α− γ + β − δ (E.29)

and let Nmax be the maximum which this parameter attains for the basic fractions
in L. We restrict attention to those contributions (E.14) where λ can be written as

λ = Nσ − l +mν (E.30)

with integer parameters l,m. These contributions all come from those simple fractions
for which the parameter (E.29) is equal to N . Furthermore, since the counter terms
in (E.10, E.11) involve no factor z−σ (see (E.9)), they contribute only for λ = nσ+ · · ·
with n < Nmax and thus do not show up in our analysis. By considering the con-
tributions (E.14) with λ of the form (E.30), we will show that all simple fractions
with N = Nmax vanish after suitably applying the integration-by-parts rules. Then
the corresponding counter terms also drop out, because the infrared regularization
is compatible with the integration-by-parts rules. Hence these simple fractions com-
pletely drop out of L, and we can proceed inductively to the analysis of the simple
fractions with N < Nmax. This argument allows us to completely ignore the infrared
regularization in what follows.

Since the summands with different value of λ scale differently in EP , we can as-
sume that the parameter λ is the same for all simple fractions in L. Dividing (E.14)

through Eλ−1
P Γ(λ − 1) and using (E.3), we obtain terms which are precisely of the

form as considered in Lemma E.2. Therefore, our representation of L as a linear com-
bination of quotients of gamma functions (E.14) is unique up to applying (E.18). We
will consider this arbitrariness later and for the moment consider a fixed choice of
summands of the form (E.14).

Our goal is to get a one-to-one connection between quotients of gamma functions of
the form (E.14) and our original simple fractions. Unfortunately, to zeroth order in ε
one cannot reconstruct the simple fraction from the expression (E.14), because (E.14)
is symmetric in the parameters aj and bk, and thus it is impossible to tell which of these

parameters came from a factor T
(.)
◦ or T

(.)
◦ . This is the reason why we need to consider

the higher orders in ε as well. Out of the many terms of the general form (E.13) we
select a few terms according to the following rules, which we apply one after the other:

(i) No factors Γ(σ + ν) or Γ(σ + 1 + ν) appear.
(ii) For the factor Γ((α− γ)σ − n+mν) the parameter m is maximal.
(iii) The number of factors Γ(σ − n+ (2m+ 1)ν) in the numerator is minimal.

By “maximal” (and similarly “minimal”) we mean that there is no summand for which
the corresponding parameter is larger (no matter how all other parameters look like).
Note that the factor Γ((α − γ)σ − n +mν) in (E.14) is uniquely determined because
of (E.3).

Assuming that L is non-trivial, the above procedure gives us at least one term of
the form (E.13) (note that the zero-order term in ε clearly satisfies (i)). The point is
that we can uniquely construct from this term a corresponding simple fraction from L,

as the following consideration shows. According to (i), the factors T
(−1)
[0] and T

(0)
[0]

are taken into account only to lowest order in ε, because otherwise a factor of the
form Γ(σ−n+ν), n = −1, 0, would appear. In particular, one sees from (E.2) that we
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do not get ε-terms of the denominator. Hence the higher orders in ε are obtained simply
by expanding the numerator in (E.1) in powers of ε. With the rule (ii) we arranged

that all factors T
(n)
◦ with n > 0 or ◦ 6= [0] are taken into account linearly in ε. On the

other hand, (iii) ensures that none of the factors T
(n)
◦ is taken into account linearly

in ε. Therefore, all gamma functions in the numerator whose argument contains an

odd number times ν belong to a factor T
(n)
◦ . Conversely, the gamma functions of the

form Γ(σ − n + 2mν) belong to a factor T
(n)
◦ , at least when n > 0 or ◦ 6= [0]. In

this way, the gamma functions determine the simple fraction up to factors of T
(−1)
[0]

,

T
(0)
[0] and T

(−1)
[0] , T

(0)
[0] . But the factors T

(−1)
[0] and T

(0)
[0] can easily be determined from

the argument of the factor Γ((α − γ)σ − n +mν), because α − γ gives us how many

factors T
(.)
[0] we must use, whereas n tells us about how many factors T

(−1)
[0] we must use.

Since λ is known, we also know the arguments of the factor Γ((β − δ)σ−B+D+ •ν)
in (E.13), and this determines in turn the factors T

(−1)
[0] and T

(0)
[0] .

We conclude that the above construction allows us to determine one summand
of L. Subtracting this summand, we can proceed iteratively to determine all other
summands of L. This construction is unique up to the transformation of the gamma
functions with (E.18).

We conclude the proof by establishing a one-to-one correspondence between the
transformation (E.18) of the gamma functions and the integration-by-parts rule for the
simple fraction. To every simple fraction (E.1) we can associate a contribution of the
form (E.14) which satisfies the rules (i)–(iii) with the following symbolic replacements,

T
(−1)
[0] , T

(−1)
[0] −→ Γ(σ + 1) , T

(0)
[0] , T

(0)
[0] −→ Γ(σ)

T
(n)
[p] −→ Γ(σ − n+ (4p + 1)ν)

T
(n)
[p] −→ Γ(σ − n+ 4pν)






(if n > 0 or p > 0)

T
(n)
{p} −→ Γ(σ − n+ (4p + 3)ν) , T

(n)
{p} −→ Γ(σ − n+ (4p + 2)ν) .

These replacement rules determine the first line in (E.14), whereas the arguments of
the gamma functions in the second line are obtained as explained above by adding the
arguments of the gamma functions in the first line. If (E.18) is applied to the gamma
functions in the first line of (E.14),

Γ(σ − n+ ◦ν) −→ (σ − (n+ 1) + ◦ν) Γ(σ − (n+ 1) + ◦ν) ,
we take this into account with the following symbolic transformation inside the simple
fraction,

T
(n)
◦ −→ ∇T (n+1)

◦ .

Here ∇ is the derivation as introduced in (4.5.34). Using the Leibniz rule this corre-
spondence can be extended to composite expressions; for example,

∇
(

1

T
(n)
◦

)

= − ∇T
(n)
◦

(T
(n)
◦ )2

←→ −(σ − n+ ◦σ) Γ(σ − n+ ◦σ)
Γ(σ − n+ ◦σ)2 = − (σ − n+ ◦σ)

Γ(σ − n+ ◦σ)
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∇(T (n1)
◦1 T

(n2)
◦2 ) = ∇(T (n1)

◦1 ) T
(n2)
◦2 + T

(n1)
◦1 ∇(T (n2)

◦2 )

←→ (2σ − (n1 + n2 − 2) + (◦1 + ◦2)ν) Γ(σ − n1 + ◦1ν) Γ(σ − n1 + ◦1ν)
and similarly for other composite expressions. It remains to consider the transforma-
tions of the gamma functions in the second line of (E.14). Since λ is fixed, we can only
increment the argument of one gamma function in the denominator and at the same
time decrement the argument of the other, for example

(α− γ)σ − (n+ 1) + •1ν
Γ((α− γ)σ − n+ •1ν) Γ((β − δ)σ −m+ •2ν)

−→ (β − δ)σ −m+ •2ν)
Γ((α− γ)σ − (n+ 1) + •1ν) Γ((β − δ)σ − (m− 1) + •2ν)

.

This transformation can be related to the integration-by-parts rule
∫ ∞

−∞
∇(· · · ) (· · · ) ds −→ −

∫ ∞

−∞
(· · · ) ∇(· · · ) ds ,

where (· · · ) and (· · · ) stand for simple fractions composed of T
(n)
◦ and T

(n)
◦ , respec-

tively. As is easily verified, these replacements rules are all compatible with each other
and with the Leibniz rule. They allow us to identify the transformation (E.18) with
the integration-by-parts rules.





APPENDIX F

The Commutator [P,Q]

The Euler-Lagrange equations corresponding to our variational principles involve
the commutator [P,Q] (5.2.9), where Q is a composite expression in the fermionic
projector. In Chapter 4 we developed a method with which composite expressions in
the fermionic projector can be evaluated weakly on the light cone. In this appendix
we shall describe in detail how these methods can be used to evaluate the commuta-
tor [P,Q] in the continuum limit. We begin by collecting a few formulas from §4.5 and
bring them into a form convenient for what follows. The kernel Q(x, y) can be written
as a linear combination of terms of the form (4.5.22)

f(x, y)
T
(a1)
◦ · · · T (aα)

◦ T
(b1)
◦ · · ·T (bβ)

◦

T
(c1)
◦ · · ·T (cγ)

◦ T
(d1)
◦ · · ·T (dδ)

◦

, (F.1)

where f is a smooth function composed of the bosonic fields and fermionic wave func-

tions. Here the factors T
(aj)
◦ and T

(bk)
◦ are the regularized distributions of the light-cone

expansion. The quotient of monomials is called a simple fraction, and its degree L is de-
fined by (4.5.27). If L > 1, the monomial becomes singular on the light cone when the
regularization is removed by letting EP → ∞. In light-cone coordinates (s, l, x2, x3),
this singular behavior on the light cone is quantified by a weak integral over s for fixed
x2, x3, and l≫ E−1P . More precisely (4.5.29),

∫ ∞

−∞
ds (ηf)(s)

T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · · T (bβ)

◦

T
(c1)
◦ · · · T (cγ)

◦ T
(d1)
◦ · · ·T (dδ)

◦

=
creg
(il)L

(ηf)(s = 0) logg(EP ) E
L−1
P

+ (higher orders in (lEP )
−1 and (lmacroEP )

−1) , (F.2)

where g is an integer, creg is the so-called regularization parameter, and η is a test
function, which must be macroscopic in the sense that its derivatives scale in powers
of l−1 or l−1macro. The asymptotic formula (F.2) applies on the upper light cone s = 0,
but by taking the adjoint and using that Q is Hermitian, Q(x, y)∗ = Q(y, x), it is
immediately extended to the lower light cone. Furthermore, we can integrate (F.2) over
l, x2, and x3, provided that l≫ E−1P . In polar coordinates (y− x) = (t, r,Ω = (ϑ,ϕ)),
we thus have

∫ ∞

−∞
dt

∫ ∞

r0

r2 dr

∫

S2

dΩ η(t, r,Ω) f(x, y)
T
(a1)
◦ · · ·T (aα)

◦ T
(b1)
◦ · · · T (bβ)

◦

T
(c1)
◦ · · · T (cγ)

◦ T
(d1)
◦ · · ·T (dδ)

◦

= logg(EP )E
L−1
P

∫

IR\[−r0,r0]
t2 dt

∫

S2

dΩ (ηf)|r=|t|
creg(Ω)

(it)L

+ (higher orders in (rEP )
−1 and (lmacroEP )

−1) ,

259
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valid for every r0 ≫ E−1P . Next we expand the function f in a Taylor series around
(y − x) ≡ ξ = 0,

f(x, y) =
∑

J

fJ(x) ξ
J (F.3)

with J a multi-index, and write the Taylor coefficients together with the regularization
parameter. Collecting all contributions, we obtain for Q the weak evaluation formula

∫ ∞

−∞
dt

∫ ∞

r0

r2 dr

∫

S2

dΩ η(t, r,Ω) Q(x, y)

=

Lmax∑

L=2

gmax∑

g=0

logg(EP ) E
L−1
P

∑

J

∫

IR\[−r0,r0]
dt t2−L

∫

S2

dΩ η hJ (Ω) ξ
J

+ (higher orders in ((r + |t|) EP )
−1 and (lmacroEP )

−1) + o(EP ) (F.4)

with suitable functions hJ (Ω), which depend on L and g. The integrand on the right
side of (F.4) is evaluated on the light cone r = |t|. The maximal degree of the mono-
mials Lmax as well as gmax are clearly finite parameters. Notice that the monomials of
degree L < 2 are omitted in (F.4); this is justified as follows. For L < 2, the integral
(F.2) diverges at most logarithmically as EP →∞, and furthermore has a pole in l of
order at most one. Thus the corresponding contribution to (F.4) is at most logarith-
mically divergent as EP → ∞, with bounds uniform in r0. This is what we mean by
o(EP ).

We point out that the asymptotic expansion near the light cone (F.4) does not
give any information on the behavior of Q(x, y) near the origin, i.e. when x and y are
so close that r, |t| ∼ E−1P . Namely, due to the restriction r0 ≫ E−1P , the region near
the origin is excluded from the integration domain. Also, near the origin the terms of
higher order in ((r + |t|)EP )

−1, which are left out in (F.4), cannot be neglected. As
explained in detail in Appendix D, the reason for this limitation is that near the origin,
Q depends essentially on the detailed form of the fermionic projector on the Planck
scale and thus remains undetermined within the method of variable regularization.

Our aim is to evaluate the commutator [P,Q] using the expansion (F.4). The main
difficulty is that products of the operators P and Q, like for example

(Q P )(x, y) =

∫

d4z Q(x, z) P (z, y) , (F.5)

involve Q(x, z) near the origin x = z, where (F.4) does not apply. In order to explain
our strategy for dealing with this so-called problem at the origin, we briefly discuss a
simple one-dimensional example. Assume that we are given a function f(x), x ∈ R,
and a positive integer n such that for all x0 ≫ E−1P and test functions η,

∫

IR\[−x0,x0]
f(x) η(x) dx

=

∫

IR\[−x0,x0]

η(x)

xn
dx + (higher orders in (xEP )

−1). (F.6)

In analogy to (F.4), this formula does not give any information on the behavior of
f(x) near the origin x = 0. Thus there are many different functions satisfying (F.6),
a typical example is

f(x) =
1

(x− iE−1P )n
. (F.7)
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The question is if (F.6) is useful for analyzing the weak integral
∫ ∞

−∞
f(x) η(x) dx . (F.8)

The answer to this question depends very much on the properties of η. If η is an
arbitrary test function with compact support, we can restrict attention to test functions
with support away from the origin, supp η ⊂ R \ [−x0, x0]. Then (F.6) applies, and
we find that f(x) ∼ x−n. Thus by evaluating (F.8) for suitable test functions, we
can find out that, as long as |x| ≫ E−1P , f(x) behaves like the function x−n, which
has a pole of order n at the origin. We refer to this statement as we can detect the
pole of f by testing with η. Unfortunately, the situation becomes more difficult if we
assume that η belongs to a more restricted class of functions. Assume for example
that η(x) is rational, goes to zero at infinity and has all its poles in the upper half
plane {Im x > 0}. Then for f as in (F.7), the integral (F.8) can be closed to a contour
integral in the lower complex plane, and we get zero, independent of η. This shows
that when testing only with rational functions with poles in the upper half plane, the
formula (F.6) is of no use, and we cannot detect the pole of f . Indeed, the problem
in (F.5) can be understood in a similar way. If we apply the operator product QP to a
test function η and write the result as (QP )η = Q(Pη), the problem of making sense
out of the integral (F.5) can be restated by saying that Q may be tested only with the
functions Pη. In other words, the test functions must lie in the image of P , i.e. they
must be negative-energy solutions of the Dirac equation. Thus the question is if by
evaluating only with such special functions, can we nevertheless detect the poles of Q,
and if yes, how can this be done? Once these questions are settled, we can compute
the operator products PQ,QP and take their difference.

For clarity we begin the analysis with the simplified situation where both P and
Q are homogeneous, i.e.

P (x, y) = P (y − x) , Q(x, y) = Q(y − x) . (F.9)

Under this assumption, the operators P and Q are diagonal in momentum space,

P (x, y) =

∫
d4k

(2π)4
P̂ (k) e−ik(x−y) , Q(x, y) =

∫
d4k

(2π)4
Q̂(k) e−ik(x−y) ,

and their products can be taken “pointwise” in k, i.e. in the example (F.5),

(QP )(x, y) =

∫
d4k

(2π)4
Q̂(k) P̂ (k) e−ik(x−y) . (F.10)

Due to this simplification, it is preferable to work in momentum space. Now the
problem at the origin becomes apparent in the Fourier integral

Q̂(k) =

∫

d4ξ Q(ξ) e−ikξ (ξ ≡ y − x), (F.11)

where we must integrate over a neighborhood of ξ = 0. In order to handle this problem,
we must carefully keep track of how the unknown behavior of Q near the origin effects
the Fourier integral: If we consider the integral in position space

∫

d4ξ η(ξ)Q(ξ) (F.12)

with a smooth, macroscopic function η, we can make the unknown contribution near
the origin to the integral small by assuming that η goes to zero sufficiently fast near
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ξ = 0. Thus we expect that (F.12) is well-defined provided that the partial derivatives
of η(ξ) at ξ = 0 vanish up to the order n,

∂Iη(0) = 0 for all I with |I| ≤ n, (F.13)

where n is a sufficiently large parameter (which we shall specify below). In momentum
space, the conditions (F.13) take the form

∫

d4k kI η̂(k) = 0 , |I| ≤ n.

This means that the Fourier transform of Q is well-defined by (F.11), as long as it is
evaluated weakly only with test functions η̂(k) which are orthogonal to the polynomials

kI . Equivalently, we can say that Q̂(k) is defined only up to the polynomials kI ,

Q̂(k) =

∫

d4ξ Q(ξ) e−ikξ mod Pn(k) , (F.14)

where Pn(k) denotes the polynomials in k of degree at most n. Let us compute the
Fourier integral (F.14) using the expansion (F.4), and at the same time determine the
parameter n. Our method is to consider (F.4) for η = exp(−ikξ) and to choose n so
large that we can take the limit r0 ց 0 to obtain the Fourier integral (F.14). For each
summand in (F.4), the resulting t-integral is of the form

lim
r0ց0

∫

IR\[−r0,r0]
dt t2−L+|J | e−iωt mod Pn(ω) .

Here in the integrand one may distinguish between the two regions |t| > ω−1, where

the factor t2−L+|J | is regular and e−iωt is oscillating, and |t| < ω−1, where the pole

of t2−L+|J | must be taken into account and the exponential is well-approximated by a
Taylor polynomial. Since we are interested in the scaling behavior of the integral over
the pole, it suffices to consider the region |t| < ω−1, and calculating modulo Pn(ω),
the leading contribution to the integral is

lim
r0ց0

∫

[−ω−1,ω−1] \ [−r0,r0]
dt t2−L+|J |

(−iωt)n+1

(n+ 1)!
. (F.15)

If n ≥ L− |J | − 3, the integrand is bounded near t = 0. In the case n = L− |J | − 4,
the limit in (F.15) may be defined as a principal value, whereas for n < L − |J | − 4,
(F.15) is ill-defined. Thus we need to assume that n ≥ L−|J |− 4. Moreover, we must
ensure that the terms of higher order in ((r + |t|)EP )

−1, which are omitted in (F.4),
are negligible in the Fourier integral. Since these terms are regularized on the Planck
scale, the scaling behavior of these higher order terms is in analogy to (F.15) given by
the integrals

∫

[−ω−1,ω−1] \ [−E−1
P ,E−1

P ]
dt
t3−L+|J |+n

(tEP )n
, n ≥ 1.

A simple calculation shows that these integrals are negligible compared to (F.15) if
and only if n ≥ L − |J | − 3, and under this assumption, they are of higher order in
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ω/EP . We conclude that the Fourier transform of Q has the expansion

Q̂(k) =

Lmax∑

L=2

gmax∑

g=0

logg(EP )E
L−1
P

∑

J

×
∫ ∞

−∞
dt t−L+|J |+2

∫

S2

dΩ hJ(ξ̌) ξ̌
J e−ikξ̌t mod PL−|J |−3(k)

+ (higher orders in k/EP and (lmacroEP )
−1) + o(EP ) , (F.16)

where ξ̌ is the “unit null vector” ξ̌ = (1, Ω ∈ S2 ⊂ R3) and hJ (ξ̌ = (1,Ω)) ≡ hJ(Ω).
Carrying out the t-integration gives the following result.

Lemma F.1. Suppose that the operator Q is homogeneous. Then its Fourier trans-
form Q̂ is of the form

Q̂(k) =

Lmax∑

L=2

gmax∑

g=0

logg(EP )E
L−1
P

∑

J

Q̂Lg
J (k) mod PL−|J |−3(k)

+ (higher orders in k/EP and (lmacroEP )
−1) + o(EP ) (F.17)

with

Q̂Lg
J (k) = −2πi (−iω)L−|J |−3

×
∫

S2

dΩ hJ(ξ̌) ξ̌
J ×







(ǩξ̌)L−|J |−3

(L− |J | − 3)!
Θ(ωǩξ̌) if |J | < L− 2

ǫ(ω)L−|J |−3 δ(2+|J |−L)(ǩξ̌) if |J | ≥ L− 2 ,

(F.18)

where ω = k0 is the energy and ǩ ≡ k/ω (ǫ is again the step function ǫ(x) = 1 for
x ≥ 0 and ǫ(x) = −1 otherwise).

Proof. The t-integral in (F.16) is of the form
∫ ∞

−∞
t−n e−iλt dt mod Pn−1(k)

with n = L− |J | − 2 and λ = kξ̌. For n = 0, we have
∫ ∞

−∞
e−iλt dt = 2π δ(λ) . (F.19)

The case n < 0 follows by differentiating this equation (−n) times with respect to λ.
In order to treat the case n > 0, we integrate (F.19) n times in the variable λ. The
integration constant is a polynomial in λ of degree n− 1 and can thus be omitted.

Let us briefly discuss the above expansion. The parameters L and g give the scaling
behavior in the Planck energy. The multi-index J enters at two different points: it
determines via the factor ω−|J | the dependence on the energy, and it also influences the
S2-integral. This integral gives detailed information on the behavior of Q̂(k) in ǩ, but
it is independent of |ω|. Integrating over S2 takes into account the angular dependence
of the regularization functions and of the macroscopic physical objects and tells about
how the different angles contribute to Q̂. In the case |J | ≥ L − 2, the integrand has
a δ-like singularity localized at ǩξ̌ = 0, and so the S2-integral reduces to integrating
over the intersection of the hyperplane {ξ | kξ = 0} with the two-sphere t = 1 = r.
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This intersection is empty for time-like k, and is a one-sphere for space-like k. As a

consequence, Q̂Lg
J (k) is zero inside the mass cone C and in general non-zero outside,

without being regular on its boundary {k2 = 0}. If on the other hand |J | < L − 2,
the factor Θ(ωǩξ̌) is essential, because without this factor, we would simply have a

polynomial in k of degree L−|J |−3, being zero modulo PL−|J |−3(k). Note that for any
ξ̌, the factor Θ(ωǩξ̌) vanishes inside the lower mass cone {ǩ2 > 0, ω < 0}, whereas it is
in general non-zero otherwise. This means that Q̂Lg

J (k) again vanishes in the interior
of the lower mass cone and is not regular on the mass cone {k2 = 0}. The singular
behavior on the lower mass cone is made more explicit in the following lemma.

Lemma F.2. The operators Q̂Lg
J (k), (F.18), vanish inside the lower mass cone

{ǩ2 > 0, ω < 0}. Near the lower mass cone, they have the asymptotic form

Q̂Lg
J (k) = 2π2 i

(

− iω
2

)L−|J |−3

hJ(ǩ) ǩ
J (1 +O(ǩ2))

×







ǩ2(L−|J |−2)

(L− |J | − 2)!
Θ(−ǩ2) if |J | ≤ L− 2

(−1)1+|J |−L δ(1+|J |−L)(ǩ2) if |J | > L− 2 .

(F.20)

Proof. Without loss of generality, we can assume that ǩ points in the tx-direction
of our Cartesian coordinate system, i.e. ǩ = (1, λ, 0, 0) with λ ≥ 0. Then ǩξ̌ =
1− λ cos ϑ, and we can write (F.18) in the region ω < 0 as

Q̂Lg
J (k) = −2πi (−iω)L−|J |−3

∫ 1

−1
d cos ϑ

∫ 2π

0
dϕ hJ(ξ̌) ξ̌

J

×







(1− λ cos ϑ)L−|J |−3
(L− |J | − 3)!

Θ(λ cos ϑ− 1) if |J | < L− 2

(−1)L−|J |−3 δ(2+|J |−L)(1− λ cos ϑ) if |J | ≥ L− 2 .

Inside the lower mass cone, the parameter λ < 1, and the integrand is identically equal
to zero. Outside and near the lower mass cone, 1 ≤ λ ≈ 1, and the integrand vanishes
unless cosϑ ≈ 1. Hence to leading order in ǩ2, we may replace hJ(ξ̌) ξ̌

J by its value
at the coordinate pole ϑ = 0 and carry out the ϕ-integration,

Q̂Lg
J (k) = −4π2 i (−iω)L−|J |−3 hJ (ǩ) ǩJ (1 +O(ǩ2))

×
∫ 1

−1
du ×







(1− λu)L−|J |−3
(L− |J | − 3)!

Θ(λu− 1) if |J | < L− 2

(−1)L−|J |−3 δ(2+|J |−L)(1− λu) if |J | ≥ L− 2 .

In the case |J | < L− 2, the remaining integral is of the form
∫ 1

−1
(1− λu)n Θ(λu− 1) du = − 1

λ(n+ 1)
(1− λ)n+1 Θ(λ− 1) ,

whereas in the case |J | ≥ L− 2,
∫ 1

−1
δ(n)(1− λu) du =

(

− d

dλ

)n ∫ 1

−1
u−n δ(1 − λu) du

=

(

− d

dλ

)n

(λn−1 Θ(λ− 1)) .
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Finally, we use that λ = 1 +O(ǩ2) and ǩ2 = 1− λ2 = 2(1− λ) +O(ǩ4).

According to Lemma F.1 and Lemma F.2, all the information on the behavior of Q
on the light cone contained in (F.4) is encoded in momentum space in a neighborhood
of the lower mass cone. More precisely, this information can be retrieved as follows.
Due to the factor ω−|J | in (F.18) and (F.20), the sum over the multi-index J in (F.17)

is an expansion in powers of ω−1. Thus by considering Q̂ for large energies, more
precisely for ω in the range

m2 lmacro, l
−1
macro ≪ |ω| ≪ EP , (F.21)

we can make the contributions for large |J | small (the restriction |ω| ≪ EP is clearly
necessary because the terms of higher order in k/EP are omitted in (F.17)). Hence in
this energy range, the series in (F.17) converges fast, and the scaling behavior in EP

and ω, as well as the dependence on ǩ given explicitly in (F.20), allow us to determine
the functions hJ(Ω) completely.

Having computed the Fourier transform of Q, we can now take the product with
the operator P according to (F.10). We begin with the simplest case where we take

for P one massive Dirac sea in the vacuum (2.6.13) with m > 0. In this case, P̂ (k)
is supported inside the lower mass cone C∧. According to Lemma F.2, the operators

Q̂Lg
J vanish identically inside the lower mass cone. Hence the supports of Q̂Lg

J and P̂
do not intersect, and it follows immediately that

Q̂Lg
J P̂ = 0 . (F.22)

This means that after multiplying by P̂ , all the information contained in the expansion
of Lemma F.1 is lost. We refer to this difficulty as the problem of disjoint supports.
Using the notion introduced after (F.8), it is impossible to detect the poles of Q by
testing with the negative-energy solutions of the free Dirac equation. This situation
is indeed quite similar to the example (F.6, F.8) for f according to (F.7) and rational
test functions with support in the upper half plane, in particular since the Fourier
transform η(k) =

∫∞
−∞ η(x) exp(−ikx) of such a test function is supported in the half

line k < 0, and can thus be regarded as a one-dimensional analogue of the negative-
energy solutions of the free Dirac equation.

It is an instructive cross-check to see how the problem of disjoint supports comes
about if instead of analyzing the behavior of Q in position space (F.4) and then trans-
forming to momentum space, we work exclusively in momentum space. For simplicity
we give this qualitative argument, which will not enter the subsequent analysis, only
in the special case of a monomial, i.e. instead of (F.1) for an expression of the form

f(x, y) T
(a1)
◦ · · ·T (ap)

◦ T
(b1)
◦ · · ·T (bq)

◦ . (F.23)

In this case, we can, instead of taking the product of the factors T
(a)
◦ and T

(b)
◦ in position

space, also compute their convolution in momentum space. As explained in §4.2, the
singular behavior of the fermionic projector on the light cone is determined by states
near the lower mass cone. More precisely, the main contribution to P (x, y) comes
from states close to the hypersurface H = {k | kξ = 0}, which for ξ on the light cone is
tangential to the mass cone C = {k2 = 0}, so that the singularity on the light cone can
be associated to the states in a neighborhood of the straight line H ∩ C. For objects
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derived from the fermionic projector like the regularized distributions T
(aj)
◦ and T

(bk)
◦ ,

this qualitative picture applies just as well. The Fourier transforms of the factors T
(aj)
◦

and T
(bk)
◦ are supported in the the interior of the lower mass cone. Thus when forming

their convolution,

ĝ1 :=
1

(2π)4p
T̂
(a1)
◦ ∗ · · · ∗ T̂ (ap)

◦ , ĝ2 :=
1

(2π)4q
T̂
(b1)
◦ ∗ · · · ∗ T̂ (bq)

◦ , (F.24)

the resulting convolution integrals are all finite integrals over a compact domain (e.g.,

the integrand in (T̂
(a1)
◦ ∗ T̂ (a2)

◦ )(k) =
∫
d4q T̂

(a1)
◦ (q) T̂

(a2)
◦ (k − q) vanishes unless q lies

in the “diamond” {q2 ≥ 0, q0 > 0} ∩ {(q − k)2 ≥ 0, (q − k)0 < 0}). Moreover, the
supports of ĝ1 and ĝ2 are again inside the lower mass cone. Exactly as described for
the fermionic projector in Section C.3, the behavior of ĝ1 and ĝ2 near the lower mass
cone determines the well known singularities of g1 and g2 on the light cone, whereas
the form of ĝ1 and ĝ2 in the high-energy region away from the mass cone depends
essentially on the details of the regularization and is thus unknown. Using ĝ1 and ĝ2,
we can write the Fourier transform of the monomial as

M̂Lg(k) :=
1

(2π)4

∫

d4ξ T̂
(a1)
◦ ∗ · · · ∗ T̂ (ap)

◦ T̂
(b1)
◦ ∗ · · · ∗ T̂ (bq)

◦ e−ikξ (F.25)

=

∫

d4q ĝ1(q) ĝ2(q − k) . (F.26)

In (F.1) the monomial is multiplied by the smooth function f . Thus the corresponding

contribution to Q̂ is obtained by taking the convolution of f̂ with M̂Lg,

Q̂ ≍ f̂ ∗ M̂Lg . (F.27)

Since f is a macroscopic function, its Fourier transform f̂(q) is localized in a neigh-
borhood of the origin, i.e. in the region |q0|, |~q| ∼ l−1macro. The Taylor expansion (F.3)

corresponds to expanding f̂ in terms of distributions supported at the origin, more
precisely

f̂ =
∑

J

f̂J with f̂J(k) = (2π)4 fJ (i∂k)
Jδ4(k) , (F.28)

and substituting this expansion into (F.27) yields the expansion of Lemma F.1,

Q̂Lg
J = f̂J ∗ M̂Lg . (F.29)

Since the distributions f̂J(q) are supported at q = 0, the support of Q̂Lg
J coincides with

that of M̂Lg. Hence to discuss the problem of disjoint supports, we must consider M̂Lg

as given by the integral in (F.26). Note that this integral differs from a convolution in
that the argument of ĝ2 has the opposite sign; this accounts for the complex conjugation
in (F.25). As a consequence, the integration domain is now not compact, and the
integral is finite only due to the regularization. More precisely, the integration range
is the intersection of two cones, as shown in Figure F.1 in a typical example. We
have information on the integrand only when both q and q − k are close to the lower
mass cone, i.e. when q lies in the intersection of the dark shaded regions in Figure 4.1.
Outside of this so-called intersection region, however, the integrand depends on the
unknown high-energy behavior of ĝ1 or ĝ2. Since the intersection region becomes large
when k comes close to the mass cone and does not depend smoothly in k for k on the
mass cone, the contribution of the intersection region to the integral is localized in a
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k
EP

−EP

q0 ~q

g̃1(q)

g̃2(q − k)

Figure F.1. Example for the integrand of M̂Lg.

neighborhood of and is not regular on the mass cone {k2 = 0}. The contribution of
the high-energy regions to the integral, on the other hand, is regular in k and thus
well-approximated by a polynomial in k. This qualitative argument illustrates why in
Lemma F.1, Q̂ is determined only modulo a polynomial, and why the singular behavior
on the light cone (F.4) is in momentum space encoded near the lower mass cone (see
Lemma F.2 and the discussion thereafter). An important conclusion from Figure F.1

is that Q̂(k) is in general not zero in the interior of the lower mass cone, and even the
intersection region gives a contribution there. Thus for generic regularizations or for
simple regularizations like mollifying with a smooth function, the supports of Q̂ and
P̂ will have a non-empty intersection, and even the singularities of Q on the light cone
will contribute to the product QP . On the other hand, it seems possible that there
are special regularizations for which the contributions from the high energy regions
and the intersection region compensate each other in the integral (F.26) in such a way

that M̂Lg indeed vanishes inside the lower mass cone. We call such a regularization an
optimal regularization. According to the method of variable regularization (see §4.1),
we want to keep the regularization as general as possible. Therefore, we must allow
for the possibility that the regularization is optimal, and this leads to the problem of
disjoint supports.

The above consideration in momentum space gives a hint on how to resolve the
problem of disjoint supports. Namely, let us assume for a moment that the macroscopic
function f has nice decay properties at infinity. Then its Fourier transform f̂ is a
regular function. As a consequence, the convolution (F.27) mollifies M̂Lg on the scale

l−1macro, and the support of Q̂ will be larger than that of M̂Lg. Clearly, l−1macro is very
small on the Planck scale, but since the mass shell {k2 = m2} and the mass cone
{k2 = 0} come asymptotically close as the energy |k0| gets large, mollifying even on a

small scale leads to an overlap of the supports of Q̂ and P̂ . This is an effect which is
not apparent in the expansion of Lemma F.1 because by expanding f in a Taylor series
around ξ = 0, we did not use the decay properties of f at infinity, and thus we did not
see the smoothing in momentum space (cf. also (F.28) and (F.29)). More generally,

the above “mollifying argument” shows that the supports of Q̂ and P̂ should overlap
if we take into account the macroscopic perturbations of P and Q more carefully. Thus
in order to solve the problem of disjoint supports, we shall now compute the product
QP in the case of general interaction, without assuming that P or Q are homogeneous.
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Our key result will be an expansion of the operator product around the light cone (see
Theorem F.5 below).

Let us specify our assumptions on P and Q. For Q we merely assume that the
weak evaluation formula (F.4) holds. For P , on the other hand, we work with the
formulas of the light-cone expansion, which are of the general form

P (x, y) =

∞∑

p=−1

gp(x, y) T
(p)(x, y) + (smooth contributions) . (F.30)

Here the gp are smooth functions involving the bosonic potentials and fields, and the
unspecified smooth contributions are composed of the fermionic wave functions as well
as the non-causal contributions to the Dirac seas (see (2.3.19, 2.5.45) and Appendix B).
For clarity, we shall consider the product of Q with each of the summands in (F.30)
separately, i.e. we will for given p ≥ −1 compute the product

QR with R(x, y) = g(x, y) T (p)(x, y) (F.31)

and a smooth function g. To avoid confusion, we recall that in the case p = −1, T (p)

is defined via a distributional derivative; more precisely, we assume in this case that
g(x, y) has the form g = ξj f

j with smooth functions f j(x, y) and set similar to (2.5.21)

g(x, y) T (−1)(x, y) = −2 f j(x, y) ∂

∂yj
T (0)(x, y) . (F.32)

For technical convenience, we assume furthermore that g is a Schwartz function, g ∈
S(R4×R4), but this assumption is not essential and could be relaxed by approximation
(see the discussion after (F.81) below).

The contributions to Q in (F.4) are supported on the light cone. Thus we can
write them in the form

Q(x, y) = h(x, y)Ka=0(x, y) (F.33)

with

Ka=0(x, y) =
i

4π2
δ(ξ2) ǫ(ξ0) (F.34)

and a function h(x, y), which in general will have a pole at the origin x = y. This
representation is useful because Ka is a solution of the Klein-Gordon equation, namely
in momentum space

Ka(k) = δ(k2 − a) ǫ(k0) , a ∈ [0,∞). (F.35)

In what follows, we will also need the Green’s function Sa of the Klein-Gordon equation
defined by

Sa(k) =
PP

k2 − a ≡
1

2
lim
εց0

∑

±

1

k2 − a± iε , a ∈ R. (F.36)

As is immediately verified with contour integrals, this Green’s function is for a > 0
causal in the sense that Sa(x, y) vanishes for space-like ξ. On the contrary if a < 0,
Sa(x, y) vanishes for time-like ξ. More precisely, the Green’s function can be written
as

Sa(x, y) = − 1

4π
δ(ξ2) + Θ(aξ2) ǫ(a)Ha(x, y) , (F.37)
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where Ha is a smooth solution of the Klein-Gordon equation with power expansion

Ha(x, y) =
a

16π

∞∑

j=0

(−1)j
j! (j + 1)!

aj ξ2j

4j
. (F.38)

It is convenient to also introduce the Green’s function

S✶

a = Sa −Θ(a)Ha , (F.39)

which for all a ∈ R vanishes in time-like directions. As one sees explicitly using (F.38)
and (F.37), both Ha(x, y) and S✶

a (x, y) are analytic in a for all a ∈ R. Similarly, a
short explicit calculation shows that Ka(x, y) is analytic for a ∈ [0,∞). We set

K(n) = lim
aց0

(
d

da

)n

Ka , S
(n)
✶ =

(
d

da

)n

S✶

a | a=0 , H(n) =

(
d

da

)n

Ha | a=0 .

The following lemma gives the light-cone expansion for an operator product involving
two factors K(.). A major difference to Lemma 2.5.2 is that the expansion now contains
unbounded line integrals; this also requires a different method of the proof.

Lemma F.3. The operator product K(l)V K(r) with l, r ≥ 0 and a scalar function
V ∈ S has the light-cone expansion

(K(l) V K(r))(x, y)

= − 1

2π2

∞∑

n=0

1

n!

∫ 1

0
dα αl (1− α)r (α− α2)n (✷nV )|αy+(1−α)x H

(l+r+n+1)(x, y)

− 1

2π2

∞∑

n=0

1

n!

∫ ∞

−∞
dα αl (1− α)r (α− α2)n (✷nV )|αy+(1−α)x S

(l+r+n+1)
✶ (x, y)

+(non-causal contributions, smooth for x 6= y). (F.40)

We point out that, exactly as in §2.5, we do not study the convergence of the
infinite series in (F.40), which are merely a convenient notation for the approximation
by the partial sums.

Proof of Lemma F.3. We first consider the operator product KaV Kb for a, b > 0
in the case when V is a plane wave, V (x) = exp(−iqx). Then in momentum space
(similar to [F6, eqn (3.9)]), the operator product takes the form

(Ka V Kb)
(

p+
q

2
, p− q

2

)

= Ka

(

p+
q

2

)

Kb

(

p− q

2

)

. (F.41)

If q2 < 0, we get contributions when either the two upper mass shells of the factors
Ka and Kb intersect, or the two lower mass shells. Conversely if q2 > 0, we only get
cross terms between the upper and lower mass shells. Thus setting

u =
a+ b

2
, v =

a− b
2

, (F.42)
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we have

(Ka V Kb)
(

p+
q

2
, p− q

2

)

= −ǫ(q2) δ
(

(p +
q

2
)2 − a

)

δ
(

(p− q

2
)2 − b

)

= −ǫ(q2) δ
(

((p − q

2
)2 − b) + (2pq − 2v)

)

δ
(

(p− q

2
)2 − b

)

= −ǫ(q2) δ(2pq − 2v) δ

(

p2 − pq + q2

4
− b
)

= −1

2
ǫ(q2) δ(pq − v) δ

(

p2 +
q2

4
− u
)

.

Hence we can write our operator product as

Ka V Kb =
d

du
Auv (F.43)

where Auv is the operator

Auv

(

p+
q

2
, p− q

2

)

=
1

2
δ(pq − v) Θ

(

q2 (p2 +
q2

4
− u)

)

. (F.44)

Our strategy is to first derive an expansion for Auv. Then we will differentiate this
expansion with respect to u and v and take the limits a, b ց 0 to get the desired
expansion for K(l)V K(r).

The right side of (F.44) involves a product of the form δ(α) Θ(β). This product
can be transformed into a line integral as follows. Consider for ε > 0 the function

fε(α, β) =
1

π
Θ(εβ − α2) (εβ − α2)−

1
2 . (F.45)

This function is zero unless β > 0 and α ∈ [−√εβ,√εβ]. As εց 0, the size of this last
interval tends to zero, and so α is confined to a smaller and smaller neighborhood of
the origin. On the other hand, the integral over α stays bounded in this limit; namely,

∫ ∞

−∞
fε(α, β) dα = Θ(β) for all ε > 0.

From this we conclude that

lim
εց0

fε(α, β) = δ(α) Θ(β) (F.46)

with convergence as a distribution. Moreover, the formula
∫ ∞

−∞

PP

τ2 + γ
dτ = π Θ(γ) γ−

1
2 (F.47)

allows one to write (F.45) as a contour integral. Putting these relations together, we
obtain for Auv,

Auv

(

p+
q

2
, p− q

2

)
(F.44,F.46)

=
1

2
lim
εց0

fε

(

pq − v, q2 (p2 + q2

4
− u)

)

(F.45)
=

1

2π
lim
εց0

1

|εq2| Θ
(

p2 + q2

4 − u
εq2

− (pq − v)2
ε2q4

)(

p2 + q2

4 − u
εq2

− (pq − v)2
ε2q4

)− 1
2

(F.47)
=

ǫ(q2)

2π2
lim
εց0

∫ ∞

−∞

PP

εq2τ2 + p2 +
q2

4
− u− (pq − v)2

εq2

dτ . (F.48)
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After shifting the integration variable according to τ → τ + (pq − v)/(εq2), we can
identify the integrand with the Green’s function (F.36),

Auv

(

p+
q

2
, p− q

2

)

=
ǫ(q2)

2π2
lim
εց0

∫ ∞

−∞

PP

p2 + 2τ(pq − v) + ε2q2τ2 +
q2

4
− u

dτ

=
ǫ(q2)

2π2
lim
εց0

∫ ∞

−∞
Sz(ε,τ)(p+ τq) , (F.49)

where z is the “mass function”

z(ε, τ) = u + 2τv + (1− ε2) τ2 q2 − q2

4
.

If we solve (F.39) for Sa and substitute into (F.49), we can take the limit ε ց 0 to
obtain

Auv

(

p+
q

2
, p− q

2

)

=
ǫ(q2)

2π2

∫ ∞

−∞
(S✶

z +Θ(z)Hz)(p + τq) dτ (F.50)

with

z ≡ u + 2τv + (τ2 − 1

4
) q2 . (F.51)

The calculation so far was carried out for fixed momentum q of the potential. In
order to describe the case of general V ∈ S, we must integrate over q. Furthermore,
we transform to position space by integrating over p (similar to [F5, eqn (3.10)]) and
obtain

Auv(x, y) =

∫
d4q

(2π)4
V̂ (q)

∫
d4p

(2π)4
Auv(p+

q

2
, p − q

2
) e−ip(x−y) e−i

q
2
(x+y) ,

where V̂ is the Fourier transform of V . Substituting in (F.50) and pulling out the
τ -integral gives

Auv(x, y) =
1

2π2

∫ ∞

−∞
dτ

∫
d4q

(2π)4
V̂ (q) ǫ(q2) e−i

q
2
(x+y)

×
∫

d4p

(2π)4
(S✶

z +Θ(z)Hz)(p+ τq) e−ip(x−y) ,

and, after shifting the integration variable p according to p+ τq→ p, we can carry out
the Fourier integral,

∫
d4p

(2π)4
(S✶

z +Θ(z)Hz)(p+ τq) e−ip(x−y) = eiqτ(x−y) (S✶

z +Θ(z)Hz)(x, y) ,

and thus obtain

Auv(x, y) =
1

2π2

∫ ∞

−∞
dτ

∫
d4q

(2π)4
V̂ (q) ǫ(q2)

× e−iq(( 12−τ)x+( 1
2
+τ)y) (S✶

z +Θ(z)Hz)(x, y) . (F.52)

In this way, we have transformed the line integral, which appeared in (F.48) as a
contour integral in momentum space, into an integral along the straight line (12 −
τ)x+ (12 + τ)y through the space-time points x and y.
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The operator product K(l)V K(r) is obtained from Auv by differentiating with re-
spect to u, v and setting u = 0 = v. More precisely, using (F.42) and (F.43),

(K(l) V K(r))(x, y) =
1

2l+r

(
∂

∂u
+

∂

∂v

)l( ∂

∂u
− ∂

∂v

)r ∂

∂u
Auv|u=0=v . (F.53)

According to (F.51), the factors S✶

z , Θ(z), and Hz in (F.52) depend implicitly on
u and v. Thus when substituting (F.52) into (F.53), we can carry out the partial
derivatives with the sum, product, and chain rules. Let us first collect the terms for
which all the derivatives act on the factors S✶

z or Hz. This gives the contributions to

(K(l)V K(r))(x, y)

1

2π2

∫ ∞

−∞
dτ (

1

2
+ τ)l (

1

2
− τ)r

∫
d4q

(2π)4
V̂ (q) ǫ(q2) e−i

q
2
(x+y)

× eiqτ (x−y) (S✶ (l+r+1)
z +Θ(z)H(l+r+1)

z )(x, y)

with z = (τ2−1
4)q

2. After expanding in powers of z and introducing the new integration

variable α = τ + 1
2 , we obtain

1

2π2

∞∑

n=0

1

n!

∫ ∞

−∞
dα αl (1− α)r (α− α2)n

∫
d4q

(2π)4
ǫ(q2) (−q2)n V̂ (q)

× e−iq(αy+(1−α)x) (S✶ (l+r+n+1)
z +Θ((α2 − α) q2)H(l+r+n+1)

z )(x, y) . (F.54)

If V̂ is supported outside the mass cone, supp V̂ ⊂ {q2 < 0}, we can carry out the

q-integral in (F.54) and obtain precisely the two series in (F.40). Conversely if V̂ is
supported inside the mass cone {q2 > 0}, we get

1

2π2

∞∑

n=0

1

n!

∫

IR\[0,1]
dα αl (1− α)r (α− α2)n (✷nV )|αy+(1−α)x H

(l+r+n+1)(x, y)

+
1

2π2

∞∑

n=0

1

n!

∫ ∞

−∞
dα αl (1− α)r (α− α2)n (✷nV )|αy+(1−α)x S

(l+r+n+1)
✶ (x, y) .

This does not coincide with the series in (F.40). Using (F.39) and (F.37), the difference
can be written as

− 1

2π2

∞∑

n=0

1

n!

∫ ∞

−∞
dα αl (1− α)r (α− α2)n

× (✷nV )|αy+(1−α)x ǫ(ξ
2)H(l+r+n+1)(x, y) .

(F.55)

Since unbounded line integrals are involved, this expression is clearly non-causal. We
shall now prove that (F.55) is smooth for x 6= y. Notice that the line integrals in (F.55)
are supported on the hyperplane {q | qξ = 0}, e.g.

∫ ∞

−∞
V (αy + (1− α)x) dα =

∫
d4q

(2π)4
V̂ (q) 2πδ(qξ) e−i

q
2
(x+y) . (F.56)

For time-like ξ, this hyperplane does not intersect the support of V̂ , and thus (F.55)
vanishes identically inside the light cone. Furthermore, (F.55) is clearly smooth in the
region {ξ2 < 0} away from the light cone. Thus it remains to show that all the partial
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derivatives of (F.55) vanish on the light cone. The boundary values of these partial
derivatives on the light cone {ξ2 = 0} involve integrals of the form

∫ ∞

−∞
dα αl+k1 (1− α)r+k2 (α− α2)n (∂K✷

nV )|αy+(1−α)x ξ
L

with parameters k1, k2 ≥ 0 and multi-indices K, L. Similar to (F.56), these inte-
grals are supported on the hypersurface {q | qξ} = 0, and for ξ on the light cone

(and ξ 6= 0), this hypersurface does not intersect the support of V̂ . We conclude

that (F.54) coincides with (F.40), both in the case when supp V̂ ⊂ {q2 < 0} and when

supp V̂ ⊂ {q2 > 0}. Linearity and an approximation argument near the light cone
yield that (F.54) coincides with (F.40) for general V ∈ S.

It remains to consider the contributions when some of the derivatives in (F.53) act
on the factor Θ(z) in (F.52). The resulting expressions are of the form

∫
d4q

(2π)4
V̂ (q) e−i

q
2
(x+y)

∫ ∞

−∞
dτ ǫ(q2) δ(α)(z)H(β)

z (x, y) P(τ) e−iqτ(y−x) (F.57)

with integers α, β ≥ 0 and a polynomial P(τ). Using the formula

δ(z) =
1

2πi
lim
εց0

(
1

z − iε −
1

z + iε

)

,

we can write the τ -integral in terms of the complex integrals

lim
εց0

ǫ(q2)

∫ ∞

−∞
dτ

1

((τ2 − 1
4) q

2 ± iε)α+1
H(β)

z P(τ) e−iqτ(y−x) .

Depending on the sign of q(y − x), the integration contour can be closed either in the
upper or in the lower half plane, and the residue theorem yields expressions of the
form

lim
εց0

1

(q2 ± iε)γ H
(κ)(x− y) P(τ) e−iqτ(y−x) with τ = ±1

2
(F.58)

and γ ≤ 2α + 1, β ≤ κ ≤ β + α. These expressions are well-defined distributions,
and thus the q-integral in (F.57) is finite. Due to the powers of 1/q2 in (F.58), the

resulting contributions to the operator product K(l)V K(r) are non-causal. Since the
factor H(κ) in (F.58) is a polynomial in ξ and V̂ (q) in (F.57) has rapid decay, these
contributions are also smooth.

The above lemma can be used to derive the light-cone expansion for the operator
product K(l)V T (r).

Lemma F.4. For l, r ≥ 0 and V ∈ S,

(K(l) V T (r))(x, y)

=
1

2πi

∞∑

n=0

1

n!

∫ ∞

−∞
dα αl (1− α)r (α− α2)n (✷nV )|αy+(1−α)x

× ǫ(y0 − x0) T (l+r+n+1)(x, y) + (contributions smooth for x 6= y) . (F.59)
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Proof. Using (F.39) and the fact that Ha(x, y) is smooth in x and y according
to (F.38), the light-cone expansion (F.40) yields that for l, r ≥ 0,

(K(l) V K(r))(x, y)

= − 1

2π2

∞∑

n=0

1

n!

∫ ∞

−∞
dα αl (1− α)r (α− α2)n (✷nV )|αy+(1−α)x S

(l+r+n+1)(x, y)

+(contributions smooth for x 6= y) , (F.60)

where S(n) = limaց0 S
(n)
a . The main difference between (F.59) and (F.60) is that the

factors K(r) and S(l+r+n+1) are replaced by corresponding factors T (.). The method
of the proof is to realize these replacements by multiplying (F.60) with a suitable
operator from the right.

In preparation, we rewrite the operators S(.) in (F.60) in terms of K(.) as follows.
Using that multiplication in position space corresponds to convolution in momentum
space, we have for a > 0,

∫

Ka(x, y) ǫ(y
0 − x0) e−ik ξ d4ξ

=

∫ ∞

−∞

dω

2π
δ(ω2 − |~k|2 − a) ǫ(ω) (−2i) PP

k0 − ω

=
1

iπ

1

2 |ω|
PP

k0 − ω

∣
∣
∣
∣

ω=
√
|~k|2+a

ω=−
√
|~k|2+a

=
1

iπ

PP

k2 − a =
1

iπ
Sa(k) ,

and thus
Sa(x, y) = iπ Ka(x, y) ǫ(y

0 − x0) .
We differentiate with respect to a and let aց 0 to obtain

S(n)(x, y) = iπ K(n)(x, y) ǫ(y0 − x0) .
Substituting into (F.60) gives

(K(l) V K(r))(x, y) = (contributions smooth for x 6= y)

+
1

2πi

∞∑

n=0

1

n!

∫ ∞

−∞
dα ǫ(y0 − x0) αl (1− α)r (α − α2)n

× (✷nV )|αy+(1−α)x K
(l+r+n+1)(x, y) . (F.61)

The operator Ta, a ≥ 0, is obtained from Ka by projecting on the negative-energy
states, more precisely

Ta = Ka χ , (F.62)

where χ is the multiplication operator in momentum space

χ(k) = −Θ(−k0) .
In position space, χ has the kernel

χ(x, y) =

∫
d4k

(2π)4
χ(k) e−ik(x−y) = − 1

2πi
lim
εց0

1

y0 − x0 − iε δ
3(~y − ~x) . (F.63)

If a is positive, the mass shell {k2 = a} does not intersect the hyperplane {k0 = 0}
where χ is not smooth, and thus we may differentiate (F.62) with respect to a to obtain

T (n)
a = K(n)

a χ , a > 0. (F.64)
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However, difficulties arise in (F.64) in the limit aց 0. Namely, the limit of the left side

exist only after “regularizing” T
(n)
a by subtracting a polynomial in (y−x) (see (2.5.42,

2.5.43). On the right side, the problem is that K(n)(x, y) behaves polynomially at
timelike infinity, whereas χ(x, y) decays for large (y0 − x0) only as (y0 − x0)−1, and
so the product K(n)χ does not exist. To cure this problem, we insert into (F.63) an
exponentially decaying factor by introducing for κ > 0 the kernel

χκ(x, y) = − 1

2πi
lim
εց0

e−κ |y
0−x0|

y0 − x0 − iε δ
3(~y − ~x) . (F.65)

The exponential factor changes the product with K
(n)
a only by a contribution smooth

in y − x, and thus

T (n)
a (x, y) + (smooth contributions)

= T (n)
a (x, y) = (K(n)

a χ)(x, y) = (K(n)
a χκ)(x, y) + (smooth contributions) .

The very left and right of this equation converge for aց 0, and we conclude that

(K(n) χκ)(x, y) = T (n)(x, y) + (smooth contributions). (F.66)

We multiply the operator product on the left of (F.61) by the operator χκ. Apply-
ing (F.66) and using that multiplying by a smooth operator gives something smooth,
we get

(K(l) V K(r) χκ)(x, y) = (K(l) V T (r))(x, y) + (smooth contributions). (F.67)

It remains to show that multiplying the right side of (F.61) by the operator χκ gives
the right side of (F.59). When we multiply the summands on the right side of (F.61)
by χκ, we get according to (F.65) a convolution in the time coordinate of the form

lim
εց0

∫ ∞

−∞
dτ

e−κ |τ |

τ − iε F (x; y
0 − τ, ~y)K(l+r+n+1)(x; y0 − τ, ~y) . (F.68)

Here the function F stands for the line integral in (F.61); it is smooth unless y0−τ = x0.
We write the convolution integral (F.67) as

lim
εց0

∫ ∞

−∞
dτ e−κ |τ |

F (x; y0 − τ, ~y)− F (x, y)
τ − iε K(l+r+n+1)(x; y0 − τ, ~y) (F.69)

+F (x, y) lim
εց0

∫ ∞

−∞
dτ

e−κ |τ |

τ − iε K
(l+r+n+1)(x; y0 − τ, ~y) . (F.70)

The term (F.70) can be written as F (x, y) (K(l+r+n+1) χκ)(x, y), and applying (F.66)
gives precisely the summands on the right side of (F.59). Let us prove that (F.69)
is smooth for x 6= y. Thus assume that x 6= y. Our above construction is Lorentz
invariant in the sense that we may introduce the operator χκ in any reference frame,
without influence on our operator products. Thus we can choose the reference frame
such that ~x 6= ~y. The τ -integral in (F.69) can be regarded as an integral along the
straight line {(y0 − τ, ~y)}. Since ~x 6= ~y, this straight line does not intersect the point
x. Due to causality of K(.), the integrand vanishes unless |(y0 − τ) − x0| ≥ |~y − ~x|.
Thus if ξ is spacelike, i.e. |y0−x0| < |~y−~x|, the integrand vanishes in a neighborhood
of τ = 0, and as a consequence the integral (F.69) is smooth in x and y. On the other
hand if ξ lies inside the cone |y0 − x0| > 1

2 |~y − ~x|, the straight line {(y0 − τ, ~y)} does
for small enough τ not intersect the hyperplane {z | z0 = x0} where F is not smooth.
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Thus the function F (x; y0 − τ, ~y) is smooth in a neighborhood of τ = 0, and the mean
value theorem yields that the bracket in (F.69) is smooth. This implies that (F.69) is
again smooth in x and y.

It remains to show that multiplying the contributions smooth for x 6= y, which
are not specified in (F.61), by the operator χκ, gives terms which are again smooth
for x 6= y. Again using Lorentz invariance, we can choose a reference frame such that
~x 6= ~y. Then multiplying by χκ yields a convolution along the straight line {(y0−τ, ~y)},
and this line integral does not intersect the point x. In this way, we can avoid inte-
grating across the origin where the contributions in (F.61) may be singular. We get
a convolution of χκ with a smooth function, and this is clearly finite and depends
smoothly on x and y.

After these preliminaries, we are ready to compute the operator product QR in
an expansion around the light cone. For the statement of the result, we need to
analytically extend hJ(Ω) in (F.4) from a function on S2 to a function on Minkowski
space and also regularize it at the origin: As a smooth function on S2, hJ can be
expanded in spherical harmonics. Since the spherical harmonics are the boundary
values on S2 of the harmonic polynomials on R3, we have the unique expansion

hJ(~x) =
∞∑

n=0

Pn(~x)|~x∈S2 , (F.71)

where Pn(~x) are suitable harmonic polynomials of degree n. The smoothness of hJ
implies that the summands in (F.71) decay in n faster than any polynomial. As a
consequence, the series in (F.71) converges absolutely for any ~x ∈ R3, and we can even
extend hJ(~x) to a unique function on C3. For ε > 0, we define the regularization hεJ
of hJ by

hεJ(ξ) = hJ

(
~ξ

ξ0 − iε

)

. (F.72)

Theorem F.5. Assume that the operator Q satisfies the weak evaluation for-
mula (F.4). Then the operator product QR with R according to (F.31) with p ≥ −1
and g ∈ S(R4 × R4) has the expansion

(Q R)(x, y) =

Lmax∑

L=2

gmax∑

g=0

logg(EP ) E
L−1
P

∑

J

(F.73)

× (−2π)
∞∑

n=0

lim
εց0

∫ ∞

−∞
dα (1− α)p (α− α2)n ✷

n
z

(
hεJ(ζ) ζ

J

(ζ0 − iε)L−1 g(z, y)
)

|z=αy+(1−α)x

× ǫ(y0 − x0) T (p+n+1)(x, y) mod PL−|J |−3(∂x)R(x, y) + o(EP ) (F.74)

+ (contributions smooth for x 6= y) + (higher orders in (lmacroEP )
−1) (F.75)

with ζ ≡ z − x.
Proof. We first consider the case p ≥ 0. We fix two space-time points x0, y0 and

set
Q(ξ) := Q(x0, x0 + ξ) , R(ξ) := R(y0 − ξ, y0) .

We regard Q(ξ) and R(ξ) as the integral kernels of corresponding homogeneous op-
erators, which with slight abuse of notation we denote again by Q and R. Then
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in momentum space (F.11), the operator Q has the expansion of Lemma F.1 and

Lemma F.2. Let us compute the product QLg
J R. According to its construction in

Lemma F.1, QLg
J (ξ) behaves for ξ 6= 0 like

QLg
J (ξ) = δ(ξ2) ǫ(ξ0) t−L+1 hJ (ξ̌) ξ

J ,

and furthermore its Fourier transform Q̂Lg
J (k) vanishes inside the lower mass cone (cf.

Lemma F.2). The distribution

lim
εց0

K(0)(x, y)
[
−4π2i (y0 − x0 − iε)−L+1 hJ (ξ̌) ξ

J
]

(F.76)

has these two properties, as one sees immediately from (F.34) and when computing the
Fourier transform of (F.76) with contour integrals. Indeed, a short calculation shows

that (F.76) even coincides with QLg
J (ξ).

We introduce for ε > 0 the potential

Vε(z) = −4π2i (z0 − x00 − iε)−L+1 hεJ(z − x0) (z − x0)J g(z, y0) ,
where hεJ is the regularization of hJ (F.72). This potential is a Schwartz function, and
thus Lemma F.4 yields that

(K(0) V ε T (p))(x, y)

=
1

2πi

∞∑

n=0

1

n!

∫ ∞

−∞
dα (1− α)p (α− α2)n (✷nVε)|αy+(1−α)x

× ǫ(y0 − x0) T (p+n+1)(x, y) + (contributions smooth for x 6= y) . (F.77)

We now set x = x0, y = y0 and take the limit εց 0. On the left side of (F.77), we can

use that (F.76) = QLg
J (ξ) to obtain the operator product (QLg

J R)(x0, y0). Furthermore,
due to our regularization of hεJ , the factors (✷nVε)(z) on the right side of (F.77) are

of the form smooth function times (z0 − x0 − iε)−l, and thus the limit εց 0 exists in

each line integral in (F.77). We conclude that (QLg
J R)(x, y) coincides precisely with

the series (F.74). Since in (F.77) we integrate across the origin, the higher orders
in ((r + |t|)EP )

−1 in (F.4) (or equivalently the higher orders in k/EP in (F.16)) yield
contributions of higher order in (lmacroEP )

−1. Finally, calculating modulo polynomials
in (F.17) means in position space that Q(x, y) is determined only modulo partial
derivatives of δ4(x − y), and this gives rise to the term mod PL−|J |−3(∂x) R(x, y)
in (F.74). This concludes the derivation of (F.73–F.75) in the case p ≥ 0.

In the above derivation we neglected the contributions smooth for x 6= y, which
are not specified in (F.77), implicitly assuming that they remain smooth in the limit
ε ց 0. This is justified as follows. As ε ց 0, the potential Vε(z) becomes singular
only at z = x0. Thus if the contributions smooth for x 6= y in (F.77) had a non-

smooth limit, the resulting non-smooth contributions to (QLg
J R)(x0, y0) would depend

on g(z, y0) and its partial derivatives only at z = x0; i.e. they would be of the form

∂Jx0
g(x0, y0)WJ(x0, y0) , (F.78)

whereWJ are distributions independent of g. Suppose that the Fourier transform ĝ of
g(x0 + ., y0) is supported inside the upper mass shell {k | k2 > 0, k0 > 0}. Then due to

our (−iε)-regularization, also the support of V̂ε is inside the upper mass shell. As a con-
sequence, the Fourier transforms of the distributions K(0)(x0, .) and (VεT

reg (p))(., y0)
have disjoint supports, and the left side of (F.77) is zero. Furthermore for ξ close to
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the light cone, the unbounded line integrals in (F.77) vanish (notice that they are sup-
ported on the hypersurface {k |kξ = 0}). We conclude that if ĝ is supported inside the
upper mass shell, then the contributions smooth for x 6= y in (F.77) are zero. Taking
the limit εց 0 yields that the contributions (F.78) vanish if ĝ is supported inside the
upper mass shell, i.e. ∫

d4k kJ ĝ(k) WJ(x0, y0) = 0 (F.79)

for all ĝ with supp ĝ ⊂ {k | k2 = 0, k0 > 0}. Since the polynomials restricted to the
upper mass cone are linearly independent, (F.79) implies that the contributions (F.78)
are all identically zero.

The extension to the case p = −1 follows exactly as in [F6, Lemma 2.2]: We pull
one derivative out of the operator product,

∫

d4z Q(x0, z) g(z, y0) T
(−1)(z, y)

(F.32)
= −2 ∂

∂yj

∫

d4z Q(x0, z) f
j(z, y0) T

(0)(z, y)|y=y0 ,

substitute for the integral the expansion (F.73–F.75) for p = 0, and differentiate
through.

The above theorem gives the clue for understanding the operator product QP as
well as the commutator [P,Q], as we shall now explain. Using that the product of Q
with a smooth operator is smooth, we can write the operator product QP according
to (F.30) in the form

(Q P )(x, y) =
∞∑

p=−1

(Q P p)(x, y) + (smooth contributions) (F.80)

with
P p(x, y) = gp(x, y) T

(p)(x, y) . (F.81)

The summands in (F.80) are precisely of the form considered in Theorem F.5, with
the only exception that the functions gp in (F.81) in general have no rapid decay at
infinity. Fortunately, the behavior of the functions gp at infinity is of no relevance to
us, and we can apply Theorem F.5 to each summand in (F.80) using the following
approximation argument. For fixed x and y, we choose a Schwartz function η which
is identically equal to one on a compact set K ∋ x, y. Then the function (gpη) has
rapid decay at infinity, and Theorem F.5 applies to the operator product (F.31) with
g := gpη. In the discussion below leading to Corollary F.6, the function g(z) enters
only for z in a neighborhood of x and y. In this neighborhood, g and gp coincide, and
thus the dependence on η drops out. This shows that the behavior of the function gp
at infinity is indeed of no importance for Corollary F.6 below.

Let us briefly discuss the expansion (F.73–F.75). First of all, we point out that
we calculate modulo terms of the form ∂Kx R(x, y) with |K| ≤ L − |J | − 3. This
corresponds to the fact that we have no information on the behavior of Q near the
origin. For generic regularizations or simple regularizations like a cutoff in momentum
space, the terms ∂Kx R(x, y) will not be zero. Thus in this case, the operator product
QR does not vanish, even when we take for R a Dirac sea of the vacuum; this is
in agreement with our consideration in momentum space after (F.29). However, the
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situation is much different if we assume that we have a regularization where the terms
∂Kx R(x, y) all vanish. Namely, if we then take for R a Dirac sea of the vacuum, for
example

R(x, y) =
i

2
ξ/ T (−1)(x, y) ,

the integrand of the line integral in (F.74) is a rational function with poles in the up-
per half plane, and QR is zero (up to the contributions not specified in Theorem F.5).
This corresponds to our observation made after (F.22) that the poles of Q cannot be
detected when testing with solutions of the free Dirac equation. The regularizations
for which the terms ∂Kx R(x, y) vanish are just the optimal regularizations introduced
after (F.29). The main advantage compared to our earlier consideration in momentum
space after (F.29) is that the expansion (F.73–F.75) tells how the macroscopic per-
turbations of P and Q effect the operator product. In particular one sees that, when
taking into account the macroscopic perturbations, the operator product QP does in
general not vanish (even for optimal regularizations), and thus the problem of disjoint
supports disappears.

In an interacting system, the factor g(z, y) in (F.74) is composed of the bosonic po-
tentials and fields. Thus in the generic situation, the line integrals in (F.74) will vanish
only if the operator Q is identically zero. In order to make this argument clearer, it is
useful not to think of P as a fixed object, but to consider small dynamic perturbations
of P . More precisely, we consider perturbations of P induced by perturbations of the
bosonic potentials of our physical system. In order not to disturb the Euler-Lagrange
equations, these perturbations must not be arbitrary, but should satisfy the physical
equations; a typical example are perturbations by an electromagnetic wave. Thus we
consider variations of our system by small, physically admissible perturbations of P
and study the effect on the operator product QP . We refer to this procedure for an-
alyzing the operator product that we test with physical perturbations of P . Clearly,
the requirement that the perturbation should satisfy the physical equations is a strong
restriction (in particular, such perturbations are not dense in the L2 topology). The
reason why it is nevertheless a reasonable concept to use physical perturbations for
testing is that these perturbations enter into (F.74) only along the one-dimensional
line {λy + (1− λ)x}. In the example of the perturbation by an electromagnetic wave,
the electromagnetic field appears in the function g in (F.74), and by changing the
location and amplitude of the wave, we can completely determine the function hJ(Ω)
as well as the order L − |J | − 1 of the pole of the integrand at the origin. Notice
furthermore that the summands in (F.73) scale in the Planck energy exactly as the
corresponding summands in the expansion (F.4). We conclude that by testing the
operator product QP with physical perturbations of P , we can reconstruct the weak
evaluation formula (F.4) completely.

Next, it is instructive to consider the behavior of the summands in (F.74) as y−x
gets small. If y − x is scaled like (y − x) → λ (y − x) with λ > 0, the variable trans-

formation α→ λ−1α shows that as λց 0, the line integral blows up like λ−(2n+p+1).
On the other hand, the factor T (p+n+1) goes to zero like λ2n+2p in this limit. Thus
each summand in (F.74) scales like λ−1+p. It is remarkable that, no matter how large
the order of the pole of Q at the origin is, the operator product QP has at the origin
a pole of at most the order one. The reason is that in (F.74), we integrate over the
pole of Q, and this regularizes the singularity at the origin. Since a pole of order one
is integrable in three space dimensions, we do not need to study the operator product
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(QP )(x, y) at the origin x = y. According to the light-cone expansion of Theorem F.5,
the information contained in the weak evaluation formula (F.4) is retrieved in the op-
erator product QP by considering the singularities on the light cone away from the
origin.

The expansion of Theorem F.5 immediately allows us to study also the commutator
[P,Q]. Namely, by taking the adjoint, (QR)(x, y)∗ = (RQ)(y, x), the formula (F.73–
F.75) applies to the operator product PQ as well, and we can take the difference
[P,Q] = PQ − QP . The key observation is that in the product (QR)(x, y), the pole
of Q at the origin appears in (F.74) together with the factor g(z, y) and z ≈ x,
whereas in the product (RQ)(x, y), this pole is multiplied by g(x, z) and z ≈ y. Thus
when testing [P,Q](x, y) with perturbations of P , one can distinguish between the
contributions from PQ and QP by considering perturbations which are localized near
y and x, respectively.

These results are summarized as follows1.

Corollary F.6. To every order in EP , the poles of Q(x, y) at the origin x = y
can be detected in the commutator [P,Q] by testing with physical perturbations of P .

We close with a general comment on the significance of the constructions in this
appendix. Due to the problem of disjoint supports, we could make sense out of the
commutator [P,Q] only after taking into account the macroscopic perturbations of
P and Q. As a consequence, the relevant contributions to the commutator [P,Q]
are by several orders of (lmacroEP )

−1 smaller than expected from a simple scaling
argument. This can be interpreted that the causal structure of Minkowski space and
the structure of the Dirac seas, which are the underlying reason for the problem of
disjoint supports, have a tendency to making the commutator [P,Q] small. In this
way, the causal structure and the structure of the Dirac seas seem to correspond nicely
to Euler-Lagrange equations of the form [P,Q] = 0.

1
Online version: A simpler and cleaner method to obtain this result is to use the so-called method

of testing on null lines as worked out in §3.5.2 in the book [5] (listed in the references in the preface
to the second online edition).



APPENDIX G

Perturbation Calculation for the Spectral Decomposition
of P (x, y) P (y, x)

In this appendix we shall develop a convenient method for analyzing the eigen-
values and spectral projectors of the matrix Axy ≡ P (x, y) P (y, x) and compute all
contributions to the eigenvalues needed for the derivation of the effective gauge group
in Chapter 7. Our strategy is as follows. We decompose the fermionic projector as

P = P0 + ∆P

with P0 according to (6.1.1). This gives rise to the decomposition of A

A = A0 + ∆A (G.1)

with

A0 = P0(x, y) P0(y, x) (G.2)

∆A = ∆P (x, y) P0(y, x) + P0(x, y) ∆P (y, x) + ∆P (x, y) ∆P (y, x) . (G.3)

The eigenvalues and spectral projectors of A0 were computed explicitly in Chapter 6,
see (6.1.9, 6.1.10). On the light cone, P0(x, y) has singularities of order O((y − x)−4),
whereas ∆P (x, y) = O((y − x)−2). Likewise, ∆A is compared to A0 of lower degree
on the light cone. For this reason, ∆A can be treated perturbatively in the sense
that the eigenvalues and spectral projectors of A can be expressed to any given degree
on the light cone by a finite order perturbation calculation. Apart from the purely
computational aspects, the main difficulty is that A0 may have degenerate eigenvalues,
and in this case we need to carefully analyze whether the degeneracy is removed by
the perturbation. Our method is to first compute projectors on invariant subspaces of
A (§G.1). Analyzing the perturbation on these invariant subspaces will then give the
spectral decomposition of A (§G.4).

G.1. Perturbation of Invariant Subspaces

We write the spectral decomposition of A0 as

A0 =

K∑

k=1

λk Fk

with distinct eigenvalues λk and corresponding spectral projectors Fk. As in §5.3 we
use the convention λ1 = 0. Clearly, the Fk are the sum of the spectral projectors
counting multiplicities,

Fk =
∑

n,c,s with λncs=λk

Fncs (G.4)

with λncs and Fncs according to (6.1.10). Since the perturbation ∆A will in general
split up the degenerate eigenvalues, we cannot expect that by perturbing Fk we obtain
spectral projectors of the matrix A. But we can form projectors Gk on the space

281
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spanned by all eigenvectors of A whose eigenvalues are sufficiently close to λk. The Gk

are most conveniently introduced using contour integrals. We choose ε > 0 such that

|λi − λj| < 2ε for all i, j = 1, . . . ,K and i 6= j.

Then we set

Gk =
1

2πi

∮

|z−λk|=ε
(z −A)−1 dz , (G.5)

The Cauchy integral formula shows that Gk is indeed a projector on the desired sub-
space.

The integral formula (G.5) is very useful for a perturbation expansion. To this
end, we substitute (G.1) into (G.5) and compute the inverse with the Neumann series,

Gk =
1

2πi

∮

|z−λk|=ε
(z −A0 −∆A)−1 dz

=
1

2πi

∮

|z−λk|=ε

(
11− (z −A0)

−1 ∆A
)−1

(z −A0)
−1 dz

=
1

2πi

∮

|z−λk|=ε

∞∑

n=0

(
(z −A0)

−1 ∆A
)n

(z −A0)
−1 dz .

Interchanging the integral with the infinite sum gives the perturbation expansion,

Gk =

∞∑

n=0

1

2πi

∮

|z−λk|=ε

(
(z −A0)

−1 ∆A
)n

(z −A0)
−1 dz , (G.6)

where n is the order in perturbation theory. After substituting in the spectral repre-
sentation for (z −A0)

−1,

(z −A0)
−1 =

K∑

l=1

Fl

z − λl
, (G.7)

the contour integral in (G.6) can be carried out with residues. For example, we obtain
to second order,

Gk = Fk +
∑

l 6=k

1

λk − λl
(Fk ∆A Fl + Fl ∆A Fk) + O((∆A)3)

+
∑

l,m6=k

1

(λk − λl)(λk − λm)

× (Fk ∆A Fl ∆A Fm + Fl ∆A Fk ∆A Fm + Fl ∆A Fm ∆A Fk)

−
∑

l 6=k

1

(λk − λl)2

× (Fk ∆A Fk ∆A Fl + Fk ∆A Fl ∆A Fk + Fl ∆A Fk ∆A Fk) . (G.8)

To order n > 2, the corresponding formulas are clearly more complicated, but even
then they involve matrix products which are all of the form

Fk1 ∆A Fk2 ∆A · · · Fkn ∆A Fkn+1 . (G.9)

Substituting in (G.4) and expanding, we can just as well consider matrix products of
the form (G.9) with the factors Fk replaced by Fncs. Furthermore, for the computation
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of the eigenvalues we need to take the expectation values of Gk with certain matrix
elements of ∆A. This leads us to traces of matrix products of the form

Tr (Fn1c1s1 ∆A1 Fn2c2s2 ∆A2 · · · Fnlclsl ∆Al) (G.10)

with l = n+1. We refer to a trace of the form (G.10) as a matrix trace. Our first task
is to develop an efficient method for computing matrix traces (§G.2 and §G.3); after
that we will proceed with the calculation of the eigenvalues of A (§G.4).

G.2. Factorization of Matrix Traces

If one attempts to calculate a matrix trace (G.10) directly by substituting in the
formulas of the light-cone expansion, the resulting expressions become so complicated
and involve so many Dirac matrices that they are almost impossible to handle. We
shall now simplify the situation by giving a procedure which allows us to factor matrix
traces into a product of so-called elementary traces, which are much easier to compute1.
According to (G.3), we can assume that each factor ∆Aj in (G.10) is the product of a
contribution to P (x, y) with a contribution to P (y, x). Denoting the contributions to
P (x, y) by Bj and using that the corresponding contributions to P (y, x) are obtained
by taking the adjoint with respect to the spin scalar product, we can write each ∆Aj

in the form
∆Aj = Bj1 B

∗
j2 .

Inserting the completeness relation
∑

ncs

Fncs = 11

and expanding gives for (G.10) a sum of terms of the form

Tr
(
Fn1c1s1 B1 Fn2c2s2 B

∗
2 · · · Fnk−1ck−1sk−1

Bk−1 Fnkcksk B
∗
k

)
(G.11)

with indices (nj, sj , cj) (which are in general different from those in (G.10)) and k = 2l.
In order to handle the sector indices in (G.11), we introduce operators Kn1,n2 which

act on the sector index and map sector n2 to sector n1, i.e. in components

(Kn1n2)
n
n′ = δnn1

δn′n2
. (G.12)

Then
Fncs = Kn1 F1cs K1n . (G.13)

If we substitute this relation into (G.11) and combine the operators K· and Bj to
“new” operators Bj, we obtain a matrix trace again of the form (G.11), but with all
indices nj equal to one. Therefore in what follows we can restrict attention to the case
of one sector and omit the sector indices. The generalization to several sectors will be
straightforward by inserting operators K· into the end formulas.

We choose a space-like unit vector u which is orthogonal to ξ and ξ. Then the
imaginary vector v = iu satisfies the relations

vj ξ
j = 0 = vj ξj , v2 = 1 , v = −v . (G.14)

An explicit calculation using (6.1.10) yields that

FR+ = v/ FL+ v/ , FL− =
1

z
ξ/ v/ FL+ v/ ξ/ , FR− =

1

z
ξ/ FL+ ξ/ . (G.15)

1
Online version: This factorization method is obtained in a somewhat easier way by computing

the matrix elements in a double null spinor frame as explained in [5, §2.6.2] (see the references in the
preface to the second online edition).



284 G. PERTURBATION CALCULATION FOR THE SPECTRAL DECOMPOSITION

Substituting these formulas into (G.11), we obtain an expression involving only the
spectral projector FL+, namely

(G.11) = Tr (FL+ C1 FL+ C2 · · ·FL+ Ck) (G.16)

with suitable matrices Cj . Since the FL+ are projectors on one-dimensional subspaces,

FL+ C FL+ = Tr(FL+ C) FL+ .

By iteratively applying this relation in (G.16), we get the product of traces

Tr (FL+ C1) Tr (FL+ C2) · · · Tr (FL+ Ck) .

If we express the matrices Cj explicitly in terms of Bj and B
∗
j , we obtain the following

factorization formula,

Tr (Fc1s1 B1 Fc2s2 F
∗
2 · · · Bk−1 Fcksk B

∗
k)

= F c1c2
s1s2 (B1) F

c2c3
s2s3 (B

∗
2) · · · F

ck−1ck
sk−1sk (Bk−1) F

ckc1
sks1

(B∗k) , (G.17)

where F
cicj
sisj are the so-called elementary traces defined by

FLL
++(B) = Tr(F+ χL B) , FLR

++(B) = Tr(F+ v/ χL B)

FLL
+−(B) = Tr(ξ/ F+ v/ χL B) , FLR

+−(B) = Tr(ξ/ F+ χL B)

FLL
−+(B) =

1

z
Tr(F+ v/ ξ/χL B) , FLR

−+(B) =
1

z
Tr(F+ ξ/ χL B)

FLL
−−(B) =

1

z
Tr(ξ/ F+ ξ/ χL B) , FLR

−−(B) =
1

z
Tr(ξ/ F+ v/ ξ/ χL B) .







(G.18)

These formulas are also valid for the opposite chirality after the replacements L↔ R.
The elementary traces of B∗ are obtained by taking the complex conjugate,

FLL
++(B

∗) = FRR
−− (B) , FLR

++(B
∗) = FLR

−−(B)

FLL
+−(B

∗) = FRR
+− (B) , FLR

+−(B
∗) = FLR

+−(B)

FRR
−+ (B∗) = FLL

−+(B) , FLR
−+(B

∗) = FLR
−+(B)

FLL
−−(B

∗) = FRR
++ (B) , FLR

−−(B
∗) = FLR

++(B) .







(G.19)

The relations (G.17–G.19) are verified by a straightforward calculation using (6.1.10,
6.1.8, G.14).

To summarize, the above procedure reduces the calculation of the matrix trace
(G.10) to the computation of the elementary traces (G.18) for the contributions B
to the light-cone expansion of P (x, y). Taking the complex conjugate (G.19), one
obtains the elementary traces of the corresponding contributions to P (y, x). By ap-
plying (G.17) and, in the case of several sectors, by suitably inserting the operators K·,
every matrix trace can be written as a linear combination of products of elementary
traces.

G.3. Calculation of the Matrix Traces

We decompose ∆P (x, y) into its odd and even parts, denoted by Bo and Be,

∆P (x, y) = Bo(x, y) + Be(x, y) .

Explicit formulas for the fermionic projector in the presence of chiral and scalar po-
tentials are listed in Appendix B. For the purpose of this paper, only the contributions
involving the mass matrices YL/R and their derivatives are of importance. But for
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completeness and for later use, we will also compute the contributions which contain
the chiral field strength and the chiral currents. However, we will omit all contribu-
tions quadratic in the field strength. Namely, these contributions are related to the
energy-momentum tensor of the chiral fields, and it is therefore reasonable to post-
pone their analysis until gravity is also taken into consideration. Thus the phase-free
contributions relevant here are

χL Be =
1

2
χL m T (0)(x, y) ξ/

∫ y

x
dz γj (DjYL)

+χL m T (0)(x, y) YL(x) + O(log |ξ2| ξ0)

χL Bo =
i

2
χL m

2 T (0)(x, y) ξ/

∫ y

x
dz YL YR

+iχL m
2 T (1)(x, y)

∫ y

x
dz [0, 1 | 0] YL γj(DjYR)

+iχL m
2 T (1)(x, y)

∫ y

x
dz [0, 1 | 0] γj(DjYL) YR

−iχL m
2 T (1)(x, y) YL(x)

∫ y

x
dz γj(DjYR)

+χL T
(0)(x, y) ξi

∫ y

x
dz [0, 1 | 0] γlFL

li

+
1

4
χL T

(0)(x, y) ξ/

∫ y

x
dz γjγk FL

jk

−1

2
χL T

(0)(x, y) ξ/ ξi
∫ y

x
dz [0, 0 | 1] jLi

−χL T
(1)(x, y) ξi

∫ y

x
dz [0, 1 | 1] (∂/jLi )

−χL T
(1)(x, y)

∫ y

x
dz [0, 2 | 0] jLk γk

+ ξ/O(ξ−2) + γj FL
jkξ

k O(ξ−2) + O(F 2
L) + O(log |ξ2| ξ0) .

A straightforward calculation yields for the elementary traces

FLR
+−(P0) = (deg ≤ 1) =

i

2
XL (z T

(−1)
[0] ) (G.20)

FLR
−+(P0) = (deg ≤ 2) =

i

2
XL T

(−1)
[0] (G.21)

FLL
++(Be) = (deg ≤ 1) = YL(x) T

(0)
[1] + (deg < 1) (G.22)

FLL
+−(Be) = (deg ≤ 0) (G.23)

FLL
−+(Be) = (deg ≤ 1) (G.24)

FLL
−−(Be) = (deg ≤ 1) = YL(y) T

(0)
[1] + (deg < 1) (G.25)

FLR
++(Bo) = (deg ≤ 1) (G.26)

= vjξk
∫ y

x
dz [0, 1 | 0] FL

jk T
(0)
[0] + (deg < 1) (G.27)
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+
2i

z − z ǫijkl ξ
i ξ

j
vk
∫ y

x
dz [0, 1 | 0] F lm

L (ξm T
(0)
[0] ) (G.28)

+
i

z − z ǫ
ijkl (ξiξj + ξiξ

(0)
j − ξiξ

(0)
j ) vk

∫ y

x
dz ξnFL

nl T
(0)
[0] (G.29)

FLR
+−(Bo) = (deg ≤ 0)

=
i

2

∫ y

x
dz YL YR ((z T

(0)
[2] ) + 4 T

(1)
[2] ) + (deg < 0) (G.30)

−2i YL(x) YR(y) T (1)
[2] (G.31)

−1

2
ξi

∫ y

x
dz [0, 0 | 1] jiL ((z T

(0)
[0] ) + 8 T

(1)
[0] ) (G.32)

+
i

2
ǫijkl

z ξ
i − z ξi
z − z

∫ y

x
F jk
L (ξl T

(0)
[0] ) (G.33)

FLR
−+(Bo) = (deg ≤ 1)

=
i

2

∫ y

x
dz YL YR T

(0)
[2] + (deg < 1) (G.34)

−1

2
ξi

∫ y

x
dz [0, 0 | 1] jiL T

(0)
[0] (G.35)

− i
2
ǫijkl

ξ
i − ξi
z − z

∫ y

x
F jk
L (ξl T

(0)
[0] ) (G.36)

FLR
−−(Bo) = (deg ≤ 1)

= vjξk
∫ y

x
dz [1, 0 | 0] FL

jk T
(0)
[0] + (deg < 1) (G.37)

+
i

2
ǫijkl ξi vj

∫ y

x
FL
kl T

(0)
[0] (G.38)

+
2i

z − z ǫijkl ξ
i ξ

j
vk
∫ y

x
dz [0, 1 | 0] F lm

L (ξm T
(0)
[0] ) (G.39)

+
i

z − z ǫ
ijkl (ξiξj + ξiξ

(0)
j − ξiξ

(0)
j ) vk

∫ y

x
dz ξnFnl T

(0)
[0] . (G.40)

Here the totally anti-symmetric symbol ǫijkl appears because we applied the identity

Tr(χL/R a/ b/ c/ d/) = 2 ((ab)(cd) + (da)(bc) − (ac)(bd)) ∓ 2i ǫijkl a
ibjckdl .

Therefore, the corresponding formulas for the opposite chirality are now obtained by
the replacements

L ←→ R , ǫijkl −→ − ǫijkl . (G.41)

The elementary traces of the adjoints are computed via (G.19). All other elementary
traces vanish.

Applying (G.17) and the degree estimates for the elementary traces and omitting
all terms quadratic in the field strength, we can factor and estimate the following
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matrix traces,

Tr(FL+ ∆A) = FLR
+−(P0) F

RL
−+(B

∗
o) + FLR

+−(Bo) F
RL
−+(P

∗
0 )

+ FLL
++(Be) F

LL
++(B

∗
e ) + (deg < 2) (G.42)

Tr(FL− ∆A) = FLR
−+(P0) F

RL
+−(B

∗
o) + FLR

−+(Bo) F
RL
+−(P

∗
0 )

+ FLL
−−(Be) F

LL
−−(B

∗
e ) + (deg < 2) (G.43)

Tr(FLs ∆A FLs ∆A) = Tr(FLs ∆A) Tr(FLs ∆A) = (deg < 5) (G.44)

Tr(FLs ∆A FRs ∆A) = (deg < 5) (G.45)

Tr(FL+ ∆A FR− ∆A) = (FLL
++(Be) F

LR
+−(P

∗
0 ) + FLR

+−(P0) F
RR
−− (B

∗
e ))

×(FRR
−− (Be) F

RL
−+(P

∗
0 ) + FRL

−+(P0) F
LL
++(B

∗
e )) + (deg < 5) (G.46)

Tr(FL− ∆A FR+ ∆A) = (FLL
−−(Be) F

LR
−+(P

∗
0 ) + FLR

−+(P0) F
RR
++ (B∗e ))

×(FRR
++ (Be) F

RL
+−(P

∗
0 ) + FRL

+−(P0) F
LL
−−(B

∗
e )) + (deg < 5) (G.47)

Tr(FL+ ∆A FL− ∆A) = 0 = Tr(FL− ∆A FL+ ∆A) . (G.48)

If we consider more generally the matrix trace of order l, factorization gives a linear
combination of products of elementary traces as in (G.17) (with k = 2l). Let us esti-
mate the degree of each of these products. Clearly, the number of factors F ·+− equals
the number of factors F ·−+, we denote the number of such pairs by p. Furthermore,
let q be the number of factors F ·· (∆P

·) (where ∆P · stands for either ∆P or ∆P ∗).
According to (G.3), each ∆A contains at least one factor ∆P ·, hence q ≥ l. The num-
ber of factors F ·++ and F ·−− is 2(l − p), and we saw above that each of these factors
must involve ∆P ·, thus q ≥ 2(l − p). Adding our two upper bounds for q gives the
inequality q+p ≥ 3l/2. To estimate the degrees we first note that the degree of the pair
F ·+−(P

·
0) F

·
−+(P

·
0) is three, and is decreased at least by one each time a P ·0 is replaced

by ∆P ·. The total number of factors F ·+−(∆P
·) and F ·−+(∆P

·) is q− 2(l− p). On the
other hand, the degree of each factor F ·++ and F ·−− is at most one. Hence the degree
of the matrix is bounded from below by 3p − (q − 2(l − p)) + 2(l − p) = 4l − (q + p).
Substituting in our above lower bound for q + p gives the degree estimate

Tr(Fc1s1 ∆A · · · Fclsl ∆A) =

(

deg <
5

2
l

)

= (deg < 3l − 1) for l ≥ 3. (G.49)

The above formulas are valid in the case N = 1 of one sector. The generalization
to several sectors is done by inserting suitable operators K· into the traces. This has
no effect on the degree on the light cone, and thus the estimates of the matrix traces
in (G.42–G.49) hold in the general case as well. We substitute the above results for
the elementary traces (G.20–G.40) into (G.42–G.47) and insert the operators K· to
obtain the following explicit formulas:

Tr(FnL+ ∆A) = (deg < 2)

+TrS

{

In ŶL(x) ŶL(y)
}

T
(0)
[1] T

(0)
[1] (G.50)

+
1

4

∫ y

x
dz TrS

{

In ÝL ỲR XR

}

((z T
(0)
[2] ) + 4 T

(1)
[2] ) T

(−1)
[0] (G.51)

−TrS
{

In ÝL(x) ỲR(y) XR

}

T
(1)
[2] T

(−1)
[0] (G.52)

+
1

4

∫ x

y
dz TrS

{

In XL ÝR ỲL

}

(z T
(−1)
[0] ) T

(0)
[2] (G.53)
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+
i

4
ξi

∫ y

x
dz [0, 0 | 1] TrS

{
In j

i
L XR

}
((z T

(0)
[0] ) + 8 T

(1)
[0] ) T

(−1)
[0] (G.54)

− i
4
ξi

∫ x

y
dz [0, 0 | 1] TrS

{
In XL j

i
R

}
(z T

(−1)
[0] ) T

(0)
[0] (G.55)

+
1

4
ǫijkl

z ξ
i − z ξi
z − z ξl

∫ y

x
TrS

{

In F
jk
L XR

}

T
(0)
[0] T

(−1)
[0] (G.56)

+
1

4
ǫijkl

ξ
i − ξi
z − z ξl

∫ x

y
Trx

{

In XL F
jk
R

}

(z T
(−1)
[0] ) (T

(0)
[0] ) (G.57)

Tr(FnL− ∆A) = (deg < 2)

+TrS

{

In ŶL(y) ŶL(x)
}

T
(0)
[1] T

(0)
[1] (G.58)

+
1

4

∫ y

x
dz TrS

{

In ÝL ỲR XR

}

T
(0)
[2] (z T

(−1)
[0] ) (G.59)

+
1

4

∫ x

y
dz TrS

{

In XL ÝR ỲL

}

T
(−1)
[0]

((z T
(0)
[2]

) + 4 T
(1)
[2]

) (G.60)

−TrS
{

In XL ÝR(y) ỲL(x)
}

T
(−1)
[0] T

(1)
[2] (G.61)

− i
4
ξi

∫ x

y
dz [0, 0 | 1] TrS

{
In XL j

i
R

}
T
(−1)
[0] ((z T

(0)
[0] ) + 8 T

(1)
[0] ) (G.62)

+
i

4
ξi

∫ y

x
dz [0, 0 | 1] TrS

{
In j

i
L XR

}
T
(0)
[0] (z T

(−1)
[0] ) (G.63)

−1

4
ǫijkl

ξ
i − ξi
z − z ξl

∫ y

x
TrS

{

In F
jk
L XR

}

T
(0)
[0] (z T

(−1)
[0] ) (G.64)

−1

4
ǫijkl

z ξ
i − z ξi
z − z ξl

∫ x

y
TrS

{

In XL F
jk
R

}

T
(−1)
[0] T

(0)
[0] (G.65)

Tr(FnL+ ∆A Fn′R− ∆A) = (deg < 5)

−1

4
TrS

{

In

(

ŶL(x)XL T
(0)
[1] (z T

(−1)
[0] ) − XL ŶR(x)(z T

(−1)
[0] ) T

(0)
[1]

)

× In′

(

ŶR(y)XR T
(0)
[1] T

(−1)
[0] − XR ŶL(y) T

(−1)
[0] T

(0)
[1]

)}

(G.66)

Tr(FnL− ∆A Fn′R+ ∆A) = (deg < 5)

−1

4
TrS

{

In

(

ŶL(y)XL T
(0)
[1] T

(−1)
[0] − XL ŶR(y) T

(−1)
[0] T

(0)
[1]

)

× In′

(

ŶR(x)XR T
(0)
[1] (z T

(−1)
[0] ) − XR ŶL(x) (z T

(−1)
[0] ) T

(0)
[1]

)}

(G.67)

G.4. Perturbation of the Non-Zero Eigenvalues

In §7 we calculated the eigenvalues λncs of A in the presence of chiral and scalar
potentials to the leading degree 3, (6.1.10). Now we shall compute the contributions
to the non-zero eigenvalues of degree two, denoted by ∆λncs, n = 1, . . . , 7 (the kernel
of A will be considered in §G.5). To this end, we need to analyze the matrix A on the
invariant subspaces ImGk. First, we choose for fixed k > 1 a convenient basis of ImGk
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as follows. The degeneracy of the unperturbed eigenspace ImFk can be described by
the index set I,

I = {(ncs) with λncs = λk} . (G.68)

Note that, according to (6.1.10), s is the same for all elements (ncs) ∈ I, provided
that the eigenvalue is non-zero. The index c, however, may take both values L and R,
giving rise to the partition of I into IL and IR,

IL/R = {(ncs) ∈ I with c = L/R} .
The set I can be used to index a basis of Fk; namely we choose

(φncs)(ncs)∈I with 0 6= φncs ∈ Im Fncs . (G.69)

It is convenient to assume that the basis vectors are related to each other by

φn′cs = Kn′n φncs , φn′c̄s = Kn′n v/ φncs ; (G.70)

this can clearly arranged according to (G.13–G.15). Since Fk projects onto a null
space, the inner product of any two basis vectors φncs vanishes. Thus in order to be
able to evaluate vectors in ImFk using the scalar product, we choose a “dual basis”
(φncs)(ncs)∈I of ImF ∗k given by

φncs ∈ Im F ∗ncs , φn
′cs = Kn′n φ

ncs , φn
′ c̄s = Kn′n v/ φ

ncs . (G.71)

The basis vectors and their duals are orthogonal in the sense that for (ncs) 6= (n′c′s),

<φncs | φn′c′s> = <F ∗ncs φ
ncs | Fn′c′s φn′c′s> = <φncs | Fncs Fn′c′s φn′c′s> = 0 .

We normalize the basis vectors such that

<φncs | φn′c′s> = δnn′ δcc′ for all (ncs), (n′c′s) ∈ I. (G.72)

Next we introduce a basis (ψncs)(ncs)∈I of the invariant subspace ImGk by applying
the projector Pk to the φncs,

ψncs = Gk φncs . (G.73)

Finally, we introduce a basis (ψncs)(ncs)∈I which is dual to (ψncs). We must be care-
ful because projecting on Im(Gk) and Im(Gk), respectively, does not preserve the
orthonormality; more precisely,

Sncs
n′c′s ≡ <G∗k φ

ncs | ψn′c′s> = <G∗k φ
ncs |Gk φn′c′s>

= < φncs |Gk | φn′c′s>
in general

6= δnn′ δcc′ . (G.74)

But S is a perturbation of the identity, and thus it can be inverted within the perturba-
tion expansion by a Neumann series. This makes it possible to introduce (ψncs)(ncs)∈I
by

ψncs =
∑

(n′c′s)∈I

(S−1)ncsn′c′s G
∗
k φ

n′c′s . (G.75)

A short calculation shows that this basis of ImG∗k is indeed dual to (ψncs) in the sense
that

<ψncs | ψn′c′s> = δnn′ δcc′ for all (ncs), (n′c′s) ∈ I. (G.76)

Using the basis (ψncs) and its dual (ψncs), we can write down matrix elements of
A,

Ancs
n′c′s = <ψncs |A | ψn′c′s> for (ncs), (n′c′s) ∈ I. (G.77)

From the orthonormality (G.76) one sees that Ancs
n′c′s is indeed a matrix representation

for A in the basis (ψncs), and thus the eigenvalues of A on the invariant subspace
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ImGk are obtained simply by diagonalizing this matrix. In the unperturbed case (i.e.
if ∆A = 0), the matrix Ancs

n′c′s simplifies to

Ancs
n′c′s = <φncs |A0 | φn′c′s> = <φncs |A0 Fn′c′s φn′c′s>

= λk <φ
ncs | φn′c′s> = λk δ

n
n′ δcc′ ,

in agreement with the fact that ImFk is an eigenspace of A0 corresponding to the
eigenvalue λk. Thus we see that the matrix elements Ancs

n′c′s are to leading order on the
light cone of degree 3. In the following theorem we compute the matrix elements up
to contributions of degree < 2.

Theorem G.4.1. We consider the fermionic projector in the presence of chiral and
scalar potentials (6.0.5) and in composite expressions disregard all terms quadratic in
the field strength. Then for all k = 2, . . . ,K and (ncs), (n′c′s) ∈ I,

Ancs
n′c′s = λk δ

n
n′ δcc′ + δcc′ Tr (Fncs ∆AKn′n)

+δcc′
∑

l 6=k

1

λk − λl
Tr (Fncs ∆A Fl ∆AKn′n) + (deg < 2). (G.78)

Proof. We begin by computing the matrix S, (G.74), and its inverse. This
calculation will also illustrate how the relations (G.70) and (G.71) make it possible
to rewrite expectation values as matrix traces and thus to apply the results of §G.2
and §G.3. In the case c = c′, we obtain from (G.74) and (G.70),

Sncs
n′cs = <φncs |Gk | φn′cs> = <φncs |Gk |Kn′n φncs>

(G.69,G.71)
= <F ∗ncs φ

ncs |Gk Kn′n | Fncs φncs>

= <φncs | Fncs Gk Kn′n Fncs | φncs>
(∗)
= Tr (Fncs Gk Kn′n) <φ

ncs | Fncs | φncs>

= Tr (Fncs Gk Kn′n) <φ
ncs | φncs>

(G.72)
= Tr (Fncs Gk Kn′n) ,

where in (*) we used that Fncs projects on a one-dimensional subspace. If we sub-
stitute the perturbation expansion for Gk, (G.6), into the obtained matrix trace, the
estimate (G.49) shows that the orders n > 2 yield contributions to S of degree < −1.
Thus it suffices to consider for Gk the second order expansion (G.8). This gives

Sncs
n′cs = δnn′ −

∑

l 6=k

1

(λk − λl)2
Tr (Fncs ∆A Fl ∆AKn′n) + (deg < −1) . (G.79)

Note that of the matrix trace appearing here we need to take into account only the
leading contributions of degree 5; these are easily obtained from (G.66) and (G.67).
In the case c 6= c′, we obtain similarly

Sncs
n′c̄s = <φncs |Gk Kn′n v/ φncs> = Tr (Fncs Gk Kn′n v/) .

We again substitute in the expansion for Gk (G.8). As a consequence of the additional
factor v/, the contribution to zeroth order in ∆A now drops out. The first order
contribution to Sncs

n′c̄s is
∑

l 6=k

1

λk − λl
(Fncs ∆A Fl Kn′n v/) =

1

λncs − λn′c̄s
(Fncs ∆A Fn′ c̄s Kn′n v/)

=
1

λncs − λn′c̄s
(Fncs ∆AKn′n v/) = (deg < −1) ,
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because according to (G.18) and (G.26) the last matrix trace has degree ≤ 1. Here we
implicitly assumed that λncs 6= λn′ c̄s, because otherwise we clearly get zero. A straight-
forward calculation using the factorization formula (G.17) as well as the estimates for
the elementary traces following (G.20) shows that the second order contribution to
Sncs
n′c̄s also is of degree < −1. We conclude that

Sncs
n′c̄s = (deg < −1) . (G.80)

Now we can take the inverse of the expansions (G.79) and (G.80). This gives

(S−1)ncsn′c′s = δnn′δcc′+δ
c
c′

∑

l 6=k

1

(λk − λl)2
Tr (Fncs ∆A Fl ∆AKn′n)+(deg < −1). (G.81)

We next compute the expectation values

<φncs |AGk | φn′c′s>

up to contributions of degree < 2. The method is the same as for the above calculation
of the matrix S. In the case c = c′, we obtain the following matrix trace,

<φncs |AGk | φn′cs> = <φncs |AGk Kn′n | φncs>
= <φncs | Fncs AGk Kn′n Fncs | φncs> = Tr (Fncs AGk Kn′n) .

Substituting in (G.1) and (G.6), the estimate (G.49) shows that it suffices to take into
account Gk to second order (G.8). We get

<φncs |AGk | φn′cs> = λk δ
n
n′ δcc′ + Tr (Fncs ∆AKn′n)

+
∑

l 6=k

1

λk − λl
Tr (Fncs ∆A Fl ∆AKn′n)

−
∑

l 6=k

λk
(λk − λl)2

Tr (Fncs ∆A Fl ∆AKn′n) + (deg < 2). (G.82)

In the case c 6= c′, we can rewrite the expectation value as follows,

<φncs |AGk | φn′ c̄s> = <φncs |AGk Kn′n v/ | φncs> = Tr (Fncs AGk Kn′n v/) .

If we substitute in (G.1) and (G.8), factor the resulting matrix traces and use the
estimates of the elementary traces of §G.3, we obtain that

<φncs |AGk | φn′c̄s> = (deg < 2) . (G.83)

In order to bring the matrix elements (G.77) into a suitable form, we substitute
the definitions (G.73) and (G.75) into (G.77) to obtain

Ancs
n′c′s =

∑

(ñc̃s)∈I

(S−1)ncsñc̃s <G
∗
k φ

ñc̃x | A |Gk φn′c′s>

=
∑

(ñc̃s)∈I

(S−1)ncsñc̃s <φ
ñc̃x |AGk | φn′c′s> ,

where in the last step we used that Gk commutes with A (as the projector on an
invariant subspace). Putting in the expansions (G.81) and (G.82, G.83) gives the
result.

If there are no degeneracies, the above theorem reduces to the well-known formula
of second order perturbation theory. The important result is that to the considered
degree on the light cone, the matrix elements Ancs

n′c′s are all zero if c 6= c′. In other
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words, the left- and right-handed components are invariant subspaces of A. This fact
immediately gives the following corollary.

Corollary G.4.2. Consider the fermionic projector in the presence of chiral and
scalar potentials (6.0.5), were in composite expressions we disregard all terms quadratic
in the field strength. Suppose that the matrix Ancs

n′c′s, (G.78), is diagonal in the sector
indices n, n′ for all k = 2, . . . ,K. Then for n = 1, . . . , 7, the contributions to the
eigenvalues of degree two are

∆λnL+ = Tr(FnL+ ∆A) +

8∑

n′=1

1

λnL+ − λn′R−
Tr(FnL+ ∆A Fn′R− ∆A) (G.84)

∆λnL− = Tr(FnL− ∆A) +

8∑

n′=1

1

λnL− − λn′R+
Tr(FnL− ∆A Fn′R+ ∆A) . (G.85)

The traces appearing here are given explicitly by (G.50–G.67), where the line inte-
grals are in phase-free form. The corresponding formulas for the opposite chirality are
obtained by the replacements (G.41).

Proof. The result is an immediate consequence of Theorem G.4.1 and the esti-
mates (G.42–G.48).

G.5. Perturbation of the Kernel

The results of the previous section do not apply to the kernel of A. The reason is
that for k = 1, the index set I, (G.68), is

I = {(ncs) with n = 8, c = L/R, s = ±} ,
and this index set contains both elements with s = + and s = −, giving rise to
different types of matrix elements. On the other hand, the situation for the kernel is
easier because the unperturbed spectral projector on the kernel satisfies the relations

X∗ F1 X = 0 (G.86)

χR F1 X = 0 = X∗ F1 χL , (G.87)

and furthermore we can simplify the calculations using that λ1 = 0. Using these
relations, it follows that, neglecting all contributions of degree < 2, the dimension of
the kernel is not affected by the perturbation.

Theorem G.5.1. Consider the fermionic projector in the presence of chiral and
scalar potentials (6.0.5) and assume that the fermionic projector is weakly causality
compatible (see Def. 7.1.1). Suppose that in composite expressions all terms quadratic
in the field strength are discarded. Then

AG1 = (deg < 2) .

Proof. Using the definition (G.5),

AG1 =
1

2πi

∮

|z|=ε
A (z −A)−1 dz =

1

2πi

∮

|z|=ε

(
z (z −A)−1 − 11

)
dz

=
1

2πi

∮

|z|=ε
z (z −A)−1 dz .
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Performing the perturbation expansion gives, similar to (G.6),

AG1 =

∞∑

n=0

1

2πi

∮

|z|=ε
z
(
(z −A0)

−1 ∆A
)n

(z −A0)
−1 dz . (G.88)

When we substitute in (G.7) and carry out the contour integral with residues, we get
zero unless the factor z is differentiated. For this to occur, the pole at z = 0 must
be at least of order two, and thus we need to take into account only the orders in
perturbation theory n ≥ 2. If n > 2, we can as in the previous section transform the
matrix products into matrix traces, and the estimate (G.49) yields that the resulting
contributions to AG1 are of degree < 2. Thus it suffices to consider the second order
in perturbation theory,

AG1 =
1

2πi

∮

|z|=ε
z (z −A0)

−1 ∆A (z −A0)
−1 ∆A (z −A0)

−1 dz + (deg < 2)

= −
K∑

l=2

1

λl
(Fl ∆A F1 ∆A F1 + F1 ∆A F1 ∆A Fl + F1 ∆A Fl ∆A F1)

+ (deg < 2) (G.89)

The weak causality compatibility condition implies that

X P (x, y) = P (x, y) = P (x, y)X∗ , (G.90)

and similarly for composite expressions in the fermionic projector. As a consequence,
the first two matrix products in (G.89) vanish; namely,

∆A F1 ∆A = (∆AX∗) F1 (X ∆A) = ∆A (X∗ F1 X) ∆A
(G.86)
= 0 .

In the last matrix product in (G.89) we can apply (G.87),

F1 ∆A Fl ∆A F1 = F1 (X ∆A) Fl (∆AX
∗) F1 = χL F1 ∆A Fl ∆A F1 χR . (G.91)

Next we substitute (G.4), rewrite the resulting operator products as matrix traces, fac-
tor these matrix traces into elementary traces, and apply the estimates of §G.3. This
straightforward calculation shows that the matrix product (G.91) is of degree < 5 on
the light cone. From (G.89) we conclude that AG1 is of degree < 2.
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S-matrix, 47
ε-definite

kernel, 219
spectrum, 218

ε-non-degenerate masses, 228
ε-orthogonal to ρ, 223

action
classical, 10
determinant, 137
Dirac, 20
n-point, 164
polynomial, 134, 147
two-point, 80
Yang-Mills, 21

adjoint, 11
annihilation operator, 18
anti-commutation relations, 11

canonical, 18

basic fraction, 121
linear independence of, 249

bilinear matrix, 23
bosonic

fields, 89

canonical quantization, 16
causality, 7
causality compatible, 44

weakly, 169
chain, 79

closed, 79
chiral, 49
chiral asymmetry matrix, 42
chiral cancellation, 126, 133
chiral degeneracy, 128
chiral projector, 13
chiral transformation, 189
continuum limit, 122
contraction rules, 57
covariant derivative, 10
creation operator, 18
current conservation, 12
curvature, 10, 25

degree
of the simple fraction, 119
on the light cone, 129

Dirac current, 12
Dirac equation, 11, 27

in Hamiltonian form, 14
in the electromagnetic field, 11
in the gravitational field, 27
in the vacuum, 11

Dirac matrix, 11
Dirac operator, 22

physical, 26
Dirac sea, 16, 39
Dirac spinor, 11
discrete kernel, 79
discrete space-time, 78
distributional MP -product, 143
Dyson series, 58

eigenvalues
in complex conjugate pairs, 131
independent, 135

Einstein’s equations, 10
electromagnetic coupling constant, 8
electromagnetic current, 8
energy-momentum tensor, 10
equations of discrete space-time, 78
equivalence principle, 9
Euler-Lagrange (EL) equations, 85, 126
even matrix, 13
external field, 32, 49
external field problem, 29

fermionic projector, 45, 75
auxiliary, 41
idempotence of the, 66, 229
infrared regularized, 64
of the vacuum, 124
of discrete space-time, 78

Feynman diagram, 40
Feynman propagator, 31
Fock space, 17, 199
frequency condition, 31
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gauge, 21, 73, 78
normal, 24

gauge condition, 190
gauge group, 20

chiral, 149
dynamical, 153, 157
free, 152
free dynamical, 153

gauge symmetry
U(2, 2), 21
local, 19

gauge term, 153
gauge-covariant derivative, 20, 71
Gaussian normal coordinates, 9
generation index, 41
global constraints, 186
Green’s function, 30

advanced, 30
retarded, 30

Hadamard state, 31
Hamiltonian, 14
Hartree-Fock state, 17, 75
Higgs mechanism, 152
high-energy contribution, 62
homogeneous regularization of the vacuum, 92

infinite volume limit, 64
infrared regularization, 63
inner factor ξ/, 115
integration along characteristics, 53
integration-by-parts rule, 120

Klein’s paradox, 30
Klein-Gordon equation, 10

Lagrangian, 80
determinant, 137
model, 82, 137
polynomial, 134

lepton block, 184
light cone, 7

closed, 7
future, 8
interior, 7
past, 8

light-cone coordinates, 96
light-cone expansion, 49, 205

formulas of the, 203
gauge invariant form of the, 205
of the Feynman diagram, 56
resummation of the, 58

line contribution, 156
local gauge transformation, 19
local inertial frame, 9
logarithmic mass problem, 60
Lorentz group, 8

orthochronous proper, 8

Lorentz transformation, 8, 12
low-energy contribution, 62

macroscopic away from the light cone, 138
macroscopic potentials and wave functions,

assumption of, 91
macroscopic quantity, 90
mass cone, 141

lower, 141
upper, 141

mass degeneracy assumption, 136
mass expansion, 102
mass matrix, 42

dynamical, 51, 149
non-degenerate dynamical, 170

masses, 63
non-degenerate

in the generations, 63
massive chiral fermion, 207
massive neutrino, 187, 207
matrix trace, 283

factorization of, 283
Maxwell’s equations, 8
method of variable regularization, 90
metric tensor, 9
minimal coupling, 20
Minkowski space, 7
mixing matrix, 190, 195
modified mass scaling, 212, 227

normalization condition, 14
normalization integral, 27
null vector, 7

odd matrix, 13
ordered exponential, 58

partial trace, 42, 45, 67
Pauli Exclusion Principle, 17
Pauli matrix, 11
perturbation expansion

causal, 32
for the spectral decomposition, 281
homogeneous, 212
non-uniqueness, 31
regularized causal, 233

phase-free, 59
phase-inserted, 59
Planck length, 1
plane wave solution, 15
point contribution, 156
positivity of the scalar component, 110
potential

SU(2), 194
bosonic, 89
chiral, 149
electromagnetic, 8
nil, 196
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scalar/pseudoscalar, 49
simple, 194
static, 29

principle of the fermionic projector, 78
probability density, 14, 27
probability integral, 14, 68
problem at the origin, 260
problem of disjoint supports, 265
projected mixing, 195
proper time, 8
pseudoscalar matrix, 13

quark block, 184

reference frame, 7
normal, 26

regularization expansion, 102
regularization parameter, 120

basic, 121
residual argument, 61
restriction to the leading order in (lEP )

−1,
112

scalar component, 96
scattering process, 46
sector, 41, 124
selfadjoint, 12
simple fraction, 118

independence of, 121
singular mass limit, 209
spacelike vector, 7
spectral adjoint, 82
spectral decomposition, 82
spectral weight, 81
spin derivative, 24
spin dimension, 41, 74
spin scalar product, 11, 21, 74
spinor, 21
spinor bundle, 21
spinor matrix

left-handed, 13
right-handed, 13

spontaneous block formation, 183
spontaneous symmetry breaking, 152
state stability, 142
strong spectral analysis, 132
support near the light cone, 118
surface states, 103

half occupied, 111
restriction to, 103
shear of the, 106

surface term, 165

tangent space, 9
testing with physical perturbations, 279
timelike vector, 7
torsion, 25

unitary, 12
unitary mixing, 190
units, 7
Unruh effect, 48

variation of finite support, 83
variational principle, see also action
vector component, 104

is null on the light cone, 108, 163
vector-scalar structure, 94

wave function, 10
wave operator, 10
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Notation Index

(M, 〈., .〉) 7
E 7
Jx 8
J , J∨

x , J∧
x 8

I , I∨x , I
∧
x 8

L, L∨
x , L

∧
x 8

TpM 9
gjk 9
∇ 10
Ri

jkl 10
Tjk 10
S 10, 80, 124
✷ 10
{., .} 11
γj 11
~σ 11
∂/ 11
≺.|.≻ 11
A∗ 11
Jk 12
ρ 13
ǫjklm 13
χL, χR 13
(.|.) 14, 27
h 14
Ψ~psǫ 15
dµ~p 17
∧ 17
F , Fn 17

Ψ̂~psǫ, Ψ̂
†
~psǫ 18

G 20
D 22, 26
σjk 23
Tr 24, 125
D 20, 24
<.|.> 27
B 29
sm 30
s∨m, s∧m 30
sFm 31
P sea 32, 41, 44
pm 32
km 33

k̃m 34
p̃m 35
s̃m 35
p 42
k 42
X 42
Y 42
P (x, y) 45, 48, 79
cnorm 45, 48, 69
Ψin, Ψout 46
A/L, A/R 49
Φ 50
Ξ 50
S∨
m2 50

YL, YR 51
S(l) 52
Pexp 58
Tm2 60
T
reg
m2

60

T (l) 61, 111

Phe 62
P le 62
Xi 72, 76
|xα> 73
≺Ψ | Φ≻ 74
M 76
Ex 77
L 80
A 80
|.| 81

A 82
tr 83
Q(x, y) 85, 125
B 89
P̂ 93
EP 93
s 96
l 96
u 96
v 96
lmax 98
αmax 101
εshear 107
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T
(n)

[p] 115

T
(n)
{p} 115

ξ 115
L 119
creg 120
M 124, 133
λ+, λ− 127
F+, F− 127

z
(n)

[r] 129

deg 129
Q̂(p) 141
C 141
C∨, C∧ 141
AL, AR 149
YL, YR 149
WL, WR 150
νnc 150
Inc 150
Bp 157
Fp 157
Bp 157
Fp 157
Gp 157

ÝL, ÝR 168

ỲL, ỲR 168
ŶL, ŶR 168
I↑, I↓ 171
P q 184
P l 184
V 189
Y eff 189
Aeff

L , Aeff
R 189

Ka 268
Ha 269
S✶

a 269
K(n) 269
S

(n)
✶ 269

H(n) 269
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