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Guiding Questions

The purpose of the following questions is to highlight the main topics covered in the online course

and help you through the literature.

(i) What is the difference between the causal action principle and the causal variational princi-

ple? Is the latter a generalization or a simplification of the former?

(ii) What role is played by the local trace in point (i)?

(iii) How is the boundedness constraint treated?

(iv) Why is F not a manifold? Why is F reg a manifold? How can charts be constructed?

Exercises

Exercise 9.1: The support of a measure

In order to illustrate how to encode geometric information in the support of a measure, let M ⊂ R3

be a smooth surface described in a parametrization Φ. Thus given an open subset Ω ⊂ R2, we

consider a smooth injective map

Φ : Ω→ R3

with the property that DΦ|p : R2 → R3 has rank two for all p ∈ Ω. Then the surface M is defined

as the image Φ(Ω) ⊂ R3. We now introduce the measure ρ as the push-forward measure of the

Lebesgue measure on R2: Let µ be the Lebesgue measure on R2. We define a set U ⊂ R3 to be

ρ-measurable if and only if its preimage Φ−1(U) ⊂ R2 is µ-measurable. On the ρ-measurable sets

we define the measure ρ by

ρ(U) = µ
(
Φ−1(U)

)
.

Verify that the ρ-measurable sets form a σ-algebra, and that ρ is a measure. What are the sets of

ρ-measure zero? What is the support of the measure ρ?

Suppose that Φ is no longer assumed to be injective. Is ρ still a well-defined measure? Is ρ

well-defined if Φ is only assumed to be continuous? What are the minimal regularity assumptions

on Φ needed for the push-forward measure to be well-defined? What is the support of ρ in this

general setting?

Exercise 9.2: Derivation of the causal variational principle on the sphere

We consider the causal fermion systems in the case n = 1 and f = 2. For a given parameter τ > 1

we introduce the mapping F : M → F by

F (~x) = τ ~x~σ + 11 . (1)
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(i) Compute the eigenvalues of the matrix F (~x) and verify that it has one positive and one

negative eigenvalue.

(ii) Use the identities between Pauli matrices

σiσj = δij + iεijk σk , (2)

to compute the matrix product,

F (~x)F (~y) =
(
1 + τ2 ~x~y

)
11 + τ (~x+ ~y)~σ + iτ2 (~x ∧ ~y)~σ.

(iv) compute the eigenvalues of this matrix product to obtain

λ1/2 = 1 + τ2 cosϑ± τ
√

1 + cosϑ
√

2− τ2 (1− cosϑ) , (3)

where ϑ denotes the angle ϑ between ~x and ~y.

(v) Verify that if ϑ ≤ ϑmax with

ϑmax := arccos

(
1− 2

τ2

)
,

then the eigenvalues λ1/2 are both real. Conversely, if ϑ > ϑmax, then the eigenvalues form a

complex conjugate pair.

(vi) Use the formula

λ1λ2 = det(F (~x)F (~y)) = det(F (~x)) det(F (~y)) = (1 + τ)2(1− τ)2 > 0

ton conclude that if the eigenvalues λ1/2 are both real, then they have the same sign.

(vii) Combine the above findings to conclude that the causal Lagrangian can be simplified to

L(x, y) = max
(
0,D(x, y)

)
with

D(x, y) = 2τ2
(
1 + 〈x, y〉

)(
2− τ2

(
1− 〈x, y〉

))
.

Exercise 9.3: The action and boundedness constraint of the Lebesgue measure on the

sphere

We consider the causal variational principle on the sphere as introduced in the previous exercise.

We let dµ be the surface area measure, normalized such that µ(S2) = 1.

(i) Use the formula for the causal Lagrangian on the sphere to compute the causal action. Verify

that

S[F ] =
1

2

∫ ϑmax

0

L(cosϑ) sinϑ dϑ = 4− 4

3τ2
. (4)

(ii) Show that the functional T is given by

T [F ] = 4τ2(τ2 − 2) + 12− 8

3τ2
. (5)

Hence the causal action (4) is bounded uniformly in τ , although the function F , (1), as well as

the functional T , (5), diverge as τ →∞.
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Exercise 9.4: A minimizer with singular support

We again consider the causal variational principle on the sphere as introduced in Exercise 9.2.

Verify by direct computation that in the case τ =
√

2, the causal action of the normalized counting

measure supported on the octahedron is smaller the action of µ. Hint: For τ =
√

2 the opening angle

of the light cone is given by ϑ = 90◦, so that all distinct spacetime points are spacelike separated.

Moreover, the causal action of the normalized Lebesgue measure is given in Exercise 9.3 (i).

Exercise 9.5: A causal variational principle on R
We let F = R and consider the Lagrangians

L2(x, y) = (1 + x2)(1 + y2) and L4(x, y) = (1 + x4)(1 + y4) . (6)

We minimize the corresponding causal actions within the class of all normalized regular Borel

measures on R. Show with a direct estimate that the Dirac measure δ supported at the origin is

the unique minimizer of these causal variational principles.

Exercise 9.6: A causal variational principle on S1

We let F = S1 be the unit circle parametrized as eiϕ with ϕ ∈ R mod 2π and consider the

Lagrangian

L(ϕ,ϕ′) = 1 + sin2
(
ϕ− ϕ′ mod 2π

)
. (7)

We minimize the corresponding causal action within the class of all normalized regular Borel

measures on S1. Show by direct computation and estimates that every minimizer is of the form

ρ = τ δ
(
ϕ− ϕ′ − ϕ0 mod 2π

)
+ (1− τ) δ

(
ϕ− ϕ′ − ϕ0 + π mod 2π

)
(8)

for suitable values of the parameters τ ∈ [0, 1] and ϕ0 ∈ R mod 2π.

Exercise 9.7: Non-smooth EL equations

We return to the example of the counting measure on the octahedron as considered in Exercise 9.4.

(i) Compute the function `(x). Show that the EL equations are satisfied.

(ii) Show that the function ` is not differentiable at any point x of the octahedron. Therefore, it

is not possible to formulate the restricted EL equations ∇u`|M = 0.

This example illustrates why in the research papers one carefully keeps track of differentiability

properties by introducing suitable jet spaces.
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