Online Course on Causal Fermion Systems

Prof. Dr. Felix Finster, Dr. Marco Oppio

Guiding Questions and Exercises 9

Guiding Questions

The purpose of the following questions is to highlight the main topics covered in the online course and help you through the literature.

- (i) What is the difference between the causal action principle and the causal variational principle? Is the latter a generalization or a simplification of the former?
- (ii) What role is played by the local trace in point (i)?
- (iii) How is the boundedness constraint treated?
- (iv) Why is \mathscr{F} not a manifold? Why is \mathscr{F}^{reg} a manifold? How can chart be constructed?

Exercises

Exercise 9.1: The support of a measure

In order to illustrate how to encode geometric information in the support of a measure, let $\mathcal{M} \subset \mathbb{R}^3$ be a smooth surface described in a parametrization Φ . Thus given an open subset $\Omega \subset \mathbb{R}^2$, we consider a smooth injective map

$$\Phi : \Omega \to \mathbb{R}^3$$

with the property that $D\Phi|_p : \mathbb{R}^2 \to \mathbb{R}^3$ has rank two for all $p \in \Omega$. Then the surface \mathcal{M} is defined as the image $\Phi(\Omega) \subset \mathbb{R}^3$. We now introduce the measure ρ as the *push-forward measure* of the Lebesgue measure on \mathbb{R}^2 : Let μ be the Lebesgue measure on \mathbb{R}^2 . We define a set $U \subset \mathbb{R}^3$ to be ρ -measurable if and only if its preimage $\Phi^{-1}(U) \subset \mathbb{R}^2$ is μ -measurable. On the ρ -measurable sets we define the measure ρ by

$$\rho(U) = \mu(\Phi^{-1}(U)) \,.$$

Verify that the ρ -measurable sets form a σ -algebra, and that ρ is a measure. What are the sets of ρ -measure zero? What is the support of the measure ρ ?

Suppose that Φ is no longer assumed to be injective. Is ρ still a well-defined measure? Is ρ well-defined if Φ is only assumed to be continuous? What are the minimal regularity assumptions on Φ needed for the push-forward measure to be well-defined? What is the support of ρ in this general setting?

Exercise 9.2: Derivation of the causal variational principle on the sphere

We consider the causal fermion systems in the case n = 1 and f = 2. For a given parameter $\tau > 1$ we introduce the mapping $F: M \to \mathscr{F}$ by

$$F(\vec{x}) = \tau \, \vec{x}\vec{\sigma} + \mathbb{1} \,. \tag{1}$$

- (i) Compute the eigenvalues of the matrix $F(\vec{x})$ and verify that it has one positive and one negative eigenvalue.
- (ii) Use the identities between Pauli matrices

$$\sigma^i \sigma^j = \delta^{ij} + i \epsilon^{ijk} \, \sigma^k \,, \tag{2}$$

to compute the matrix product,

$$F(\vec{x}) F(\vec{y}) = \left(1 + \tau^2 \, \vec{x} \, \vec{y}\right) \mathbb{1} + \tau \left(\vec{x} + \vec{y}\right) \vec{\sigma} + i \tau^2 \left(\vec{x} \wedge \vec{y}\right) \vec{\sigma}.$$

(iv) compute the eigenvalues of this matrix product to obtain

$$\lambda_{1/2} = 1 + \tau^2 \cos\vartheta \pm \tau \sqrt{1 + \cos\vartheta} \sqrt{2 - \tau^2 \left(1 - \cos\vartheta\right)}, \qquad (3)$$

where ϑ denotes the angle ϑ between \vec{x} and \vec{y} .

(v) Verify that if $\vartheta \leq \vartheta_{\max}$ with

$$\vartheta_{\max} := \arccos\left(1 - \frac{2}{\tau^2}\right)$$

then the eigenvalues $\lambda_{1/2}$ are both real. Conversely, if $\vartheta > \vartheta_{\max}$, then the eigenvalues form a complex conjugate pair.

(vi) Use the formula

$$\lambda_1 \lambda_2 = \det(F(\vec{x})F(\vec{y})) = \det(F(\vec{x})) \, \det(F(\vec{y})) = (1+\tau)^2 (1-\tau)^2 > 0$$

ton conclude that if the eigenvalues $\lambda_{1/2}$ are both real, then they have the same sign.

(vii) Combine the above findings to conclude that the causal Lagrangian can be simplified to

$$\mathcal{L}(x,y) = \max\left(0,\mathscr{D}(x,y)\right) \quad \text{with} \\ \mathscr{D}(x,y) = 2\tau^2 \left(1 + \langle x,y \rangle\right) \left(2 - \tau^2 \left(1 - \langle x,y \rangle\right)\right).$$

Exercise 9.3: The action and boundedness constraint of the Lebesgue measure on the sphere

We consider the causal variational principle on the sphere as introduced in the previous exercise. We let $d\mu$ be the surface area measure, normalized such that $\mu(S^2) = 1$.

(i) Use the formula for the causal Lagrangian on the sphere to compute the causal action. Verify that

$$\mathcal{S}[F] = \frac{1}{2} \int_0^{\vartheta_{\max}} \mathcal{L}(\cos\vartheta) \,\sin\vartheta \,d\vartheta = 4 - \frac{4}{3\tau^2} \,. \tag{4}$$

(ii) Show that the functional \mathcal{T} is given by

$$\mathcal{T}[F] = 4\tau^2(\tau^2 - 2) + 12 - \frac{8}{3\tau^2}.$$
(5)

Hence the causal action (4) is bounded uniformly in τ , although the function F, (1), as well as the functional \mathcal{T} , (5), diverge as $\tau \to \infty$.

Exercise 9.4: A minimizer with singular support

We again consider the causal variational principle on the sphere as introduced in Exercise 9.2. Verify by direct computation that in the case $\tau = \sqrt{2}$, the causal action of the normalized counting measure supported on the *octahedron* is smaller the action of μ . *Hint:* For $\tau = \sqrt{2}$ the opening angle of the light cone is given by $\vartheta = 90^{\circ}$, so that all distinct spacetime points are spacelike separated. Moreover, the causal action of the normalized Lebesgue measure is given in Exercise 9.3 (i).

Exercise 9.5: A causal variational principle on $\mathbb R$

We let $\mathscr{F} = \mathbb{R}$ and consider the Lagrangians

$$\mathcal{L}_2(x,y) = (1+x^2)(1+y^2)$$
 and $\mathcal{L}_4(x,y) = (1+x^4)(1+y^4)$. (6)

We minimize the corresponding causal actions within the class of all normalized regular Borel measures on \mathbb{R} . Show with a direct estimate that the Dirac measure δ supported at the origin is the unique minimizer of these causal variational principles.

Exercise 9.6: A causal variational principle on S^1

We let $\mathscr{F} = S^1$ be the unit circle parametrized as $e^{i\varphi}$ with $\varphi \in \mathbb{R} \mod 2\pi$ and consider the Lagrangian

$$\mathcal{L}(\varphi, \varphi') = 1 + \sin^2\left(\varphi - \varphi' \mod 2\pi\right). \tag{7}$$

We minimize the corresponding causal action within the class of all normalized regular Borel measures on S^1 . Show by direct computation and estimates that every minimizer is of the form

$$\rho = \tau \,\delta\big(\varphi - \varphi' - \varphi_0 \,\operatorname{mod}\, 2\pi\big) + (1 - \tau) \,\delta\big(\varphi - \varphi' - \varphi_0 + \pi \,\operatorname{mod}\, 2\pi\big) \tag{8}$$

for suitable values of the parameters $\tau \in [0, 1]$ and $\varphi_0 \in \mathbb{R} \mod 2\pi$.

Exercise 9.7: Non-smooth EL equations

We return to the example of the counting measure on the octahedron as considered in Exercise 9.4.

- (i) Compute the function $\ell(x)$. Show that the EL equations are satisfied.
- (ii) Show that the function ℓ is *not* differentiable at any point x of the octahedron. Therefore, it is not possible to formulate the restricted EL equations $\nabla_{\mathfrak{u}}\ell|_M = 0$.

This example illustrates why in the research papers one carefully keeps track of differentiability properties by introducing suitable jet spaces.