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Guiding Questions

The purpose of the following questions is to highlight the main topics covered in the online course

and help you through the literature.

(i) How can Minkowski space be represented by a causal fermion system?

(ii) What is the physical and mathematical role played by the ultraviolet regularization?

(iii) What correspondence can be established between the spin spaces and the spinor space?

(iv) How do the physical wave equations and the kernel of the fermionic projector look like under

this correspondence?

(v) In which sense does the causal structure of the causal fermion system correspond to that of

Minkowski space?

Exercises

Exercise 8.1: The regularized fermionic projector in Minkowski space

Consider the kernel of the fermionic projector regularized in momentum space by a convergence-

generating factor e−ε|k
0|, i.e.

P ε(x, y) =

∫
R4

d4k

(2π)4
(/k +m) δ(k2 −m2) Θ(−k0) e−ik(x−y) e−ε|k

0|. (1)

(i) Show that P ε(x, y) can be written as /v
ε + βε, for vεj , β

ε smooth functions of ξ = y − x.

(ii) Compute P ε(x, x). Is this matrix invertible? How does it scale in ε?

For ξ spacelike or timelike, i.e. away from the lightcone, the limit ε ↘ 0 of (1) is well-defined.

More precisely, it can be shown that vεj → α ξj and βε → β pointwise, for α, β smooth complex

functions. Find smooth real functions a, b such that

lim
ε→0

Aεxy = a/ξ + b. (2)

How do the eigenvalues of (2) look like? Discuss them in relation to the notion of causality in the

setting of causal fermion systems.
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Exercise 8.2: Understanding the connection between causal structure and closed chain

Let x, y ∈ R4 be timelike separated vectors and assume that ξ := y−x is normalized to η(ξ, ξ) = 1.

As explained in Exercise 8.1, the limit ε↘ 0 of the closed chain Aεxy takes the form A = a /ξ + b.

Consider the matrices

F± :=
1

2
(I± /ξ) ∈ M(4,C).

Prove the following statements.

(i) F± have rank two and map to eigenspaces of A. What are the corresponding eigenvalues?

(ii) F± are idempotent and symmetric with respect to the spin inner product ≺ · , · � on C4.

(iii) The image of the matrices F± is positive or negative definite.

(iv) The image of F+ is orthogonal to that of F− (with respect to the spin inner product)

The result of this exercise can be summarized by saying that the F± are the spectral projection

operators of A.

Exercise 8.3: Spin spaces in Minkowski space - part 1

Let H −
m denote the Hilbert space of negative-energy solutions of the Dirac equation as introduced

in the lecture. By means of a convergence-generating factor as in Exercise 8.1 it is possible to

define a bounded regularization operator

Rε : H −
m →H −

m ∩ C∞(R4,C4),

which can be proved to be injective. As you know from the lecture, this allows us to define local

correlation operators F ε(x) on H −
m via

〈u|F ε(x)v〉 := −≺Rεu(x),Rεv(x)�. (3)

This gives rise to a causal fermion system, called the regularized Dirac sea vacuum.

(i) Let Σ0 denote the Cauchy surface at time t = 0. Show that, for any x ∈ R4 and χ ∈ C4,

(i/∂ −m)P ε( · , x)χ = 0 and P ε( · , x)χ
∣∣
Σ0
∈ S(R3,C4).

Conclude that P ε( · , x)χ ∈H −
m ∩ C∞(R4,C4).

(ii) Convince youself that

Rε(P
ε( · , x)χ) = P 2ε( · , x)χ.

(iii) Let {e1, . . . , e4} denote the canonical basis of C4. Using (ii) of Exercise 8.1, show that the

wave functions P ε( · , x)eµ, for µ = 1, 2, 3, 4, are linearly independent.

(iv) Let Sx := F ε(x)(H −
m ) endowed with ≺u, v�x := −〈u|F ε(x)v〉 be the spin space at x ∈ R4.

Show that the following mapping is an isometry of indefinite inner products (i.e. injective

and product preserving),

Φx : Sx 3 u 7→ Rεu(x) ∈ C4.

Conclude that the causal fermion system is regular at x ∈ R4, i.e. dimSx = 4, if and only

if there exist vectors uµ ∈ H −
m , for µ = 1, 2, 3, 4, such that the Rεuµ(x) ∈ C4 are linearly

independent.

(v) Conclude that the causal fermion system is regular at every x ∈ R4.
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Exercise 8.4: Spin spaces in Minkowski space - part 2

Let x, y ∈ R4 and {un}n be a Hilbert basis of H −
m . It can be shown that

P 2ε(x, y) = − 1

2π

∞∑
n=1

|Rεun(x)�≺Rεun(y)|.

Let P(A,B) := πAB|SB
denote the fermionic projector. Prove the following statements.

(i) Rε(πF ε(x)u)(x) = Rεu(x) for all u ∈H −
m .

(ii) Φx P(F ε(x), F ε(y)) Φ−1
y = 2π P 2ε(x, y).

(iii) P ε( · , x)a ∈ Sx for all a ∈ C4.

Hint: Use (i)-(ii), regularity and the injectivity of Rε.

Conclude that Sx = {P ε( · , x)a | a ∈ C4}.

Exercise 8.5: The time-direction functional in Minkowski space (6 points)

Away from the light-cone the kernel of the fermionic projector P ε converges to a smooth function

P . More precisely, for ξ ∈ R3 \ L0,

P ε(ξ)→ P (ξ) = (i/∂ +m)Tm2(ξ), Tm2(ξ) :=

∫
d4k

(2π)4
δ(k2 −m2) Θ(−k0) e−ik·ξ.

where Tm2 is smooth on R4 \ L0.

(i) Show with a symmetry argument (without explicit computation of Fourier integrals!) that

the imaginary part of the function T vanishes for spacelike vectors ξ.

(ii) Referring to Exercise 8.1, deduce that, for spacelike separation, α ∈ iR, β ∈ R and a = 0.

A causal fermion system distinguishes a direction of time by means of the anti-symmetric real

functional

C : M ×M 3 (A,B) 7→ i tr(BAπB πA −AB πA πB) ∈ R.

From Exercise 8.1-(ii) we know that P ε(0) is invertible. Let us define ν := P ε(0)−1 ∈ Mat(4,C).

Using the identifications as in Exercise 8.3-4 (x ≡ F ε(x), Sx ∼= C4), prove the following identities

(up to global constants)

(i) πx y x πy πx|Sx
= P ε(x, y)P ε(y, x)P ε(x, y) ν P ε(y, x) ν.

(ii) C(x, y) = iTrC4

(
P ε(x, y) ν P ε(y, x)

[
ν,Aεxy

])
.

Let x, y be spacelike separated. Using (2) and (ii), what can you infer about the size of the

functional C(x, y) in the limit ε ↘ 0? Hint: Discuss the commutator in (ii). The scaling in ε

from Exercise 8.1-(ii) may be useful.
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Exercise 8.6: Closedness of the local correlation function (6 points)

The goal of this exercise is to show that the local correlation operators, as defined in Exercise 8.3,

realize a one-to-one topological identification of Minkowski space with a closed subset of F . Let

us define the local correlation function by

F ε : R4 → F , 〈u, F ε(x)v〉 := −≺Rεu(x),Rv(x)�. (4)

Thanks to the translation invariance fo the Dirac sea, it can be proved that all the F ε(x) are

unitarily equivalent, in particular they have the same norm.

(i) Continuity: The regularization operator as in Exercise 8.3 can be chosen to fulfill:

(a) There is C > 0 such that |Ru(x)| ≤ C‖u‖ for all x ∈ R4

(b) For all x ∈ R4 and δ > 0 there is r > 0 such that |Ru(x) − Ru(y)| ≤ δ‖u‖ for all

u ∈H −
m and all y ∈ Br(x).

Use these properties to show that F ε is continuous in the operator topology.

(ii) Injectivity: Let F ε(x) = F ε(y). We need to show that x = y. As in previous exercises,

consider the elements u
(p)
n ∈H −

m whose regularization reads (e4 = (0, 0, 0, 1))

(Rεu(p)
n )(z) =

∫
R3

(p−(k)e4)hn(k− p) e−εω(k) ei(ω(k)tz+k·z) d3k,

where hn is a Dirac delta sequence. Apply definition (4) to the vectors u
(0)
n , u

(p)
n and take

the limit n→∞. How can the arbitrariness of p be exploited in order to infer that x = y?

Motivate your answer. Hint: Note that p−(p) depends continuously on p.

(iii) Closedness: The final step consists in proving that the local correlation function is closed,

i.e. it maps closed sets to closed sets. In particular, it follows that F ε(R4) is closed and that

the inverse (F ε)−1|F ε(R4) is continuous. The identification is then complete. Here we need

a general result from topology: Every proper function (i.e. such that the preimage of any

compact set is compact) between metric spaces is also closed.

(a) Let K ⊂ F be compact and let {xn}n ⊂ H := (F ε)−1(K). By compactness of K there

exists a subsequence {yn}n such that F ε(yn)→ A ∈ K. Show that A is self-adjoint and

different from zero. Hint: How could the comment after (4) be exploited?

(b) Show that the subspace of H −
m of solutions of the form

uϕ(x) :=

∫
R3

d3k (p−(k)ϕ(k)) ei(ω(k)tx+k·x), with ϕ ∈ S(R4,C4),

is dense. Deduce that there exists at least one ϕ ∈ S(R4,C4) such that 〈uϕ, Auϕ〉 6= 0.

(c) Convince yourself that e−εω p− ϕ ∈ S(R3,C4) for any ϕ ∈ S(R3,C4).

(d) It can be proved that the solutions of the Dirac equation with initial data in S(R3,C4)

decay polynomially in both space and time direction. Use (2) and (3) to show that the

sequence {yn}n cannot be unbounded.

(e) Conclude that {xn}n has a converging subsequence in H.

4



Exercise 8.7: On the differentiable manifold structure of regular points (4 points)

Let H be a Hilbert space of finite dimension N . The set F reg of regular points can be endowed

with a differentiable structure. Precisely, let x ∈ F reg. Choosing a Hilbert basis and using a block

matrix representation in H = Sx ⊕ S⊥x ∼= C2n ⊕ CN−2n, the operator x can be rewritten as

x ≡
(
X 0

0 0

)
∈ Mat(N − 2n,C), X ∈ Symm(2n,C) :=

{
A ∈ Mat(2n,C), A† = A

}
, (5)

where † refers to the Euclidean scalar product. With this idenitification in mind, we now define

Φ : (Symm(2n,C)⊕ L(C2n,CN−2n)
)
∩Bε(0)→ F reg

(A,B) 7→
(
X +A B

B† B† (X +A)−1B

)
(6)

Prove the following statements.

(i) For sufficiently small ε, Φ is well-defined, continuous and injective.

(ii) For sufficiently small δ, Bδ(x) ⊂ imΦ and the restriction Φ : Φ−1(Bδ(x)) → Bδ(x) is

homeomorphic.

Hint: With the help of a unitary operator U diagonalize any y ∈ F reg as in (5). Exploit this

to show that y must take the form (6), if its distance from x is sufficiently small.

(iii) Could one repeat the exercise if the Euclidean inner product is replaced by the canonical

spin inner product on C2n? Motivate you answer.
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