Online Course on Causal Fermion Systems

Prof. Dr. Felix Finster, Dr. Marco Oppio

Guiding Questions and Exercises 4

Guiding Questions

The purpose of the following questions is to highlight the main topics covered in the online course and help you through the literature.

- (i) How does a scalar product give rise to a norm, metric and topology?
- (ii) What is a bounded operator?
- (iii) How can one diagonalize a symmetric operator of finite rank?
- (iii) What is the topology on the Schwartz space? What are tempered distributions?
- (iv) What is the Fourier transform of a Schwartz function and a tempered distribution?

Exercises

Exercise 4.1: (Norm of a scalar product space)

Given a scalar product space $(V, \langle .|. \rangle)$, show that $||u|| := \sqrt{\langle u|u\rangle}$ defines a norm.

Exercise 4.2: (Norm of a scalar product space)

Given a scalar product space $(V, \langle .|. \rangle)$, show that $||u|| := \sqrt{\langle u|u\rangle}$ defines a norm.

Exercise 4.3: (Completeness of L(V, W))

- (a) Show that the operator norm on L(V, W) is indeed a norm.
- (b) Show that L(V, W) is complete if and only if W is complete.

Exercise 4.4: (Orthogonal complement of a finite-dimensional subspace)

- (a) Let I be a finite-dimensional subspace of the Hilbert space $(\mathcal{H}, \langle .|. \rangle)$. Show that its orthogonal complement I^{\perp} is again a complex vector space.
- (b) Show that restricting the scalar product to I, one gets again a Hilbert space. In particular, why is it again complete?
- (c) Show that every vector $u \in \mathcal{H}$ has a unique decomposition of the form

$$u = u^{||} + u^{\perp}$$
 with $u^{||} \in I, u^{\perp} \in I^{\perp}$.

Hint: Choosing an orthonormal basis e_1, \ldots, e_n of I, a good ansatz for $u^{||}$ is

$$u^{||} = \sum_{k=1}^{n} \langle e_k | u \rangle e_k .$$

Exercise 4.5: (Orthogonal projection to closed subspaces of a Hilbert space)

Let $(\mathcal{H}, \langle .|. \rangle)$ be a Hilbert space and $V \subset \mathcal{H}$ a closed subspace.

(a) Show that parallelogram identity: For all $u, v \in \mathcal{H}$,

$$||u + v||^2 + ||u - v||^2 = 2 ||u||^2 + 2 ||v||^2$$
.

(b) Given $u \in \mathcal{H}$, let $(v_n)_{n \in \mathbb{N}}$ be a sequence in V which is a minimizing sequence of the distance to u, i.e.

$$||u-v_n|| \to \inf_{v \in V} ||u-v||$$
.

Prove that the sequence $(v_n)_{n\in\mathbb{N}}$ converges. *Hint:* Apply the parallelogram identity to show that the sequence is Cauchy. Then make use of the completeness of the Hilbert space.

(c) Show that the limit vector $v := \lim_{n \to \infty} v_n$ has the property

$$\langle u - v, w \rangle = 0$$
 for all $w \in V$.

In view of this equation, the vector v is also referred to as the orthogonal projection of u to V.

Exercise 4.6: (Proof of the Fréchet-Riesz theorem)

Let $\phi \in \mathscr{H}^*$ be non-zero.

- (a) Show that the kernel of ϕ is a closed subspace of \mathcal{H} .
- (b) Apply the result of the previous exercise to construct a nonzero vector v which is orthogonal to ker ϕ . Show that this vector is unique up to scaling.
- (c) Show that, after a suitable scaling, the vector v satisfies the identity

$$\phi(u) = \langle v | u \rangle$$
 for all $u \in \mathcal{H}$.

(d) Show that the last identity determines the vector v uniquely.

Exercise 4.7: (Multiplication operators)

Let $f \in C^0(\mathbb{R}, \mathbb{C})$ be a continuous, complex-valued function. Assume that it is bounded, i.e. that $\sup_{\mathbb{R}} |f| < \infty$. We consider the multiplication operator M_f on the Hilbert space $\mathscr{H} = L^2(\mathbb{R})$,

$$M_f: \mathcal{H} \to \mathcal{H}, \qquad (M_f \phi)(x) = f(x) \phi(x).$$

(a) Show that M_f is a bounded operator, and that its operator norm is given by

$$||M_f|| = \sup_{\mathbb{R}} |f|.$$

(b) Show that M_f is symmetric if and only if f is real-valued. Under which assumptions on f is M_f unitary?

Exercise 4.8: (Dirac sequence)

Given $\varepsilon > 0$, consider the Gaussian

$$\eta_{\varepsilon}(x) := \frac{1}{\sqrt{4\pi\varepsilon}} e^{-\frac{x^2}{4\varepsilon}}.$$

- (a) Show that ε is a Schwartz function.
- (b) Show that the corresponding regular distribution converges to the δ distribution in the sense that for all $f \in \mathcal{S}(\mathbb{R})$,

$$\lim_{\varepsilon \searrow 0} T_{\eta_{\varepsilon}}(f) = \delta(f)$$

(the δ -distribution is defined by $\delta(f) = f(0)$ for all $f \in \mathcal{S}(\mathbb{R})$).

Exercise 4.9: (Fourier inversion formula)

Prove the Fourier inversion formula for tempered distributions

$$\mathcal{F} \circ \mathcal{F}^* = \mathcal{F}^* \circ \mathcal{F} = 1\!\!1_{\mathcal{S}'(\mathbb{R}^n)} : \mathcal{S}'(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$$
.

Hint: Use the Fourier inversion formula for Schwartz functions together with the definition of the Fourier transform of a tempered distribution.