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Guiding Questions

The purpose of the following questions is to highlight the main topics covered in the online course

and help you through the literature.

(i) What is a topological fermion system? What is a Riemannian fermion system?

(ii) How are the structures of a spinor bundle be generalized in the notion of a topological spinor

bundle?

(iii) How do the notions of “spin space,” “Clifford subspace” and “Clifford multiplication” relate

to the more general structures of a topological fermion system?

Exercises

Exercise 19.1: Vector fields on a closed Riemannian manifold

Let (M, g) be a smooth compact Riemannian manifold of dimension k and ∆ the covariant Lapla-

cian on smooth vector fields. We complexify the vector fields and endow them with the L2-scalar

product

⟨u|v⟩L2 :=

∫
M

gjk uj v
k dµM , (1)

where dµM =
√
det g dkx is the volume measure on M. Show the following:

(i) The operator −∆ is essentially self-adjoint and has smooth eigenfunctions.

(ii) We choose a parameter L > 0 and choose H as the spectral subspace of the Laplacian

H = rgχ[0,L](−∆) .

Show that H is finite-dimensional.

(iii) For any p ∈ M we define the local correlation operator F (p) ∈ L(H ) by

−gij ui(p) vj(p) = ⟨u|F (p)v⟩L2 for all u, v ∈ H .

Show that this operator is well-defined, negative semi-definite and has rank at most k.

(iv) We again introduce the measure by ρ = F∗µ. Show that (H ,F , ρ) is a Riemannian fermion

system of spin dimension k.
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Exercise 19.2: Spinors on a closed Riemannian manifold

Let (M, g) be a compact Riemannian spin manifold of dimension k ≥ 1. Then the spinor bund-

le SM is a vector bundle with fibre SpM ≃ Cn with n = 2[k/2] (see for example [?, ?]). Moreover,

the spin inner product ≺.|.≻p : SpM × SpM → C is positive definite. On the smooth secti-

ons Γ(SM) of the spinor bundle we can thus introduce the scalar product

⟨ψ|ϕ⟩ =
∫

M

≺ψ|ϕ≻p dµM(p) . (2)

Forming the completion gives the Hilbert space L2(M, SM).

(i) The Dirac operator D with domain of definition Γ(SM) is an essentially self-adjoint operator

on L2(M, SM). It has a purely discrete spectrum and finite-dimensional eigenspaces.

(ii) Given a parameter L > 0, we let H be the space spanned by all eigenvectors whose eigenvalues

lie in the interval [−L, 0],

H = rgχ[−L,0](D) ⊂ L2(M, SM) .

Denoting the restriction of the L2-scalar product to H by ⟨.|.⟩H , we obtain a finite-dimensional

Hilbert space (H , ⟨.|.⟩H ). Show that this Hilbert space is finite-dimensional and consists of

smooth wave functions.

(iii) For every p ∈ M we introduce the local correlation operator F (p) by

−≺ψ|ϕ≻p = ⟨ψ|F (p)ϕ⟩H for all ψ, ϕ ∈ H .

Show that this operator is negative semi-definite and has rank at most n.

(iv) We again introduce the measure by ρ = F∗µ. Show that (H ,F , ρ) is a Riemannian fermion

system of spin dimension n.
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