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Guiding Questions

The purpose of the following questions is to highlight the main topics covered in the online course

and help you through the literature.

(i) What is the light-cone expansion?

(ii) How can the light-cone expansion be regularized?

(iii) How does the formalism of the continuum limit work? What is weak evaluation of the light

cone?

Exercises

Exercise 18.1:

This exercise explains the notion of the light-cone expansion in simple examples.

(i) What is the light-cone expansion of a smooth function on M×M? In which sense is it trivial?

In which sense is it non-unique?

(ii) Show that A(x, y) = log
(
|y−x|2

)
is a well-defined distribution on M×M. What is the order

on the light cone? Write down a light-cone expansion.

(iii) Now consider the distributional derivatives( ∂

∂x0

)p

A(x, y) with p ∈ N

and A(x, y) as in part (ii). What is the order on the light cone? Write down a light-cone

expansion.

(iv) Consider the function

E(x, y) = sin
(
(y − x)2

)
log

(
|y − x|2

)
.

Determine the order on the light cone and give a light-cone expansion.

(v) Consider the function

E(x, y) =

{
e
− 1

(y−x)2 if (y − x)2 ≥ 0

0 otherwise .

Determine the order on the light cone and give a light-cone expansion.
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(vi) Show that the expression

lim
ε↘0

log
(
|y − x|2

)
(y − x)4 + iε

is a well-defined distribution on M × M. Derive its light-cone expansion.

Exercise 18.2: Understanding the light cone expansion

This exercise aims to familiarize you with some of the particularities of the light cone expansion.

(i) Let A(x, y) := (x− y)2k0 with k0 ∈ Z. Which order(s) on the light cone is this? (Prove your

answer.) Construct a light-cone expansion of A(x, y) and prove that it is one.

(ii) Let B(x, y) := (x− y)2k0 + (x− y)2k1 , where k0, k1 ∈ Z and k0 < k1. Which order(s) on the

light cone is this? (Prove your answer.) Construct a light-cone expansion of B(x, y) and prove

that it is one.

(iii) Let C(x, y) := (x− y)2k0f(x, y) + (x− y)2k1g(x, y), where f and g are smooth functions in x

and y and k0, k1 as above. Construct a light-cone expansion of C(x, y) and prove that it is

one.

(iv) Let D(x, y) := sin
(
(x− y)2

)
(x − y)2. Use your results from ii.) and iii.) to construct two

different light-cone expansions of D(x, y). Why might this non-uniqueness not be a problem

for the scope of the lecture?

(v) Finally, consider the function

E(x, y) = sin
(
(y − x)2

)
+

{
e
− 1

(y−x)2 if (y − x)2 ≥ 0

0 else
,

Determine its order(s) on the light cone and a light cone expansion. (Prove your answer.)

Hint: For (iv) and (v): Expand the sine function.

Exercise 18.3:

This exercise explains in a simple example how the regularization of the light-cone expansion works.

(i) Consider the singular term of the first summand of the light-cone expansion in Minkowski

space,

lim
ν↘0

1

ξ2 − iν ξ0
(1)

(where again ξ := y− x). A simple method to remove the pole is not to take the limit ν ↘ 0,

but instead to set ν = 2ε,
1

ξ2 − 2iε ξ0
. (2)

Show that this regularization can be realized by the replacement

ξ0 → ξ0 − iε ,

up to a multiplicative error of the order(
1 + O

(ε2
ξ2

))
. (3)
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The basic concept behind the regularized Hadamard expansion is to regularize all singular

terms in this way, leaving all smooth functions unchanged. This gives a consistent formalism

is one works throughout with error terms of the form (3). Hint: This is the so-called iε-

regularization introduced in the “blue book” in Section 2.4.

(ii) Show that for kernels written as Fourier transforms

K(x, y) =

∫
M

d4p

(2π)4
K̂(p) e−ip(y−x)

(with K̂ supported in say the lower half plane {p0 < 0}), the replacement rule (2) amounts

to inserting a convergence-generating factor eεp
0

into the integrand.

Exercise 18.4:

The goal of this exercise is to explore weak evaluation on the light cone in a simple example.

(i) Show that, setting t = ξ0 and choosing polar coordinates with r = |ξ⃗|, regularizing the pole

in (1) according to (2) gives the function

1

(t− iε)2 − r2
.

(ii) As a simple example of a composite expression, we take the absolute square of the regualarized

function
1∣∣(t− iε)2 − r2

∣∣2 . (4)

Show that this expression is ill-defined in the limit ε ↘ 0 even as a distribution.

(iii) Use the identity

1

(t− iε)2 − r2
=

1

(t− iε− r)(t− iε+ r)
=

1

2r

(
1

t− iε− r
− 1

t− iε+ r

)
to rewrite the integrand in (4) in the form

1∑
p,q=0

ηp,q(t, r, ε)

(t− iε− r)p (t+ iε− r)q
,

with functions ηp,q(t, r, ε) which in the limit ε ↘ 0 converge to smooth functions. Compute

the functions ηp,q.

(iv) We now compute the leading contributions and specify what we mean by “leading.” First

compute the following integrals with residues:

I0(ε) :=

∫ ∞

−∞

1

(t− iε− r) (t+ iε− r)
dt .

Show that ∫ ∞

−∞

η1,1(t, r)

(t− iε− r)2 (t+ iε− r)2
dt = I0(ε) η2,2(r, r) + O(ε) .

Explain in which sense this formula is a special case of the weak evaluation formula in the

lecture.
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