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Guiding Questions

The purpose of the following questions is to highlight the main topics covered in the online course

and help you through the literature.

(i) What is the mass oscillation property? Why is it needed for the construction of the fermionic

signature operator?

(ii) How can the kernel of the fermionic projector be constructed from the fermionic signature

operator?

Exercises

Exercise 16.1: Towards the mass oscillation property - part 1

This exercise illustrates the mass oscillation property. Let 0 < mL < mR and η ∈ C∞
0 ((mL,mR)).

Show that the function f given by

f(t) =

∫ mR

mL

η(m) e−i
√
1+m2 tdm

has rapid decay. Does this result remain valid if mL and mR are chosen to have opposite signs?

Justify your finding by a proof or a counter example.

Exercise 16.2: Towards the mass oscillation property - part 2

Let RT be the “space-time strip”

RT = {(t, x⃗) ∈ R1,3 with 0 < t < T} .

Show that for any solutions ψ, ϕ ∈ C∞
sc (R4,C4)∩Hm of the Dirac equation, the following inequality

holds, ∣∣<ψ|ϕ>T

∣∣ ≤ T ∥ψ∥m ∥ϕ∥m , where <ψ|ϕ>T :=

∫
RT

≺ψ(x)|ϕ(x)≻ d4x.

This estimate illustrates how in space-times of finite lifetime, the space-time inner product is a

bounded sequilinear form on Hm.

Exercise 16.3: Towards the mass oscillation property - part 3

Let RT again be the “space-time strip” of the previous exercises. Moreover, we again let H ⊂
Hm be a finite-dimensional subspace of the Dirac solution space Hm, consisting of smooth wave

functions of spatially compact support, i.e.

H ⊂ C∞
sc (R4,C4) ∩Hm finite-dimensional
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(see Exercise 10). Show that the fermionic signature operator S ∈ L(H) defined by

<ψ|ϕ>T = (ψ|Sϕ)m for all ψ, ϕ ∈ H

can be expressed within the causal fermion system by

S = −
∫
RT

x dρ(x)

(where ρ is again the push-forward of d4x).

Exercise 16.4: Bonus: External field problem

In physics, the notion of “particle” and “anti-particle” is often introduced as follows: Solutions

of the Dirac equation with positive frequency are called “particles” and solutions with negative

frequency “anti-particles”. In this exercise, we will check in how far this makes sense.

To this end, take a look at the Dirac equation in an external field:

(i/∂ + B −m)ψ = 0. (1)

Assume that B is time-dependent and has the following form:

B(t, x) = V Θ(t− t0)Θ(t1 − t),

where V ∈ R, Θ denotes the Heaviside step function and t0 = 0, t1 = 1. In oder to construct a

solution thereof, for a given momentum k⃗, we use plane wave solutions of the Dirac equation,

ψ(t, x⃗) = e−iωt+ik⃗x⃗χk⃗,

where χk⃗ is a spinor ∈ C4, and patch them together suitably. (The quantity ω is called the “fre-

quency” or “energy”, and k⃗ the“momentum”.) To simplify the calculation, we set k⃗ = (k1, 0, 0)
T .

Proceed as follows:

(i) First, take a look at the region t < t0. Reformulate Eq. (1) s.t. there is only the time

derivative on the left hand side. (Hint: Multiply by γ0.)

(ii) Insert the plane wave ansatz with k⃗ = (k1, 0, 0)
T into the equation. Your equation now has the

form ωψ = H(k1)ψ. Show that the eigenvalues of H(k1) are ±ω0 with ω0 :=
√
(k1)2 +m2.

(iii) Show that one eigenvector belonging to +ω0 is χ+
0 := (m+ω0

k1 , 0, 0, 1)T and that one eigen-

vector belonging to −ω0 is χ−
0 := (m−ω0

k1 , 0, 0, 1)T . (Both eigenvalues have multiplicity 2, but

we don’t need the other two eigenvectors here.)

(iv) With this, you have constructed plane wave solutions e−i(±ω0)t+ik⃗x⃗χ±
0 for t < t0 and also for

t > t1. By transforming m → (m − V ), you immediately obtain plane wave solutions also

for t0 < t < t1. Denote the respective quantities by ω1 and χ±
1 .

(v) Assume that for t < t0 there is one “particle” present, i.e. set

ψ(t, x⃗) = e−iω0t+ik⃗x⃗χ+
0 for t < t0.

Assume that the solution for t0 < t < t1 takes the form

Ae−iω1t+ik⃗x⃗χ+
1 +Be−i(−ω1)t+ik⃗x⃗χ−

1 with A,B ∈ R.

Calculate A and B for the case k1 = 1 and V = m by demanding continuity of the solution

at t = t0.
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(vi) Assume that for t > t1 the solution takes the form

Ce−iω0t+ik⃗x⃗χ+
0 +De−i(−ω0)t+ik⃗x⃗χ−

0 with C,D ∈ C.

Calculate C and D for m = 2 by demanding continuity of the solution at t = t1 (you may

want to use Mathematica here).

(vii) Interpret what you have found. Why could this be called the “external field problem”?
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