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INTRODUCTION
OVERVIEW

 Anomalies are violations of symmetries in quantum field theory 

which hold in classical theories. 

 By the mid 1960’s, it was observed that the dominant decay 

mode of the neutral pion 𝜋0 → 2𝛾, was different than the 

expected (theoretical) one.

 In 1969, Jackiw and Bell found out that the source of this 

disagreement was the violation of the chiral symmetry.



INTRODUCTION
TYPES OF ANOMALIES

 The chiral anomaly is the quantum mechanical violation of the 

classically conserved chiral current 𝑗𝜇, i.e. 𝜕𝜇𝑗𝜇 ≠ 0.

 Conformal (or trace) anomalies occur when the classical 

conformal invariance of a certain theory is broken by quantum 

effects.



INTRODUCTION
METHODS TO CALCULATE  ANOMALIES

 Fujikawa Method: it recognizes the anomaly as arising from the non-

invariance of the path integral measure.

 Heat Kernel Expansion: the anomaly is written in terms of the the

HaMiDeW coefficients of the trace of the heat kernel.

 Hadamard Subtraction: the anomaly is calculated by using point 

splitting and then subtracting the Hadamard parametrix.

 Feynman Diagrams Calculation: direct calculation using expectation 

values.



TRACE ANOMALY
OVERVIEW

 Conformal or trace anomalies are manifested by the trace of 

the stress-energy tensor.

 In four dimensions, the conformal anomaly takes the form [1]

𝓐 = 𝑎ℰ4 + 𝑏𝑅 + 𝑐𝐶𝜇𝜈𝜌𝜎𝐶𝜇𝜈𝜌𝜎 + 𝑑𝑅∗𝑅 + 𝑒ϵ𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌σ𝑅 𝜌𝜎
𝛼𝛽

Where ℰ4 is the Euler invariant and 𝐶𝜇𝜈𝜌𝜎 is the Weyl tensor.



INTRODUCTION
HISTORY OF  TRACE  ANOMALY

 Trace anomaly was discovered in 1973 by British physicists 

Michael Duff and Derek Capper.

 They announced their discovery at The First Oxford Quantum 

Gravity Conference held in Chilton, UK in 1974.

 The physics community rejected these findings by large. 

“Something is wrong”, said Christensen while Adler, Liberman and 

Ng asserted: “We find no evidence of conformal trace anomalies”.



INTRODUCTION
EXAMPLE: TRACE ANOMALY DRIVEN INFLATION

 As proposed by Alen Guth in 1981 [2], inflation seems to be the most 

convincing (if not the only) explanation of some observed features of our 

universe.

 In1984, Starobinsky suggested that inflation is driven by the trace anomaly 

of a large number of matter fields [3].

 We take the semi-classical Einstein equation

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = 8𝜋𝐺 𝑇𝜇𝜈



INTRODUCTION
EXAMPLE: TRACE ANOMALY DRIVEN INFLATION

We work in de Sitter space where 𝑅𝜇𝜈ρ𝜎 = 𝐻2 𝑔𝜇𝜌𝑔𝜈𝜎 − 𝑔𝜇𝜎𝑔𝜈𝜌 , and 

take 𝑇𝜇𝜈 =
1

4
𝑔𝜇𝜈𝑔

𝜌𝜎 𝑇𝜌𝜎 =
1

4
𝑔𝜇𝜈𝒜.

The Einstein equations now read: 

𝑅𝜇𝜈 −
1

2
𝑔𝜇𝜈𝑅 + Λ𝑔𝜇𝜈 = 2𝜋𝐺𝑔𝜇𝜈𝑔

𝜌𝜎 𝑇𝜌𝜎 .

 Using the value of 𝒜 we computed: Inflation exists.

 Trace-anomaly driven inflation has been supported by recent 

cosmological data [4][5][6][7].You can read more about it in [8].



TRACE  ANOMALY FOR CHIRAL FERMIONS
MOTIVATION

- Bonora et al. (2014) claim that an imaginary term appears in the trace 

of the renormalized stress tensor [9].

- Bastianelli and Martelli (2016) recovered the standard results using Pauli-

Villars regularization and Fujikawa’s method [10].

- Bonora et. al. (2017, 2018) hit back, pointing out some possible 

inconsistencies in Bastianelli and Martelli’s work, and re-derive the same 

result they originally had, using dimensional regularization [11][12].

- M. Fröb and J. Zahn (2019) do the same calculation using Hadamard 

subtraction, and show that the imaginary term vanishes [13].

- Bonora et. al. (2019) comment on that [14].

𝑯 = න𝑻𝟎𝟎 𝒙 𝒅𝟒𝒙



TRACE  ANOMALY FOR CHIRAL FERMIONS
DISCUSSION 1

𝓐 = 𝑎ℰ4 + 𝑏𝑅 + 𝑐𝐶𝜇𝜈𝜌𝜎𝐶𝜇𝜈𝜌𝜎 + 𝑑𝑅2 + 𝑒ϵ𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌σ𝑅 𝜌𝜎
𝛼𝛽

Claim: The Pontryagin density should vanish.

Applying a CPT transformation to the trace should leave it invariant:

𝐶𝑃𝑇 𝒜 𝐶𝑃𝑇 −1 =

𝑎∗ℰ4 + 𝑏∗𝑅 + 𝑐∗𝐶𝜇𝜈𝜌𝜎𝐶𝜇𝜈𝜌𝜎 + 𝑑∗𝑅2 − 𝑒∗ϵ𝜇𝜈𝜌𝜎𝑅𝜇𝜈𝜌σ𝑅 𝜌𝜎
𝛼𝛽

= 𝒜.

This gives

𝑎∗ = 𝑎, 𝑏∗ = 𝑏, 𝑐∗ = 𝑐, 𝑑∗ = 𝑑, 𝑒∗ = −𝑒.

⇒ 𝑒 should vanish.



TRACE  ANOMALY FOR CHIRAL FERMIONS
DISCUSSION II

- Problem: dimensional regularization and chiral theories:

𝛾𝜇 , 𝛾∗ = 0 only in 𝑛 = 4 dimensions.

- Solution 1: Thompson and Yu’s proposal [15]: 

Non-vanishing expression for {𝛾𝜇 , 𝛾∗}.

- Solution 2: Breitenlohner-Maison scheme [16]:

- Split the n-dimensional Minkowski space into a product of a four- and 

an 𝑛 − 4 -dimensional one.

- Denote four-dimensional quantities by a bar, and 𝑛 − 4 -dimensional 

ones by a hat.

- 𝛾𝜇 , 𝛾∗ = ො𝛾𝜇 , 𝛾∗ = 2 Ƹ𝜂𝜇𝜈



TRACE  ANOMALY FOR CHIRAL FERMIONS
CALCULATION

- Aim: compute the trace anomaly for chiral fermions: 𝓐 = 𝑔𝜇𝜈 𝑇𝜇𝜈

- Method:

- We work in n dimensions and use dimensional regularization.

- Start from the curved space action of  Weyl fermions.

- Calculate 𝑇𝜇𝜈 by evaluating the metric variation of the action.

- Expand 𝑇𝜇𝜈 and 𝑆 to second order around flat spacetime.

- Calculate the interacting expectation value 𝑇𝜇𝜈 .

- Compute 𝑔𝜇𝜈 𝑇𝜇𝜈 .



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: STRESS TENSOR

 We start from the action of  Weyl fermions in curved spacetime

𝑆 = −න ത𝜓𝑃−𝛾
𝜇∇𝜇𝑃+𝜓 −𝑔𝑑4𝑥

where ∇𝜇≡ 𝜕𝜇 +
1

4
𝜔𝜇𝜌𝜎𝛾

𝜌𝜎 is the spinor covariant derivative and 𝑃∓ are the chiral 

projectors which satisfy 𝜓 = 𝑃+𝜓 and ത𝜓 = ത𝜓𝑃−.

 We compute the stress-energy tensor

𝑇𝜇𝜈 ≡
2

−𝑔

𝛿𝑆

𝛿𝑔𝜇𝜈
,

and get

𝑇𝜇𝜈 =
1

2
ത𝜓𝛾(𝜇ി∇𝜈)𝑃+𝜓 +

1

2
𝑔𝜇𝜈 ∇𝜇 ത𝜓𝛾

𝜇𝑃+𝜓 − ത𝜓𝑃−𝛾
𝜇∇𝜇𝜓 .



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: EXPANSION

 Expand 𝑇𝜇𝜈 and S to second order around flat spacetime, using: 

𝑔𝜇𝜈 = 𝜂𝜇𝜈 + 𝜅ℎ𝜇𝜈

𝑔𝜇𝜈 = 𝜂𝜇𝜈 − 𝜅ℎ𝜇𝜈 + 𝜅2ℎ 𝛼
𝜇
ℎ𝛼𝜈 + 𝑂(𝜅3)

𝑒𝜇
𝑎 = 𝑒𝜌

𝑎(𝜂𝜌𝜇 −
1

2
𝜅ℎ𝜌𝜇 +

3

8
𝜅2 ℎ 𝛼

𝜇
ℎ𝜌𝛼) + 𝑂(𝜅3)



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: EXPANSION

 The following was obtained, with 𝚿𝝁𝝂 = ത𝜓𝛾𝜇𝜕𝜈𝜓 − 𝜕𝜈 ത𝜓𝛾𝜇𝜓 and 𝒋𝝁 = ത𝜓𝛾𝜇𝜓.

𝑻𝝁𝝂 =

𝑺 =

1

2
Ψ(𝜇𝜈) −

1

2
𝜂𝜇𝜈Ψ 𝛼

𝛼 + 𝜿
1

2
ℎ𝜇𝜈Ψ 𝛼

𝛼 −
1

4
ℎ𝛼(𝜈Ψ𝛼

𝜇)
−
1

2
ℎ 𝛼
(𝜈

Ψ𝜇)𝛼 +
1

4
𝜂𝜇𝜈ℎ𝛼𝛽Ψ

𝛼𝛽 +
1

4
𝑗𝛼𝛽(𝜇𝜕𝛽ℎ 𝛼

𝜈)

+ 𝜿𝟐 ቆ

ቇ

−
1

2
ℎ𝜇𝛽ℎ 𝛽

𝜈 Ψ 𝛼
𝛼 +

3

16
ℎ 𝛽
𝛼 ℎ𝛽(𝜇Ψ𝛼

𝜈)
+
1

2
ℎ𝛼𝛽ℎ

𝛽(𝜇Ψ𝜈)𝛼 −
1

8
𝑗𝛼𝛽

𝛿ℎ𝛼(𝜇𝜕𝛿ℎ
𝜈)𝛽 +

1

16
𝜂𝜇𝜈ℎ𝛼𝛽𝑗𝛽𝛿𝜆𝜕

𝜆ℎ𝛼
𝛿

+
1

32
𝑗 𝛽𝛿
(𝜈

−4ℎ𝜇)𝛼𝜕𝛿ℎ𝛼
𝛽
+ 2𝜕𝛼ℎ

𝜇)𝛿ℎ𝛼𝛽 − 2𝜕𝛿ℎ 𝛼
𝜇)

ℎ𝛼𝛽 − 𝜕𝜇)ℎ𝛼
𝛿ℎ𝛼𝛽

+
1

4
−ℎ𝛼𝛽ℎ

𝜇𝜈 + ℎ 𝛽
(𝜇

ℎ 𝛼
𝜈)

−
3

4
𝜂𝜇𝜈ℎ𝛼

𝛿ℎ𝛽𝛿 𝛹𝛼𝛽

නቈ

቉

−
1

2
Ψ 𝛼
𝛼 + 𝜿 −

1

4
ℎ 𝛽
𝛽
Ψ 𝛼
𝛼 +

1

4
ℎ𝛼𝛽Ψ

𝛼𝛽

+ 𝜿𝟐
1

8
ℎ𝛽𝛿ℎ

𝛽𝛿Ψ 𝛼
𝛼 −

1

16
ℎ 𝛽
𝛽
ℎ 𝛿
𝛿 Ψ 𝛼

𝛼 −
3

16
ℎ𝛼

𝛿ℎ𝛽𝛿Ψ
𝛼𝛽 +

1

8
ℎ𝛼𝛽ℎ 𝛿

𝛿 Ψ𝛼𝛽 +
1

16
ℎ𝛼𝛽𝑗𝛽𝛿𝜆𝜕

𝜆ℎ𝛼
𝛿 d𝑛𝑦



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: EXPANSION

 The expectation value of the stress-energy tensor was evaluated using the Gell-Mann and 

Low theorem:

𝑇𝜇𝜈 𝑥 int =
𝑇𝜇𝜈𝑒i𝑆int𝐷𝜓𝐷׬ ത𝜓

׬ 𝑒i𝑆int𝐷𝜓𝐷 ത𝜓
=

𝑇𝜇𝜈𝑒
i𝑆int

0

𝑒i𝑆int 0

and the following was obtained:

𝑇𝜇𝜈(𝑥) = 𝑇𝜇𝜈
(0)

+

𝜅 𝑇𝜇𝜈
1

+ i 𝑇𝜇𝜈
0
𝑆 1 − i 𝑇𝜇𝜈

0
𝑆 1 +

𝜅2

1

2
𝑇𝜇𝜈

1
𝑆(1)

2
− 𝑇𝜇𝜈

0
𝑆 1 2

−
1

2
𝑇𝜇𝜈

0
𝑆 1 2

+ 𝑇𝜇𝜈
0
𝑆 1 𝑆 1 −

i 𝑇𝜇𝜈
0

𝑆(2) + i 𝑇𝜇𝜈
0
𝑆 2 + i 𝑇𝜇𝜈

1
𝑆 1 − i 𝑇𝜇𝜈

1
𝑆 1 + 𝑇𝜇𝜈

2



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT FIRST ORDER

The trace anomaly at first order reads

𝓐(1) = 𝑔𝜇𝜈 𝑇𝜇𝜈 𝑥 (1)

where

𝑇𝜇𝜈 𝑥 (1) = 𝑇𝜇𝜈
1

+ i 𝑇𝜇𝜈
0
𝑆 1 − i 𝑇𝜇𝜈

0
𝑆 1



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ONE-POINT FUNCTIONS

▪ One-Point Function:

Ψ𝜇𝜈 = ത𝜓(𝑥)𝛾𝜇𝜕𝑥
𝜈𝜓(𝑥) − 𝜕𝑥

𝜈 ത𝜓(𝑥)𝛾𝜇𝜓(x)

= ത𝜓𝑎(𝑥)𝑃−𝑎𝑏𝛾𝑏𝑐
𝜇
𝜕𝑥
𝜈𝑃+𝑐𝑑𝜓𝑑(𝑥) − 𝜕𝑥

𝜈 ത𝜓𝑎 𝑥 𝑃−𝑎𝑏𝛾𝑏𝑐
𝜇
𝑃+𝑐𝑑𝜓𝑑 𝑥

= lim
𝑥′→𝑥

𝜕𝑥′
𝜈 𝑃−𝑎𝑏𝛾𝑏𝑐

𝜇
𝑃+𝑐𝑑

ത𝜓𝑎(𝑥)𝜓𝑑(𝑥
′) − lim

𝑥→𝑥′
𝜕𝑥
𝜈 𝑃−𝑎𝑏𝛾𝑏𝑐

𝜇
𝑃+𝑐𝑑

ത𝜓𝑎(𝑥)𝜓𝑑(𝑥
′)

= −𝑖 lim
𝑥′→𝑥

𝜕𝑥′
𝜈 𝑃−𝑎𝑏𝛾𝑏𝑐

𝜇
𝑃+𝑐𝑑𝐺𝑑𝑎 𝑥′, 𝑥 + 𝑖 lim

𝑥→𝑥′
𝜕𝑥
𝜈 𝑃−𝑎𝑏𝛾𝑏𝑐

𝜇
𝑃+𝑐𝑑𝐺𝑑𝑎 𝑥′, 𝑥

= −𝑖 lim
𝑥′→𝑥

𝜕𝑥′
𝜈 𝑡𝑟 𝑃−𝛾

𝜇𝑃+𝐺 𝑥′, 𝑥 + 𝑖 lim
𝑥→𝑥′

𝜕𝑥
𝜈 𝑡𝑟 𝑃−𝛾

𝜇𝑃+𝐺 𝑥′, 𝑥



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ONE-POINT FUNCTIONS

In Fourier space

𝐺 𝑥′, 𝑥 = න ෨𝐺 𝑝 𝑒𝑖𝑝 𝑥′−𝑥
d𝑛𝑝

2𝜋 𝑛
where ෨𝐺 𝑝 = i

𝛾𝜈𝑝𝜈
𝑝2

.

This gives

Ψ𝜇𝜈 = i tr 𝑃−𝛾
𝜇𝑃+𝛾

𝜌 න
𝑝𝜌𝑝

𝜈

𝑝2
𝑑𝑛𝑝

2𝜋 𝑛
+ (second term).

This integral vanishes in dimensional regularization, so we are left with:

Ψ𝜇𝜈 = 0



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ONE-POINT FUNCTIONS

The expectation value of the stress-energy tensor can be now written as 

𝑇𝜇𝜈(𝑥) = 𝜅 i 𝑇𝜇𝜈
0
𝑆 1 + 𝜅2 −

1

2
𝑇𝜇𝜈

0
𝑆 1 𝑆 1 + i 𝑇𝜇𝜈

0
𝑆 2 + i 𝑇𝜇𝜈

1
𝑆 1



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: TWO-POINT FUNCTIONS

▪ Two-Point Functions:

Ψ𝜇𝜈(𝑥)Ψ𝛼𝛽(𝑦) = ത𝜓 𝑥 𝛾𝜇𝜕𝑥
𝜈𝜓 𝑥 − 𝜕𝑥

𝜈 ത𝜓 𝑥 𝛾𝜇𝜓(x) ( ത𝜓 𝑦 𝛾𝛼𝜕𝑦
𝛽
𝜓 𝑦 − 𝜕𝑦

𝛽 ത𝜓 𝑦 𝛾𝛼𝜓(y))

Ψ𝜇𝜈(𝑥)j𝛼𝛽𝜆(𝑦) = ത𝜓 𝑥 𝛾𝜇𝜕𝑥
𝜈𝜓 𝑥 − 𝜕𝑥

𝜈 ത𝜓 𝑥 𝛾𝜇𝜓(x) ( ത𝜓 𝑦 𝛾𝛼𝛽𝜆𝜓 𝑥

Following the same steps as before, we get

Ψ𝜇𝜈(𝑥)Ψ𝛼𝛽(𝑦) = 2tr 𝑃+𝛾
𝜌𝑃−𝛾

𝜇𝑃+𝛾
𝜎𝑃−𝛾

𝛼 න𝐼 𝑞 𝑒i𝑞 𝑥−𝑦 𝐴 𝜌𝜎
𝜈𝛽

(𝑞)
d𝑛𝑞

2𝜋 𝑛

Ψ𝜇𝜈 𝑥 j𝛼𝛽𝜆 𝑦 = 2i tr 𝑃−𝛾
𝜇𝑃+𝛾

𝜌𝑃−𝛾
𝛼𝛽𝜆𝑃+𝛾

𝜎 න𝐼 𝑞 𝑒i𝑞 𝑥−𝑦 𝐵 𝜌𝜎
𝜈 𝑞

d𝑛𝑞

2𝜋 𝑛



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: TWO-POINT FUNCTIONS

where

𝐼 𝑞 = ඲
1

𝑝2 𝑞 + 𝑝 2

d𝑛𝑝

2𝜋 𝑛
,

and

tr 𝑃+𝛾
𝜌𝑃−𝛾

𝜇𝑃+𝛾
𝜎𝑃−𝛾

𝛼 naive =
1

2
tr 𝛾𝜌𝛾𝜇𝛾𝜎𝛾𝛼 +

1

2
tr 𝛾∗𝛾

𝜌𝛾𝜇𝛾𝜎𝛾𝛼 ,

tr 𝑃+𝛾
𝜌𝑃−𝛾

𝜇𝑃+𝛾
𝜎𝑃−𝛾

𝛼 BM = tr 𝑃+𝛾
𝜌𝑃−𝛾

𝜇𝑃+𝛾
𝜎𝑃−𝛾

𝛼 naive + 2( ҧ𝜂𝛼𝜌 ҧ𝜂𝜇𝜎 − 𝜂𝛼𝜌𝜂𝜇𝜎 +

ҧ𝜂𝛼𝜎 ҧ𝜂𝜇𝜌 − 𝜂𝛼𝜎𝜂𝜇𝜌 + ҧ𝜂𝛼𝜇 ҧ𝜂𝜌𝜎 − 𝜂𝛼𝜇𝜂𝜌𝜎)



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: TWO-POINT FUNCTIONS

Solving 𝐼 𝑞 gives:

𝐼 𝑞 =
i

4𝜋
𝑛
2

Γ
4 − 𝑛
2

Γ
𝑛 − 2
2

2

Γ(𝑛 − 2)
(𝑞2−i𝜀)

𝑛−4
2

Expanding around 𝑛 = 4 to first order, we get:

𝐼 𝑞 =
i

4𝜋 2
−

2

𝑛 − 4
+ 2 − 𝛾 + ln 4𝜋 − ln 𝜇2 − ln

𝑞2 − i𝜀

𝜇2
+ 𝑂(𝑛 − 4)

𝐼 𝑞 = ඲
1

𝑝2 𝑞 + 𝑝 2

d𝑛𝑝

2𝜋 𝑛



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT FIRST ORDER

Reminder: 𝑇𝜇𝜈(𝑥) = 𝜅 i 𝑇𝜇𝜈
0
𝑆 1 + 𝜅2 −

1

2
𝑇𝜇𝜈

0
𝑆 1 𝑆 1 + i 𝑇𝜇𝜈

0
𝑆 2 + i 𝑇𝜇𝜈

1
𝑆 1

𝑇𝜇𝜈 𝑥 (1) = i 𝑇𝜇𝜈
0
𝑆 1

= i
1

2
Ψ(𝜇𝜈) −

1

2
𝜂𝜇𝜈Ψ 𝛼

𝛼 න −
1

4
ℎ 𝛽
𝛽
Ψ 𝛼
𝛼 +

1

4
ℎ𝛼𝛽Ψ

𝛼𝛽 d𝑛𝑦

=
i

8
නℎ𝛼𝛽 𝑦 Ψ 𝜇𝜈 − 𝜂𝜇𝜈Ψ 𝛼

𝛼 −𝜂𝛼𝛽Ψ 𝛿
𝛿 +Ψ𝛼𝛽 d𝑛𝑦

=
i

16
නℎ𝛼𝛽 𝑦 Ψ(𝜇𝜈)(𝑥)Ψ𝛼𝛽(𝑦) d𝑛𝑦



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT FIRST ORDER

Plugging everything in we obtain

𝑇𝜇𝜈 𝑥 reg
1

=
i

8
tr 𝑃+𝛾

𝜌𝑃−𝛾
𝜇𝑃+𝛾

𝜎𝑃−𝛾
𝛼 නℎ𝛼𝛽 𝑦 න 𝐼 𝑞 𝑒i𝑞 𝑥−𝑦 𝐴 𝜌𝜎

𝜈𝛽
(𝑞)

d𝑛𝑞

2𝜋 𝑛
d𝑛𝑦

We renormalize using the MS scheme by subtracting the divergent part then replacing 
𝑛 by 4 in the expression

𝑇𝜇𝜈 𝑥 ren
1

= 𝑇𝜇𝜈 𝑥 reg
1
− 𝑇𝜇𝜈 𝑥 div

1

𝐼 𝑞 =
i

4𝜋 2
−

2

𝑛 − 4
+ 2 − 𝛾 + ln 4𝜋 − ln 𝜇2 − ln

𝑞2 − i𝜀

𝜇2



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT FIRST ORDER

𝑇𝜇𝜈 𝑥 div
1
= −

1

960𝜋2 𝑛 − 4
ඵ(3𝑞4ℎ𝜇𝜈 − 6𝑞2𝑞𝛼𝑞(𝜇 ℎ 𝛼

𝜈)
+ 𝑞2𝑞𝜇𝑞𝜈ℎ

+ 2𝑞𝛼𝑞𝛽𝑞𝜇𝑞𝜈ℎ𝛼𝛽 − 𝜂𝜇𝜈𝑞4ℎ 𝛼
𝛼 + 𝜂𝜇𝜈𝑞2𝑞𝛼𝑞𝛽ℎ𝛼𝛽)𝑒

i𝑞 𝑥−𝑦 d𝑛𝑞

2𝜋 𝑛 d
𝑛𝑦.

Solving, then contracting with 𝑔𝜇𝜈 , we get

𝒜div
1
= 𝑔𝜇𝜈 𝑇𝜇𝜈 𝑥 div

1
= −

1

960π2
∇2R

With which we find the renormalized trace anomaly at first order to be the same up 
to sign:

𝒜ren
1

=
1

960π2
∇2R



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT SECOND ORDER

At second order, the trace anomaly reads:

𝓐(2) = 𝜂𝜇𝜈 𝑇𝜇𝜈 (2) + ℎ𝜇𝜈 𝑇𝜇𝜈 (1)

= 𝜂𝜇𝜈 −
1

2
𝑇𝜇𝜈

0
𝑆 1 2

+ i 𝑇𝜇𝜈
0
𝑆 2 + i 𝑇𝜇𝜈

1
𝑆 1 + ℎ𝜇𝜈i 𝑇

𝜇𝜈 0
𝑆 1 .



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT SECOND ORDER



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT SECOND ORDER

ℎ𝛼
𝛿 𝑦 ℎ𝛽𝛿 𝑦 Ψ𝜇𝜈 𝑥 Ψ𝛼𝛽 𝑦 = lim

𝑥′→𝑥
𝑦′→𝑦

𝜕𝑥′
𝜈 𝜕

𝑦′
𝛽
𝛾𝜇𝛾𝛼ℎ𝛼

𝛿 𝑦 ℎ𝛽𝛿 𝑦 𝐺 𝑦′, 𝑥 𝐺(𝑥′, 𝑦)

x y

𝛼
𝛿

𝛼𝛽

න d𝑛𝑦



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: THREE-POINT FUNCTIONS

 Three-Point Functions:

Ψ𝜇𝜈(𝑥)Ψ𝛼𝛽(𝑦)Ψ𝜌𝜎(𝑧) = i 𝒯𝜇𝜆𝜎𝛿𝛼𝜏 + 𝒯𝜇𝜏𝛼𝛿𝜎𝜆 ම
1

𝑞2 𝑞 + 𝑝 2 𝑞 − 𝑘 2

× C 𝛿𝜆𝜏
𝛽𝜈𝜌

𝑝, 𝑘 𝑒i𝑝 𝑥−𝑦 𝑒i𝑘 𝑥−𝑧
d𝑛𝑝

2𝜋 𝑛

d𝑛𝑘

2𝜋 𝑛

d𝑛𝑞

2𝜋 𝑛

where

C 𝛿𝜆𝜏
𝛽𝜈𝜌

𝑝, 𝑘 = 𝑝𝛽 + 2𝑞𝛽 𝑞𝛿 𝑝𝜆 + 𝑞𝜆 𝑘𝜈 − 𝑝𝜈 − 2𝑞𝜈 𝑘𝜌 − 2𝑞𝜌 𝑘𝜏 − 𝑞𝜏

and

𝒯𝜇𝜆𝜎𝛿𝛼𝜏 = tr 𝑃−𝛾
𝜇𝑃+𝛾

𝜆𝑃−𝛾
𝜎𝑃+𝛾

𝛿𝑃−𝛾
𝛼𝑃+𝛾

𝜏 =
1

2
tr ҧ𝛾𝜇 ҧ𝛾𝜆 ҧ𝛾𝜎 ҧ𝛾𝛿 ҧ𝛾𝛼 ҧ𝛾𝜏 −

1

2
tr ҧ𝛾∗ ҧ𝛾𝜇 ҧ𝛾𝜆 ҧ𝛾𝜎 ҧ𝛾𝛿 ҧ𝛾𝛼 ҧ𝛾𝜏



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: THREE-POINT LOOP INTEGRALS

Expanding the momenta in C 𝛿𝜆𝜏
𝛽𝜈𝜌

𝑝, 𝑘 will give us integrals of the form

න𝑝𝛼1 …𝑝𝛼𝑟 𝑒i𝑝 𝑥−𝑦
d𝑛𝑝

2𝜋 𝑛
න𝑘𝛽1 …𝑘𝛽𝑠 𝑒i𝑘 𝑥−𝑧

d𝑛𝑘

2𝜋 𝑛
න

𝑞𝜇1 …𝑞𝜇𝑡

𝑞2 𝑞 + 𝑝 2 𝑞 − 𝑘 2

d𝑛𝑞

2𝜋 𝑛
.

So we will need to evaluate three-point loop integrals of the form

𝐼𝜇1…𝜇𝑡 (𝑝, 𝑘) = න
𝑞𝜇1 …𝑞𝜇𝑡

𝑞2 𝑞 + 𝑝 2 𝑞 − 𝑘 2

d𝑛𝑞

2𝜋 𝑛



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: THREE-POINT LOOP INTEGRALS

 One way to evaluate such integrals is using a recursive method first introduced 
by Davidychev [17][18] and further developed by Godazgar and Nicolai [19].

 We developed a simpler method using Feynman parameters

1

𝐴1…𝐴𝑘
= 𝑘 − 1 !න

0

0

…න
0

1 𝛿 𝑥1 +⋯+ 𝑥𝑘−1
𝑥1𝐴1 +⋯+ 𝑥𝑘𝐴𝐾

𝑘
d𝑥1…d𝑥𝑘

with which we express the integrals as

𝐼𝜇1…𝜇𝑘 (𝑝, 𝑘) = 2න
0

1

න
0

1−𝑦

න
𝑞 + 𝑦𝑝 + 𝑥𝑘 𝜇1 … 𝑞 + 𝑦𝑝 + 𝑥𝑘 𝜇𝑘

𝑞2 + 𝑦 1 − 𝑦 𝑝2 + 𝑥 1 − 𝑥 𝑘2 − 2𝑥𝑦(𝑝𝑘) 3

d𝑛𝑞

2𝜋 𝑛 d𝑥d𝑦



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: THREE-POINT LOOP INTEGRALS



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: THREE-POINT LOOP INTEGRALS

With

𝐹𝑎𝑏 𝑝, 𝑘 = න
0

1

න
0

𝑦−1 𝑥𝑎𝑦𝑏

𝑦 1 − 𝑦 𝑝2 + 𝑥 1 − 𝑥 𝑘2 − 2𝑥𝑦(𝑝𝑘)
d𝑥d𝑦

𝐺𝑎𝑏 𝑝, 𝑘 = න
0

1

න
0

𝑦−1

𝑥𝑎𝑦𝑏ln
𝑦 1 − 𝑦 𝑝2 + 𝑥 1 − 𝑥 𝑘2 − 2𝑥𝑦(𝑝𝑘)

𝜇2
d𝑥d𝑦

and

𝒟 = −
2

𝑛 − 4
+ ln 4𝜋 − 𝛾 − ln(𝜇2)



TRACE ANOMALY OF CHIRAL FERMIONS
CALCULATION: ANOMALY AT SECOND ORDER

Recall:

𝓐(2) = 𝜂𝜇𝜈 −
1

2
𝑇𝜇𝜈

0
𝑆 1 2

+ i 𝑇𝜇𝜈
0
𝑆 2 + i 𝑇𝜇𝜈

1
𝑆 1 + ℎ𝜇𝜈i 𝑇

𝜇𝜈 0
𝑆 1 .

Plugging everything in, we find after a very long computation:

𝒜𝑟𝑒𝑛
2

𝑥 =
1

720 4𝜋 2
−11ℰ4 + 18𝐶𝜇𝜈𝜌𝜎𝐶𝜇𝜈𝜌𝜎 + 12𝛻2𝑅 ,

which is exactly half the trace anomaly for a Dirac spinor.
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