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Entanglement entropy of the ideal Fermi gas

Introduction

Entanglement entropy (EE) is still much studied concept in
condensed matter physics and quantum information theory. EE
was introduced in mid 80’s (and independently in early 90’s) to
explain Bekenstein–Hawking entropy of black holes. Here, this
entropy grows with surface area rather than with volume as in
usual thermodynamics.

EE is a purely quantum mechanical effect: may have complete
information (0 entropy) of a given system but less (> 0 entropy)
on a subsystem, which is not possible in classical mechanics.
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• We are interested in spatial EE of (quantum mechanical) many-
particle systems. There is large body of results, mostly numerical
and conjectural and few rigorous results.

• We report on rigorous results (temperature T = 0, T > 0) for
free (no pair interaction) Fermi gas in Euclidean space Rd, d ≥ 1 in
thermal equilibrium, possibly subject to external electric or
magnetic fields.

• Equilibrium states are characterized by two parameters (T, µ)
(grand-canonical), or equivalently (T, ρ) (canonical), where T ≥ 0
temperature, µ ∈ R chemical potential, and ρ > 0 particle density.
Write in all cases ωT .

• Result for T = 0 was known since 2005, which we proved 2014.
For T > 0 our result was new, also in physics literature.

• We also report on EE for ideal Fermi gas in R2 with constant
magnetic field, which was only partially known in physics literature.



• Consider (bounded Borel) Λ ⊂ Rd and localize (or reduce,
restrict) ωT to Λ. Call this localized state ωT � Λ.

• Local entropy, S(ωT ,Λ), is defined as von Neumann entropy of
localized state ωT � Λ.
• Entanglement entropy (EE, or mutual information), EE(ωT ,Λ)
measures correlations of particles inside Λ with those outside Λ,
that is, with Λ{ = Rd \ Λ. Loosly speaking

EE(ωT ,Λ) = S(ωT ,Λ) + “S(ωT ,Λ
{)− S(ωT ,R

d)” . (1)

At T = 0, ωT being pure (ground) state,

S(ωT ) = 0 , S(ωT ,Λ) = S(ωT ,Λ
{) . (2)

Therefore,
EE(ωT ,Λ) = 2 S(ωT ,Λ) (3)

and local entropy S(ωT ,Λ) is usually called entanglement entropy.
Another measure of correlations is logarithmic negativity, which is
well-understood at T = 0 but not at T > 0.



Goal is to understand these entropies for large Λ (and fixed ωT ).
To this end, we fix Λ, introduce scaling parameter L > 0 and study
asymptotic behavior of S(ωT , LΛ) and EE(ωT , LΛ) as L→∞.

Most studies deal with EE for ground states, also due to surprising
logarithmic enhancement in some important cases as we’ll see.
Expect for T > 0

S(ωT , LΛ) = s(T )|Λ|Ld + η(T, ∂Λ)Ld−1 + o(Ld−1) (4)

EE(ωT , LΛ) = 2η(T, ∂Λ)Ld−1 + o(Ld−1) . (5)

Here, s(T ) = ∂p(T )
∂T is usual thermal entropy density, given as

derivative of pressure p. Description of η(T, ∂Λ) is rather
complicated but simplifies as T ↓ 0.

At T = 0 scaling of EE might be different. Aside from missing
leading volume term (s(0) = 0), truely leading term may have
extra ln(L)-term, which depends on model.



As we deal with non-interacting fermions we need to specify
one-particle Hamiltonian, H, only. Focus on

I Laplacian H = −∆, or more generally H = K(−i∇) with
“dispersion relation” K : Rd → R on L2(Rd), f.i. K(ξ) = ξ2.

I Landau Hamiltonian HB = (−i∇− a)2 on L2(R2) with
(constant) magnetic field B.

Introduce Fermi function FT : R→ [0, 1],

fT (E) :=

{
(1 + eE/T )−1 for T > 0
Θ(−E) for T = 0

,

where Θ is Heaviside’s unit step function. One-particle density
operator

DT := fT (H− µ1) = (1 + exp((H− µ1)/T ))−1

on L2(Rd) describes all correlations of equilibrium state ωT . Here,
1 is identity on L2(Rd). Correlation functions:



ωT
[
a∗(f1) · · · a∗(fm)a(g1) · · · a(gm)

]
= δn,m det〈gi,DT fj〉 (6)

with Fermi creation/annihilation operators a∗(f)/a(g) and
f, g ∈ L2(Rd). Fermi algebra

AH = span
{
a∗(f), a(g) : f, g ∈ H ⊆ L2(Rd)

}
.

DT satisfies 0 ≤ DT ≤ 1, D0 = 1(−∞,µ](H) is (Fermi) projection.

Localization of states ω on AH: For Λ ⊂ Rd, let H1 := L2(Λ),
H2 := L2(Λ{). Then H = L2(Rd) = H1 ⊕H2 implies

AH = AH1 ⊗AH2 .

Locally to Λ (resp. Λ{) reduced many-fermion state ω � Λ is
reduced (marginal, partial) state

(ω � Λ)(A) := ω(A⊗ 1) , A ∈ AH1 ,

(ω � Λ{)(A′) := ω(1⊗A′) , A′ ∈ AH2 .



ω � Λ and ω � Λ{ are quasi-free (as in (6)), determined by
one-particle density operators

D(Λ) := 1Λ D1Λ D(Λ{) := 1Λ{ D1Λ{

Here, D is one-particle density operator of ω and 1Λ is
multiplication operator with indicator function 1Λ on L2(Rd):

(ω � Λ)
[
a∗(f1) · · · a∗(fm)a(g1) · · · a(gm)

]
= δn,m det〈gi,D(Λ)fj〉

for all fi, gj ∈ L2(Λ). We define von Neumann entropy of any
quasi-free state ω determined by D,

S(ω) := S(D) := trh(D) ∈ [0,∞] ,

where h : [0, 1]→ [0, ln(2)] is binary entropy function defined by
h(0) := 0, h(1) := 0 and

h(t) := −t ln(t)− (1− t) ln(1− t) , t ∈ ]0, 1[ .





Define local entropy of (quasi-free) state ω resp. D reduced to Λ as

S(ω � Λ) := S(D(Λ)) := trh(D(Λ))

To define EE we cannot use (1) directly, because two of the
entropy terms are typically unbounded. So first we introduce for
Ω = Λ or Ω = Λ{ entropic difference operator

∆(ω,Ω) := h
[
1Ω D1Ω

]
− 1Ω h(D)1Ω ,

and then define

EE(ω,Λ) := tr ∆(ω,Λ) + tr ∆(ω,Λ{) .

By operator-concavity of h, ∆(T,Ω) ≥ 0 and hence EE(ω,Λ) ≥ 0.



For ω = ωT equilibrium state at temperature T > 0 we prove that
∆(ωT ,Ω) is trace-class and a-priori estimate

tr ∆(ωT , LΩ) ≤ CLd−1

if Ω = Λ or Λ{ is bounded set in Rd. This implies an area-law
bound for EE in line with (5).

Reason for this definition of EE:

tr ∆(ω,Λ) + tr ∆(ω,Λ{) = tr
{
h[1Λ D1Λ]− 1Λ h(D)1Λ

}
+ tr

{
h[1Λ{ D1Λ{ ]− 1Λ{ h(D)1Λ{

}
= S(ω � Λ) + “S(ω � Λ{)− S(ω)” .

Individual entropies are typically infinite but terms are reorganized
in ∆-operators such that they become trace-class.



To determine its precise scaling we need formula by Widom and
some more definitions. For {r, s} ⊂ [0, 1] and f.i. h entropy
function, define

U(r, s;h) := 1
4π2

∫ 1

0
dt
h((1− t)r + ts)− (1− t)h(r)− th(s)

t(1− t)
.

By concavity of h, U(r, s;h) ≥ 0. For function g : R→ [0, 1], let

U [g] := U [g;h] :=

∫
R2

dudv
U(g(u), g(v);h)

(u− v)2
≥ 0

as principle value. For d = 1 and Λ ⊂ R, set

η(T, ∂Λ) := U [fT ◦ (K − µ)] |∂Λ| ≥ 0 .



If d ≥ 2, x ∈ ∂Λ and ξ ∈ T∗x(∂Λ) ∼= Rd−1 then define firstly
reduced one-dimensional symbol fT ;(x,ξ) : R→ R

ν 7→ fT ;(x,ξ)(ν) := fT (K(ξ + ν · nx)− µ) .

So, if K(ξ) = ξ2 then K(ξ + ν · nx) = ξ2 + ν2 and

fT ;(x,ξ)(ν) = fT (ξ2 + ν2 − µ) .

Secondly, let

η(T, ∂Λ) := (2π)1−d
∫
∂Λ

dσ(x)

∫
Rd−1

dξ U [fT ;(x,ξ)]

=

∫
T∗(∂Λ)

dX U [fT ;X ] .

Non-trivial to prove that η(T, ∂Λ) <∞.



Theorem (d = 1, 2016; Sobolev for d > 1, 2017)

Let Λ ⊂ Rd be bounded with piece-wise C1-boundary and finitely
many connected components. Let K be smooth and polynomially
bounded, DT = (1 + exp((K(−i∇)− µ1)/T ))−1 corresponding to
equilibrium state ωT and Ω = Λ or its complement Λ{. Then, as
L→∞

tr ∆(ωT , LΩ) = tr
{
h
[
1LΩ DT 1LΩ

]
− 1LΩ h(DT )1LΩ

}
= η(T, ∂Λ)Ld−1 + o(Ld−1) .

Area-law scaling of EE in equilibrium state at T > 0, as L→∞

EE(ωT , LΛ) = tr ∆(ωT , LΛ) + tr ∆(ωT , LΛ{)

= 2 η(T, ∂Λ)Ld−1 + o(Ld−1)

and two-term asymptotic expansion of local entropy



of equilibrium state ωT at chemical potential µ:

S(ωT , LΛ) = tr
[
h(1LΛ fT (K(−i∇)− µ1)1LΛ)

]
= tr ∆(ωT , LΛ) + tr

[
1LΛ (h ◦ fT )(K(−i∇)− µ1)1LΛ

]
= s(T )|Λ|Ld + η(T, ∂Λ)Ld−1 + o(Ld−1) ,

with

s(T ) := (2π)−d
∫
Rd

dξ (h ◦ fT )(K(ξ)− µ)

usual thermal entropy density.

Leading term, long known in physics, was proved in 1993/1998,
next-to-leading η(T, ∂Λ) term is new.



Theorem (T = 0, 2014)

Let Γ ⊂ Rd be bounded with piece-wise C3-boundary ∂Γ, D0 =
1Γ(−i∇) one-particle density operator of ground state, and let
Λ ⊂ Rd be bounded with piece-wise C1-boundary ∂Λ. Then, local
entropy behaves asymptotically as L→∞

S(ω0, LΛ) = S(D0(LΛ)) = trh
[
1LΛ 1Γ(−i∇)1LΛ

]
= h(1) |Λ| |Γ/(2π)|Ld

+ U(0, 1;h)︸ ︷︷ ︸
= 1

12

(2π)1−d
∫
∂Γ×∂Λ

dτ(ξ)dσ(x) |nξ · nx|︸ ︷︷ ︸
=:I(∂Γ,∂Λ)

Ld−1 ln(L)

+ o(Ld−1 ln(L)) .

nξ and nx are unit normal vectors at ξ ∈ ∂Γ resp. x ∈ ∂Λ, and τ
and σ are surface measures on ∂Γ resp. ∂Λ.



I Since h(1) = 0, “leading” (volume) Weyl-term vanishes and
leading term of entropy is O(Ld−1 ln(L)); extra ln(L) is due
to step discontinuity of symbol 1Γ as function of momentum
ξ.

I “Fermi-sea” w.r.t. dispersion K: Γ = {ξ ∈ Rd : K(ξ) ≤ µ}.
I For spherical Fermi “surface” ∂Γ = pFSd−1 with radius
pF > 0,

I(∂Γ, ∂Λ) = [22−d/((d− 1)/2)!] (pF/π)(d−1)/2 |∂Λ|

implying logarithmically enhanced area law.

I For d = 1 and with |∂Λ| (even) number of boundary points,
and

I(∂Γ, ∂Λ) = |∂Γ| |∂Λ| .



Further remarks:

I In 2005, Gioev–Klich found above connection between EE and
conjectured formula by Widom from 1982. Latter concerns
two-term Szegö asymptotics for multi-dimensional Wiener–
Hopf (Toeplitz) operators. This sparked my interest.

I Our joint proof uses Sobolev’s remarkable proof of remarkable
conjecture by Widom for smooth functions “h”.

I Also based upon classical bounds by Birman–Solomyak on
singular values of compact integral operators to deal with
non-smooth h.

I Recent extension by P. Müller and R. Schulte to one-particle
Hamiltonian H = −∆ + V on L2(Rd) with compactly
supported V and Fermi-projection D0 = 1(−∞,µ](H).



Small temperatures

Ld−1-scaling of entropy at T > 0 versus Ld−1 ln(L)-scaling at
T = 0. How to reconcile this?

As T ↓ 0, leading asymptotic coefficient s(T ) of volume term Ld

goes to zero but coefficient η(T, ∂Λ) of surface term of order Ld−1

displays logarithmic singularity in T .

With Fermi-sea Γ := {ξ ∈ Rd : K(ξ) ≤ µ},

η(T, ∂Λ) = U(0, 1;h) I(∂Γ, ∂Λ) ln(1/T ) +OT (1) .

Recall, at T = 0,

S(D0(LΛ)) = U(0, 1;h) I(∂Γ, ∂Λ)Ld−1 ln(L) + o(Ld−1 ln(L)) .

So if we identify 1/T = L we recover logarithmically enhanced
area-law scaling at zero temperature.



Landau Hamiltonian

Consider free (pairwise non-interacting), spinless, charged fermions
confined to Euclidean plane R2 subject to perpendicular constant
magnetic field of strength B > 0. Single particle Hamiltonian,

H := (−i∇− a)2

on L2(R2). For x = (x1, x2) ∈ R2, ∇ := (∂/∂x1, ∂/∂x2), gauge
a(x) = (a1(x), a2(x)) := B/2(−x2, x1). Spectral decomposition
(Fock, Landau)

H = B

∞∑
`=0

(2`+ 1)P`

with eigenvalues {B, 3B, 5B, . . .} and (infinite-dimensional)
spectral projections P`, with integral kernel

P`(x, y) =
B

2π
L`(B‖x− y‖2/2) e−

B
4 ‖x−y‖

2+i
B
2 (x1y2−x2y1) .





L`(t) :=
∑`

j=0
(−1)j

j!

(
`
`−j
)
tj Laguerre polynomial, t ∈ [0,∞).

Ground state of free fermions at some Fermi energy µ ≥ B is
characterized by Fermi projection on L2(R2),

1(−∞,µ](H) =

ν∑
`=0

P` =: P≤ν

with ν := b(µ/B − 1)/2c integer part of (µ/B − 1)/2 ≥ 0.

Let Λ ⊆ Rd Borel set. Denote by 1Λ multiplication operator on
L2(Rd) by indicator function 1Λ on Rd. Ground state of fermions
localized to Λ ⊆ R2 is characterized by local(ized) Fermi projection

0 ≤ 1Λ 1(−∞,µ](H)1Λ = 1ΛP≤ν1Λ =: P≤ν(Λ) ≤ 1R2 .



Recall local von-Neumann entropy (or entanglement entropy)

Sν(Λ) := trh(P≤ν(Λ)) ,

with entropy function h(t) = −t ln(t)− (1− t) ln(1− t) on [0, 1].
Clearly, Sν(R2) = 0, and, in general, Sν(Λ) ∈ [0,∞]. We prove

I Sν(Λ) <∞ if Λ is bounded (often ignored but non-trivial!);

I leading asymptotic “area-law” scaling as L→∞

Sν(LΛ) = L
√
B |∂Λ|Mν + o(L) .

I Coefficient Mν independent of L and Λ.

I We assume boundary curve ∂Λ to be C3-smooth. Later, we
identify Mν = Mν(h) of certain functional f 7→ Mν(f).

In this talk we consider only ` = 0, L0 = 1. Mν for ν > 0 is more
complicated due to mixing of Landau level projections.



Functional f 7→ M0(f) is of form

M0(f) =

∫
R

dξ

2π
[f(λ0(ξ))− f(1)λ0(ξ)] ,

with

λ0(ξ) = π−1/2

∫ ∞
ξ

dt exp(−t2) .

Here, f : [0, 1]→ C continuous on closed unit interval [0, 1],
right-sided differentiable at 0, left-sided differentiable at 1, and
satisfies f(0) = 0. Then, |M0(f)| <∞.

We assume furthermore that Λ ⊂ R2 is bounded C3-region: union
of finitely many connected open sets with disjoint closures.
Boundary curve ∂Λ is C3.



Theorem (“Smooth f”, 2020)

Under the above assumptions on Λ and f we have 2-term
asymptotic expansions as L→∞,

trf(P0(LΛ)) = L2B
|Λ|
2π
f(1) + L

√
B|∂Λ|M0(f) + o(L) .

Proof ist first done for polynomial functions f , where o(L) term is,
in fact, o(1). Extension of asymptotic expansion from polynomials
to functions f in theorem uses Weierstraß approximation: write
f(t)− tf(1) =: b(t)t(1− t) and approximate b by polynomial p
uniformly on [0, 1].





For polynomials f(t) = tr+1, r ∈ N, we follow approach of
Roccaforte for Wiener–Hopf/Toeplitz operators. For given
v1, . . . , vr in R2, let Λε := Λ ∩ (Λ + εv1) ∩ · · · ∩ (Λ + εvr)
intersection of Λ with its r translates; ε = 1/(L

√
B). Then,

|Λ \ Λε| = ε

∫
∂Λ

dA(x) max
{

0, 〈v1|nx〉, . . . , 〈vr|nx〉
}

+ o(ε) .

nx is inward unit normal vector at x ∈ ∂Λ.

Alas, entropy function h is not (one-sided) differentiable at 0 and 1
but nevertheless, we have

Theorem (Entropy: main result, 2020)

Let Λ ⊂ R2 be bounded C3-region. Then, as L→∞

S0(LΛ) = trh(P0(LΛ)) = L
√
B |∂Λ|M0(h) + o(L) . (7)

In fact, M0(h) = 0,203....

“Leading” volume/area term is zero because h(1) = 0.



To deal with this asymptotics write

h = (1− ζε)h+ ζεh

with smooth function ζε, 0 ≤ ζε(t) ≤ 1 supported on trouble-zone
[0, ε] ∪ [1− ε, 1].

I Apply first theorem with smooth f = (1− ζε)h.

I For second term use

0 ≤ h(t) ≤ C t1/3(1− t)1/3 .

This shows |(ζεh)(t)| ≤ Cε1/3t1/3(1− t)1/3 and hence∥∥(ζεh)(P0(LΛ))
∥∥

1
≤ Cε1/3

∥∥P0(LΛ)
(
1− P0(LΛ)

)∥∥1/3

1/3

= Cε1/3
∥∥1LΛP0

(
1− 1LΛ

)∥∥2/3

2/3
.



For 0 < p <∞, compact operator T with singular values sn(T),
Schatten–von Neumann (quasi-)norm

‖T‖p :=

[ ∞∑
n=1

sn(T)p
] 1
p

<∞ .

If p ≥ 1, then ‖ · ‖p is norm. If 0 < p < 1, it is quasi-norm which
satisfies p-triangle inequality

‖T1 + T2‖pp ≤ ‖T1‖pp + ‖T2‖pp .

Theorem
Let Λ ⊂ R2 be bounded Lipschitz-region, ` ∈ N0, p ∈ (0, 1] and
L0 > 0. Then there exists constant C, depending on Λ, `, and L0,
such that for any L ≥ L0,

‖1LΛP`(1− 1LΛ)‖pp ≤ CL .



I Bound is due to fast (exponential) decay of off-diagonal part
of kernel of Landau-projections. Not true if B = 0, where
extra ln(L) appears.

I This bounds remainder term
∥∥(ζεh)(P0(LΛ))

∥∥
1
≤ Cε1/3L,

which vanishes as ε ↓ 0.

Previous results on local entropy in magnetic field:

I I.D. Rodriguez and G. Sierra in 2009 found formula for local
entropy for special domains Λ and lowest Landau level ` = 0.

I L. Charles and B. Estienne proved in 2018 this formula by
completely different methods (for ` = 0).



D(0, r) disk of radius r with center 0.

Lemma (Birman–Solomyak)

Let Z : L2(R2)→ L2(D(0, r)) be integral operator defined by
complex-valued kernel Z(x, y) obeying for some γ ∈ N0

Nγ(Z) :=

[ ∑
0≤s,t≤γ

∫
R2

dy

∫
D(0,r)

dx

∣∣∣∣ ∂s∂xs1 ∂t

∂xt2
Z(x, y)

∣∣∣∣2] 1
2

<∞ .

Then singular values sn(Z) of Z satisfy bound

sn(Z) ≤ Cn−
1+γ
2 Nγ(Z) , n ∈ N ,

with constant C dependent on r but independent of integral kernel.

Then, for p > 0,

‖Z‖pp ≤ CNγ(Z)
∑
n≥1

n−
1+γ
2
p <∞

if γ > (2/p)− 1.





For R > r > 0 we immediately obtain for any 0 < p ≤ 1

‖1D(0,r)P`(1− 1D(0,R))‖p ≤ Cp,r exp(−C(R− r)2) ,

Cp,r independent of R. Cover Λ by finitely many disks D(xk, r):

1. xk ∈ ∂Λ and inside each disk D̃ = D(xk, r), with appropriate
choice of coordinates,

Λ ∩ D̃ = {x = (x′, x′′) ∈ R2 : x′′ > Φ(x′)} ∩ D̃

with Lipschitz function Φ, or

2. D(xk, r) ⊂ Λ and dist
(
D(xk, r),R

2 \ Λ
)
> 0.

Cover the scaled disks LD(xk, r) by disks of radius 1. Disks inside
LΛ will have exponentially small contributions,

‖1D(0,r)P`(1− 1LΛ)‖p ≤ C exp(−CL2) .

Each disk at boundary at boundary ∂(LΛ) contributes at order 1.
Number of such disks is of order of length of boundary, L|∂Λ|.
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